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Abstract

Regularization has played a key role in de-
riving sensible estimators in high dimensional
statistical inference. A substantial amount of
recent works has argued for nonconvex reg-
ularizers in favor of their superior theoreti-
cal properties and excellent practical perfor-
mances. In a different but analogous vein,
nonconvex loss functions are promoted be-
cause of their robustness against “outliers”.
However, these nonconvex formulations are
computationally more challenging, especially
in the presence of nonsmoothness and non-
separability. To address this issue, we pro-
pose a new proximal gradient meta-algorithm
by rigorously extending the proximal aver-
age to the nonconvex setting. We formally
prove its nice convergence properties, and il-
lustrate its effectiveness on two applications:
multi-task graph-guided fused lasso and ro-
bust support vector machines. Experiments
demonstrate that our method compares fa-
vorably against other alternatives.

1 Introduction

Regularization has played a major role in recent de-
velopment of statistical machine learning algorithms
and applications. Many regularizers, with their unique
properties, have been designed. In particular, convex
regularizers have been prevalent due to their compu-
tational convenience. However, the potential superior-
ity of nonconvex regularizers has long been recognized
and pursued [1–5]. Empirically, nonconvex regulariz-
ers often yield better results than their convex coun-
terparts [6–8]. On the flip side, nonconvex regularizers
are computationally more challenging, but there has
been steady progress [6, 9–12]. For instance, [9, 10, 12]
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are among the first to apply the proximal gradient to
nonconvex regularizers; [11] extended the coordinate
descent to the nonconvex and nonsmooth setting; [6,
8] employed the convex-concave procedure; and [7] ap-
plied the alternating direction method of multipliers;
etc. These existing works have greatly expanded our
tool sets for coping with nonconvexity, generating re-
markable successes but also suffering some limitations:
a). Only apply to special scenarios [9, 11]; b). No con-
vergence result [7] or merely the weak “convergence”
in terms of function values [10–12]; c). Slow conver-
gence due to successive linearization [6, 8]; d). Inca-
pable of handling non-separability [9–12]. In this work
we propose a meta-algorithm that enjoys stronger con-
vergence guarantees and works in broader settings.

We are interested in the general setting where the
regularizer (or the loss function) is nonconvex, non-
smooth, and non-separable. For instance, the overlap-
ping group pursuit [8] advocated a nonconvex regu-
larizer for each overlapping group and achieved bet-
ter estimates. The same idea can be extended to the
graph-guided fused lasso [13], see Example 1 below.
However, the resulting optimization is now highly non-
trivial, rendering many of the existing algorithms in-
applicable, hence deserving a serious investigation.

We borrow the proximal averaging idea of the recent
work [14] and significantly extend it to the nonconvex
setting, by making the following contributions:

• Rigorously addressing the multi-valuedness and
non-uniqueness of the proximal map. This dif-
ficulty does not occur for convex functions but is
common for nonconvex ones. It is the key to deal
with non-separable functions where most existing
works (such as [9–12, 15]) do not apply.

• Re-establishing, sometimes with essential modi-
fications, the many key properties of the proxi-
mal average, including a complete characteriza-
tion on the real line. For instance, we show in
Example 3 that there are infinitely many func-
tions that all lead to the same hard-thresholding
rule, thus shedding new lights on both the statis-
tical and algorithmic aspects of nonconvex regu-
larizers. These theoretical developments are com-
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pletely new and provide a solid ground for some
ongoing work.

• Proving the convergence of the whole sequence
produced by our algorithm, which is even new for
the convex case. This contribution is particularly
important in applications (such as biostatistics)
where variable selection, if not the sole purpose, is
as desirable as achieving a small prediction error.

• Experimentally validating the proposed algorithm
on applications where nonconvexity and non-
separability really makes a difference. The algo-
rithm can be easily parallelized so even better ef-
ficiency can be anticipated.

To further demonstrate its flexibility, we also apply
our approach to the robust support vector machines
(RSVM) by swapping the role of loss and regularizer.
Here, we encounter a second motivation for noncon-
vex functions: As shown in [16, 17], any convex loss
cannot be robust against adversarial outliers. Accord-
ingly, RSVM replaces the convex hinge loss with the
nonconvex truncated hinge loss [18–20]. Through ex-
periments we show that our algorithm is much more
efficient than previous approaches such as alternating
[18] and the convex-concave procedure [19–21].

We formally state our problem in Section 2. Section 3
contains all technical results that are essential for the
convergence proof in Section 4. Experiments on both
multi-task GFlasso and robust SVM are conducted in
Section 5, and we conclude in Section 6.

