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A Proof of Lemma 2

The analysis is the same as that for Lemma 9.2 of
Koltchinskii (2011), we include it for completeness.
For any x,x′ ∈ Kd,s, we can always find two vectors
y, y′ such that

x− x′ = y − y′, ‖y‖0 ≤ s, ‖y′‖0 ≤ s, y⊤y′ = 0.

Thus

〈x− x′, UU⊤z〉 = 〈y, UU⊤z〉+ 〈−y′, UU⊤z〉

=‖y‖2
〈

y

‖y‖2
, UU⊤z

〉

+ ‖y′‖2
〈 −y′

‖y′‖2
, UU⊤z

〉

≤(‖y‖2 + ‖y′‖2)Es(z) ≤ Es(z)
√
2
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‖y‖22 + ‖y′‖22
=Es(z)

√
2‖y − y′‖2 = Es(z)

√
2‖x− x′‖2.

Then, we have

Es(z) = max
w∈Kd,s

w⊤UU⊤z

≤Es(z, ǫ) + sup
x∈Kd,s,x′∈Kd,s(ǫ),‖x−x

′‖2≤ǫ
〈x− x′, UU⊤z〉

≤Es(z, ǫ) +
√
2ǫEs(z)

which implies

Es(z) ≤
Es(z, ǫ)
1−

√
2ǫ

.

B Proof of Lemma 3

Since

|w⊤UU⊤z−w⊤z|
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without loss of generality, we can assume ‖w‖2 = 1.

We decompose z as z = z‖ + z⊥, where

z‖ = (z⊤w)w, z⊥ = z− z‖.

As a result

w⊤UU⊤z =w⊤UU⊤z‖ +w⊤UU⊤z⊥

=(z⊤w)‖U⊤w‖22 +w⊤UU⊤z⊥.
(5)

We first consider bounding ‖U⊤w‖22. Notice that
U = 1√

m
[u1, . . . ,um] ∈ R

d×m, and we assume ui’s

are independent, isotropic, and sub-Gaussian vectors.
Then, for any fixed vector x, with a probability at least
1− e−C1mǫ

2

, we have (Mendelson et al., 2008, Section
3.1)

(1− ǫ)‖x‖22 ≤ ‖U⊤x‖22 ≤ (1 + ǫ)‖x‖22
where C1 > 0 is some constant. And thus, with a
probability at least with a least 1− e−τ , we have

1− C1

√
τ

m
≤ ‖U⊤w‖22 ≤ 1 + C1

√
τ

m
(6)

for some constant C1 > 0.

Next, we consider bounding w⊤UU⊤z⊥ =
1
m

∑m

i=1 w