2 Problem Formulation

We are interested in solving the minimization problem:

min
w∈Rp

`(w) + f̄(w), where f̄(w) =
K∑
k=1

αkfk(w), (1)

and the scalars, αk ≥ 0,
∑
k αk = 1, are fixed constants

throughout the paper. It is clear that many statisti-
cal machine learning algorithms can be cast under our
general formulation (1). For instance, take ` as the
least squares loss and f1 as the 1-norm (with K = 1)
we recover lasso [22]. We can also swap the role of the
“loss” ` and the “regularizer” f̄ . For instance, let fk
be the hinge loss for the k-th training data and ` be
the squared 2-norm, we recover the support vector ma-
chines [23]. These special cases are convex problems,
and have been extensively studied in the past. Instead,
we will focus on the more general setting where both
functions ` and {fk} are nonconvex and non-smooth.
The motivation to have nonconvex functions can be
diverse, and will be illustrated in Example 1 and Ex-
ample 2 below. We emphasize that the function f̄ is
non-separable, in the sense that its components {fk}
have overlapping argument w.

In general, (1) can be very challenging to solve, even
when we lower our expectation to the convergence to
some critical point. Fortunately, practical problems
usually come with some structure that we can (and
should) exploit. In particular, we make the following
assumption:
Assumption 1 The function ` has L-Lipschitz con-
tinuous gradient ∇`, each fk is Mk-Lipschitz contin-
uous (all w.r.t. the Euclidean norm ‖ · ‖), and the
proximal map Pµfk can be computed “easily” for any
µ > 0.

Recall that a mapping g : Rp → Rd is M -Lipschitz
continuous for some M > 0 if for all x,y ∈ Rp, ‖g(x)−
g(y)‖ ≤ M‖x − y‖. The proximal map Pµf for any
function f and parameter µ > 0 is defined as:

Pµf (w) = argminz∈Rp
1

2µ‖z−w‖2 + f(z). (2)

When f is the indicator function of some set C, Pµf (w)
simply returns the closest point in C to w, namely
the familiar Euclidean projection. If f is the 1-norm,
then Pµf becomes the well-known soft-shrinkage oper-
ator that is widely used in sparse methods, e.g. lasso.
The parameter µ > 0 in the definition (2) plays the
role of step size in the algorithms we will develop,
and needs to be set properly. Assumption 1 requires
the proximal map to be “easily” computable, meaning
roughly that its complexity should be on par with that
of computing the gradient of function `. This avoids
the proximal map to become the bottleneck if we use a
gradient-type algorithm. As we will see, Assumption 1
is quite reasonable in a number of applications.

In the nonconvex setting, we need to pay extra care to
even some “obvious” properties of the proximal map
(such as non-emptiness and non-uniqueness). Such
technicalities, albeit important, will be postponed un-
til Section 3. For the purpose of explaining our main
idea let us pretend momentarily that Pµf is a well-

defined “function”, i.e., Pµf (w) is some “closest point”
to w, measured by the function f . With this “simpli-
fication” we can now demonstrate how Assumption 1
is naturally satisfied in some important applications:

Example 1 (GFlasso, [13]) The graph-guided fused
lasso exploits some graph structure to improve feature
selection. Given some a priori graph whose nodes cor-
respond to the feature variables, [13] used the regular-
izer f̃ij(w) = |wi − wj | for every edge (i, j) ∈ E, to
encourage connected nodes to be selected jointly. How-
ever, as pointed out in [13], this regularizer brings a
large bias as it also requires connected nodes to have
similar weights, which is likely not true in general.
Here we reduce the bias by proposing the nonconvex
regularizer: fij = min{f̃ij , τ}, i.e., we cap the regular-
izer at the threshold τ . This will allow some weights
to differ significantly without getting heavily penalized.
In this example ` is the least squares loss.
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Algorithm 1 PA-PG.

1: Initialize w0, µ.

2: for t = 1, 2, . . . do

3: zt = wt−1 − µ∇`(wt−1),

4: wt ∈
∑
k αk · P̂

µ
fk

(zt).

5: end for

Algorithm 2 PA-APG.

1: Initialize w0 = u1, µ, η1 = 1.
2: for t = 1, 2, . . . do
3: zt = ut − µ∇`(ut),
4: wt ∈

∑
k αk · P̂

µ
fk

(zt),

5: ηt+1 =
1+
√

1+4η2
t

2 ,

6: ut+1 = wt + ηt−1
ηt+1

(wt −wt−1).

7: end for

It is easily verified that each fij is
√

2-Lipschitz contin-
uous w.r.t. the Euclidean norm. Moreover, the proxi-
mal map Pµfij can be computed in closed-form (see Ap-

pendix J for the detailed derivation): For s ∈ {i, j},
trivially [Pµfij (w)]s = ws, while for {s, t} = {i, j},

[Pµfij (w)]s = ws − sign(ws − wt) min{µη, |wi−wj |2 },

η =

{
0, |wi − wj | ≥ 2

√
µτ +

(
(
√
τ −√µ)+

)2
1, |wi − wj | ≤ 2

√
µτ +

(
(
√
τ −√µ)+

)2 .
Roughly speaking, η = 0 iff |wi−wj | is large, and con-
sequently [Pµfij (w)]s = ws, i.e., the algorithm gives up
“fusing” wi and wj, which can be beneficial in reducing
the estimation bias when wi and wj are truly different.

The next example swaps the role of the loss ` and
the regularizer fk, demonstrating the flexibility of the
general formulation (1).

Example 2 (Robust SVM, [18–20]) Support vec-
tor machine (SVM) is one of the most popular algo-
rithms for binary classification. However, it is known
not to be robust against outliers [16–18, 20]. In fact,
[16] constructed an example on which all algorithms
based on convex losses fail. Instead, [18, 20] proposed
the (nonconvex) truncated hinge loss as a robust alter-
native: fi(w) = min{τ, (1 − yix>i w)+}. It is easy to
verify that fi is ‖xi‖-Lipschitz continuous w.r.t. the
Euclidean norm, and its proximal map can be com-
puted as (see Appendix K for the detailed derivation):

Pµfi(w) = w +
[

1−yiw>xi
x>i xi

]µη
0
· yixi, (3)

where [·]µ0 denotes the projection onto the interval
[0, µ], and the parameter η ∈ {0, 1} is explicitly given
in (33) in the appendix. Roughly speaking, η = 0 iff
the margin yix

>
i w is small, i.e., the pair (xi, yi) is

likely to be an outlier, in which case Pµfi(w) = w, i.e.
the algorithm “refuses” to update the weight. In this
example ` is the (multiple of the) squared 2-norm.

The two examples represent two extremes in applica-
tions: the former has a nonconvex non-separable reg-
ularizer while the loss is the simple least squares, and
the latter has a nonconvex non-separable loss while the
regularizer is the simple (squared) 2-norm. Of course

it is possible to have other combinations (e.g. the over-
lapping group lasso [8]), but for illustration purpose we
shall contend ourselves with the above examples.

Having demonstrated the relevance of problem (1), we
now turn to how to solve it efficiently. The main
difficulty, apart from the nonconvexity, is the non-
separability of the functions {fk}: they all share the
same weight w. Accordingly, the coordinate descent
algorithm of [11] cannot be efficiently applied. Sim-
ilarly, the (block) proximal gradient (PG) algorithm,
such as those in [9, 10, 12, 15], cannot be directly ap-
plied either, because we do not know how to efficiently
compute the proximal map Pµ

f̄
, even when we assume

each Pµfk is easy to compute. Other possible algorithms
include the alternating strategy [18] and the convex-
concave procedure [8, 20]. However, due to successive
linearizations, these algorithms can be slow, and nor-
mally would need the functions fk to be smooth.

Our idea is to approximate the proximal map Pµ
f̄

using

the linearization:

Pµ
f̄
≈

∑
k
αkP

µ
fk
. (4)

Pretending Pµfk(w) is a single “point”, we can plug
the right-hand approximation into the PG algorithm.
The resulting algorithm (PA-PG), summarized in Al-
gorithm 1, can now be used to solve (1). It is extremely
simple: alternating between a standard gradient step
w.r.t. the loss ` and a proximal step1 w.r.t. the reg-
ularizers {fk}. Although the approximation (4) may
seem overly naive, linearizing a nonlinear object (at
least “locally”) is a ubiquitously useful technique (such
as the Taylor expansion in calculus). Indeed, for con-
vex functions ` and {fk}, the recent work [14] gave a
formal justification of Algorithm 1 and also the accel-
erated variation in Algorithm 2. In our later experi-
ments we found Algorithm 2 to be again more effective
than Algorithm 1 even for nonconvex functions.

We aim to generalize the nice results of [14] to the
current nonconvex setting and demonstrate its effec-
tiveness through experiments. This goal, as clear as it

1The big overbar and hat notation will be understood
after we present relevant technical results in Section 3.
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is, is far from trivial though. The difficulties we face
include: a). How should we interpret the sum in (4),
considering that for nonconvex fk, Pµfk may no longer
be single-valued? b). Does the right-hand side still
correspond to a proximal map of some function? c).
Can we formally justify the linearization? d). What
guarantee does (4) enjoy if plugged into the proximal
gradient algorithm? These questions cannot be an-
swered by existing works, such as [14] which relies en-
tirely on convexity, or [15] which relies entirely on sep-
arability (i.e., the functions fk have non-overlapping
arguments). A substantial technical development is
needed, which we do in Section 3.

Before going into the technical details, let us point out
a few practical advantages of Algorithm 1 and Algo-
rithm 2: 1). As a general meta-algorithm, they can
be used in a variety of settings. 2). For separable
functions, they reduce to the block PG algorithm [15]
while for K = 1 we recover the algorithms in [9, 10,
12], including the popular FISTA [24, 25] when con-
vexity is present. 3). They can be easily parallelized
when K is large (such as the RSVM example). 4).
The iterates they generate converge to a critical point
(globally optimal if convexity is assumed). These nice
properties are not shared by too many algorithms, let
alone simultaneously.

3 Technical Results

To justify our new algorithm, we need a few techni-
cal tools from variational analysis [26]. We equip Rp

with the usual inner product 〈·, ·〉 and the induced Eu-
clidean norm ‖·‖. For any closed2 function f (not nec-
essarily convex), its Moreau envelope (with parameter
µ > 0) is defined as [26]:

eµf (w) = infz
1

2µ‖w − z‖2 + f(z), (5)

and the proximal map is the corresponding mini-
mizer(s), see (2). One can roughly think the envelope
function eµf as a “regularized” version of f . For in-

stance, if f is the 1-norm, then eµf is the celebrated
Huber’s function in robust statistics [17]. Since we
have stepped out of the convex domain, many “obvi-
ous” properties, such as well-definedness, smoothness,
and uniqueness, can no longer be taken for granted.
Fortunately, many appealing properties retain, possi-
bly under an alternative interpretation.

It can be shown that Pµf is nonempty-valued iff f ma-
jorizes some quadratic function and µ is small [26].
Here, for simplicity, we assume throughout that f is
bounded from below so that we need not restrict µ.
Thus, Pµf : Rp ⇒ Rp is nonempty-, compact-, possibly

2The function f : Rp → R ∪ {∞} is closed iff its epi-
graph {(x, t) ∈ Rp ×R : f(x) ≤ t} is a closed set.

nonconvex- and multi-valued. In fact, Lemma 1 in Ap-
pendix C showed that the proximal map Pµf (w) is sin-

gle valued iff the envelope function eµf is differentiable
at w. Both are trivially true for convex functions, but
they may fail for general nonconvex functions, particu-
larly functions that are “capped” at a certain value—
our running examples in this paper. When µ ↓ 0,
eµf (w) ↑ f(w) for all w [26]. As mentioned before, the
proximal map is the key component of the proximal
gradient algorithm.

In the nonsmooth and nonconvex setting, the usual
gradient or subgradient no longer applies to character-
ize critical points. Instead, we are forced to “localize”.
We first define the regular (or Frechét) subdifferential

∂̂f(w) at w, as the collection of vectors v such that

∀ z, f(z) ≥ f(w) + 〈z−w,v〉+ o(‖z−w‖),

where the little-o term signifies a local neighborhood.
Since ∂̂f can be empty even for Lipschitz functions
(e.g. −| · | at the origin), we take its “closure” to avoid
this degeneracy, arriving at the subdifferential ∂f(w):

{v : ∃wn → w, f(wn)→ f(w),vn ∈ ∂̂f(wn),vn → v}.

Clearly, ∂̂f(w) ⊆ ∂f(w) for all w. Pleasantly, if f is

(resp. continuously) differentiable at w, then ∂̂f(w)
(resp. ∂f(w)) coincides with the usual derivative.
From the definition it follows that if w is a local mini-
mizer, then 0 ∈ ∂̂f(w) ⊆ ∂f(w), which generalizes the
familiar Fermat’s rule. We will be interested in finding
(asymptotically) some w so that 0 ∈ ∂f(w), i.e., the
critical points of f .

We reassure ourselves some nice properties of the
Moreau envelope and the proximal map in Ap-
pendix A. In particular, we proved that any Moreau
envelope is concave after subtracting the function
1

2µ ‖·‖
2
. The converse, which we prove next, will allow

us to “average” functions in a somewhat peculiar but
computationally appealing way.

Let SCVµ be the set of finite-valued µ-semiconcave
functions, that is, functions f : Rp → R such that
f − 1

2µ ‖·‖
2

is concave. For conciseness, denote CPB
the class of closed, proper, and bounded from below
functions. The next result, whose proof is deferred to
Appendix B, significantly extends [14, Proposition 2]:

Proposition 1 Fix µ > 0 and f ∈ CPB. Then f = eµg
for some function g ∈ CPB iff f ∈ SCVµ. Moreover,
the Moreau envelope map eµ : CPB→ SCVµ that sends
f ∈ CPB to eµf is increasing, and concave on any con-
vex subset of CPB (under the pointwise order).

Note that in the nonconvex setting, the Moreau enve-
lope (for any fixed µ > 0) is no longer injective (see
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Example 3 below). It is clear that SCVµ is a convex
set. Therefore we can average µ-semiconcave functions
and still be able to find a pre-image under the Moreau
envelope map, thanks to Proposition 1. This leads to
the generalized notion of the proximal average. Specif-
ically, recall that f̄ =

∑
k αkfk with each fk ∈ CPB,

i.e. f̄ is the convex combination of the component
functions {fk} under the weight {αk}. Note that we
always assume f̄ ∈ CPB.

Definition 1 (Proximal average) The prox-
imal average Aµ is any function g such that
eµg =

∑K
k=1 αke

µ
fk

. In face of non-uniqueness, we will

always pick Aµ = −eµM, where M := −
∑
k αke

µ
fk

.

The main idea behind this definition is to find some
function whose Moreau envelope is simply the average∑
k αke

µ
fk

. Indeed, the existence of such a function
follows from the surjectivity of eµ, which we proved in
Proposition 1. However, unlike the convex case, the
proximal average for nonconvex functions need not be
unique, and for concreteness we have picked a conve-
nient representative in Definition 1. We remark that
[27] used a slightly different definition for the sake of
pursuing smoothness; for us the current definition is
more useful. Note that for any function f , the so-called
µ-proximal hull hµf := −eµ

(−eµf )
has the same Moreau

envelope as f but need not coincide with f [26] (while
for convex functions f , always hµf = f). One easily
verifies, through the proximal hull, that our particu-
lar choice in Definition 1 is indeed legitimate (and will
prove convenient later, see Proposition 5).

To facilitate our discussions, let us first prove some
results that are interesting in their own rights. For any
multi-valued map P : Rp ⇒ Rp, we define its closure
P̄ : Rp ⇒ Rp, w 7→ {z : ∃{wn, zn} → (w, z), zn ∈
P(wn)}, i.e., the graph of the closure P̄ is simply the
closure of the graph of P. By “closing” a map we gain
some continuity property. Also define P̂(w) = P(w)
at points w where P(w) is single-valued and empty
otherwise.

Definition 2 (Extremal proximal maps) Define

the limiting proximal map Lµf = P̂µf , and the hull

proximal map Hµf : Rp ⇒ Rp,w 7→ conv(Pµf (w)),
where conv denotes the convex hull.

Thanks to item iv) of Proposition 7 (in Appendix A)
and [26, Theorem 1.25], we know ∅ 6= Lµf (w) ⊆
Pµf (w) ⊆ Hµf (w) for all w. The inclusion can be strict,
as we will see shortly. It may help to keep in mind that
Lµf and Hµf are the smallest and biggest proximal map
“compatible” with the function f , respectively. In Ap-
pendix C we prove many new structural properties of
these different notions of proximal maps.

The next result characterizes exactly when Moreau en-
velopes coincide (proof in Appendix D).

Proposition 2 Fix µ > 0. For any f ∈ CPB, there
exist hµf , `

µ
f ∈ CPB such that for any g ∈ CPB, eµg =

eµf + c for some constant c iff hµf ≤ g − c ≤ `µf iff

Pµ
`µf

(w) ⊆ Pµg (w) ⊆ Hµf (w) for all w.

In fact, `µf is the restriction of hµf onto some closed set.
Their explicit forms can be found in the proof. It is
also true that Pµ

`µf
= Lµf on the real line. Using Propo-

sition 2 we can easily characterize when the proximal
average is unique (essentially our particular choice in
Definition 1 plays the role of hµf ). It also leads to the
following result that completely characterizes proximal
maps on the real line (proof in Appendix D):

Proposition 3 The map P : R ⇒ R is a proximal
map iff it is (nonempty) compact-valued, monotone,
and has a closed graph. Moreover, there is a unique
function (up to addition of a constant) f such that
Pf = P iff P is also convex-valued.

Thus, both the SCAD [2] and the MC+ [3] threshold-
ing rules correspond to a unique regularization func-
tion. In contrast, there are infinitely many different
regularizers that all lead to the hard thresholding rule,
see Example 3. Importantly, Proposition 3 allows us to
directly design the proximal map (thresholding rule),
without even the need to refer to the regularizer f !
We now come to the main result for justifying Algo-
rithm 1. Recall that the main property of the proximal
average, as seen from its definition, is that its Moreau
envelope is the convex combination of the Moreau en-
velopes of the component functions. We wish to say
something similar for its proximal map. Indeed, this
is possible after an appropriate modification (proof in
Appendix E):

Proposition 4 For all w, ∅ 6=
∑
k αkP̂

µ
fk

(w) ⊆[
PµAµ(w)

⋂(∑K
k=1 αkP

µ
fk

(w)
)]

.

Recall that the middle term is exactly the approxi-
mation we employed in Section 2. Unlike the con-
vex case, we have to replace the simpler average∑K
k=1 αkP

µ
fk

with the slightly more complicated clo-

sure
∑
k αkP̂

µ
fk

, due to the possible multi-valuedness

of Pµfk . Indeed, some element in
∑K
k=1 αkP

µ
fk

(w) may

not be in PµAµ(w), which itself may change if we use a
different proximal average. Proposition 4 avoids such
pathology by always picking a common element. More-
over, in Section 4 we prove Algorithm 1 converges to
a critical point of the proximal average, which itself
may not even be unique! This ambiguity is resolved
using Proposition 4, which guarantees all realizations
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Figure 1: (a): the `0 function; (b): hard-thresholding operator; (c): proximal hull h|·|; (d): proximal map of h|·|;
(e): solid: another (continuous) function that has (b) as proximal map, dashed (+ red solid): function g. See
Example 3 for the explanations and formulas. Throughout µ = 1, λ = 1.

of the proximal average coincide along the trajectory
of Algorithm 1.

On the real line, thanks to Proposition 3,
∑
k αkP̂

µ
fk

=∑
k αkL

µ
fk

, with the latter being readily available. For
our Example 1 and Example 2, the computations
also reduce to the real line (see Appendix J and Ap-
pendix K, respectively), hence can be easily addressed.

Let us now demonstrate some pathology of the proxi-
mal map, using a familiar nonconvex function.

Example 3 Consider the cardinality function on the

real line |x|0 = λ2

2 1x 6=0. Its proximal map (with µ = 1)
is the well-known hard-thresholding operator:

P|·|0(x) =


x, |x| > λ

{0, x}, |x| = λ

0, |x| < λ

. (6)

In the literature, the above proximal map at |x| = λ
is usually set to 0. Mathematically, this is not precise
and possibly confusing: If P|·|0 was single-valued at

|x| = λ, then e|·|0(x) = 1
2 min{λ2, x2} would be contin-

uously differentiable, which is not true. Interestingly,
without the tools we have developed so far, [1] noticed
that the functions

h(x) := 1
2 (λ2 − (|x| − λ)21|x|≤λ) (7)

g(x) := λ|x|1|x|<λ + λ2

2 1|x|≥λ (8)

also have (6) as their (limiting) proximal map. We
verify that the former is exactly the proximal hull h|·|0 .
Applying Proposition 2 we know any function f ≥ h|·|0
with equality on the closed set [−∞,−λ]∪ [λ,∞]∪{0}
will have (6) as its limiting proximal map. Further-
more, if f is strictly larger than h|·|0 on ]−λ, λ[ , such

as the function g above, then according to Lemma 7 (in
Appendix C) it has the same proximal map as the car-
dinality function! See Figure 1 for the illustrations.

Statistically, one is often interested in the hard-
thresholding rule (6), rather than the cardinality func-
tion itself [1, 2, 10]. Figure 1 shows that there are ac-
tually infinitely many functions that all yield the same
proximal map (6). This observation suggests that we

should not base our algorithm on any particular func-
tion form but on the proximal map directly (which is
less ambiguous). In this sense the proximal gradient
algorithm seems to be a well fit. Similar conclusions
have been made in [10]. We point out that the lessons
we learned from this example extend to most noncon-
vex regularizers therefore deserve some attention.

To provide a strong convergence guarantee for Algo-
rithm 1, we will (and perhaps should) restrict the (non-
convex and nonsmooth) functions under our considera-
tion, for otherwise they can behave very pathologically.
To do so we recall some notions from semi-algebraic
geometry [28]. A set A ⊆ Rp is semi-algebraic if it
is the finite unions of finite intersections of the sets
{w ∈ Rp : p0(w) = 0, p1(w) < 0}, where p0, p1 are
polynomials with real coefficients. For instance, hy-
perplanes, halfspaces, spheres, ellipsoids, the positive
semi-definite cone, are all semi-algebraic. The most
striking property of semi-algebraic sets is that their
intersection with any line is the union of finitely many
points and open intervals (due to the fact that any
polynomial admits only finitely many roots). Thus,
for instance, the set of all natural numbers is not semi-
algebraic. A function f : Rp → R ∪ {∞} is semi-
algebraic iff its graph {(w, f(w)) : w ∈ dom f} is a
semi-algebraic set. For instance, all power functions
with rational exponent and all polyhedral functions are
semi-algebraic. On one hand, semi-algebraic functions
are extremely well-structured, allowing one to prove
many strong results; on the other hand, they appear
very naturally in various applications, such as the ones
we consider here: All functions appear in our exper-
iments are semi-algebraic. Note that the exponential
function and power functions with irrational exponent
are not semi-algebraic. They belong to the more gen-
eral class of definable functions3. For brevity, we omit
the relevant definitions here but refer to the nice ar-
ticle [28]. Since all of our results extend to definable
functions (w.r.t. some order-minimal structure that
contains all semi-algebraic functions), we will use the
term definable freely below; for all practical purposes,
one can simply think of “definable” as semi-algebraic.

3In case one wonders, there do exist non-definable (even
convex) functions, which oscillate infinitely often. Such
functions are unlikely to be useful in applications though.
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Definable functions are closed under all familiar alge-
braic operations. For instance, the sum, product, and
composition of definable functions are definable, re-
spectively. So is the scalar multiple and the inverse.
Moreover, the following result is useful to us (proof in
Appendix F).

Proposition 5 The function f is definable iff eµf (w),
as a function of (w, µ), is definable on Rp ×R++. In
particular, the proximal average (cf. Definition 1) of
definable functions is definable.

As we mentioned before, when µ ↓ 0, eµf ↑ f point-
wise [26]. Under the Lipschitz assumption, we can
strengthen the convergence to be uniform (Proof in
Appendix G):

Proposition 6 Under Assumption 1 we have 0 ≤ f̄−
Aµ ≤ f̄ −

∑
k αke

µ
fk
≤ µ

2

∑K
k=1 αkM

2
k .

Similar as the convex case, we see that the proximal
average Aµ is a better under-approximation to f̄ than
the average of Moreau envelopes, i.e.

∑
k αke

µ
fk

.

4 Theoretical Justification

Given our development in the previous section, it is
now clear that Algorithm 1 aims at solving the ap-
proximate problem:

minw `(w) + Aµ(w). (9)

The next important pieces are to show a). Algorithm 1
converges for the approximate problem (9); b). The
approximate problem (9) is reasonably “close” to the
original problem (1). Indeed, for the first piece, we
have the following result (proof in Appendix H):

Theorem 1 Let Assumption 1 hold and the functions
` and {fk} be definable. Choose µ < 1/L, then Algo-
rithm 1 converges to a critical point of (9), provided
that the iterates are bounded.

The last assumption is trivially met if, say the objec-
tive in (9) has bounded sublevel sets. To appreciate
the significance of Theorem 1, let us consider a simple
example: Assume say both 1 and -1 are critical points
of our problem, then any limit point of the iterate
sequence {1,−1, 1,−1, . . .} is indeed critical, but the
whole sequence does not converge at all. This behavior
can happen for the coordinate descent algorithm [11]
or the convex-concave procedures (cccp) [8, 19, 20],
but is eliminated for our algorithm, thanks to Theo-
rem 1.

To fulfill our second piece, we need a notion of approx-
imate minimizer. We call w an ε-local minimizer of f
if there exists some neighborhood N of w such that
for all z ∈ N , f(w) ≤ f(z)+ ε. Of course, when ε = 0,

we retrieve the usual notion of local minimizer. Then
we have (proof in Appendix I):

Theorem 2 Let Assumption 1 hold. Fix the accuracy
ε > 0 and choose µ < min{1/L, 2ε/

∑
k αkM

2
k}. If

Algorithm 1 converges to an ε-local minimizer of (9),
w̃, then w̃ is also a (2ε)-local minimizer of (1). Same
is true if w̃ is in fact an ε-global minimizer.

It is possible to prove that locally Algorithm 1 con-
verges at a rate no slower than sublinear (when all
functions are semi-algebraic). Moreover, if we let
µ ↓ 0, we can prove that the iterates converge to a crit-
ical point of the original problem (1). In experiments,
we found that a relatively small µ already yields sat-
isfying results, therefore we omit the rather technical
discussions.

5 Experiments

We evaluate our algorithm on two application do-
mains: truncated GFlasso (Example 1) and robust
SVM (Example 2). We demonstrate the benefits of
nonconvex formulations by comparing with the con-
vex counterparts, and we verify the effectiveness of
our proposed algorithm against alternative optimiza-
tion methods such as alternating coordinate descent
(alter) [18] and the convex-concave procedure (cccp)
[19]. We found that Algorithm 2 is always faster than
Algorithm 1 in all our experiments so only the former
(denoted as proxavg) is included here.

5.1 Multi-task GFlasso (Example 1)

Formally, the multi-task graph-guided fused lasso
model is given by:

1
2‖Y −XW‖

2
F + λ

∑q

j=1
φ(wj) (10)

+ γ
∑

(j,k)∈E
ωjk ψ(wj − sign(ωjk)wk),

where wj ∈ Rp is the j-th column of W . Here φ
is a regularizer that encourages sparsity among the
elements of wj , and ψ is a regularizer that encour-
ages fusion between the elements of wj and wk when
output variables j and k are connected in the graph.
In our experiment we use φ(u) = ‖u‖1 and ψ(u) =∑
i min{|ui|, τ}. If τ = 0, we recover the multi-task

lasso while if τ = ∞, we recover the GFlasso which
is convex. For any τ > 0, the fusion regularizer is
non-separable and nonconvex.

We compare different methods (corresponding to dif-
ferent τ ’s) on a synthetic data in which pairs of corre-
lated output variables, yj and yk, have similar weights,
wj and wk. We choose a block correlation graph for
concreteness and generate the data as follows. First,
partition the output variables y1, . . . ,yq into disjoint
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Figure 2: The F1 score under (a): varying sample size (n); (b): varying dimensionality (p); (c): varying graph
error. (d): Speed comparison between our algorithm (proxavg), alternating, and cccp.

ccat proxavg alter cccp svm sparse

training time (sec) 25.34 897.98 1151.26 69.85 110.21
test accuracy (%) 91.12 84.77 87.02 69.96 89.20

detected outlier (%) 9.94 20.12 18.45 - 10.47

Table 1: Results on the CCAT data set.

groups. Next, generate the sparsity pattern for the
weight matrix W by assigning the same (randomly
chosen) set of active input features to all the output
variables in each group. The nonzero entries of W are
drawn from Uniform(0.4, 0.8), but all variables in the
same group are given the same weight for each feature.
Draw X ∼ N (0, I) and Y ∼ N (XW,σ2I). Finally,
generate the correlation graph E over the output vari-
ables by thresholding the sample covariance matrix at
some value ν. We also test the robustness of the al-
gorithms by randomly changing certain percentage of
the edge weights.

A series of experimental results are shown in Figure 2.
Regularization parameters λ, γ, and τ (whenever ap-
plicable) are selected by optimizing the prediction er-
ror on a held-out set. We observe that a). The non-
convex fusion regularizer (0 < τ < ∞) consistently
outperforms lasso (τ = 0) and GFlasso (τ = ∞) in
terms of both feature selection (F1 score) and predic-
tion error (not shown); b). Our algorithm is several
times faster than both alter and cccp.

5.2 Robust SVM (Example 2)

We conducted experiments on two benchmark data
sets. The Long-Servedio [16] dataset is a well-crafted
synthetic data for testing robustness against label
noise and delicate leverage points. We generate 10,000
training examples (each with 21 features) and ran-
domly flip 10% labels. The other real dataset CCAT
from RCV1 [29] contains 23,149 training examples
(each with 47,152 features) and 781,265 test exam-
ples. Similarly, we randomly flip 10% of the labels in
the training set, and scale the corresponding features
by 10. We average the results with 10 repetitions and
report them in Table 1. For both SVM, alter [18],

and cccp [19], we use the state-of-the-art Liblinear
solver [30]. Instead of the (squared) 2-norm regular-
izer, our algorithm extends easily to the 1-norm regu-
larizer hence we also include sparse to further demon-
strate the flexibility. In contrast, Liblinear cannot
deal with the 1-norm regularizer.

We confirmed that SVM fails miserably on the Long-
Servedio dataset (achieving 72.14% prediction error),
while all other solvers (aimed for the robust SVM)
achieve nearly perfect results and identify the cor-
rect amount of outliers. Our algorithm is fastest but
the margin is small (due to the small size of the
dataset). For the CCAT dataset, our algorithm not
only achieves superior prediction accuracy but also
much pronounced efficiency. Again, SVM severely suf-
fers from outliers while alter and cccp are slow due
to their sequential nature: multiple calls of the SVM
solver can only be executed consecutively. Interest-
ingly, with small sacrifice in accuracy and training
time, sparse, using 1-norm regularizer in SVM, learns
a model with only 4.8% nonzero entries, whereas the
models learned by all other methods are at least 10
times denser. This could hugely reduce the test time—
a critical requirement in some financial applications.

6 Conclusions

We successfully extended the proximal average prox-
imal gradient algorithm into the nonconvex setting,
through a careful examination of the now multi-valued
proximal map. We proved that the whole sequence of
iterates converges to a critical point. Experimentally,
the proposed algorithm has shown much promise, and
naive parallelizability makes it even more favorable.
We intend to strengthen the convergence guarantee
and develop a fully distributed implementation.
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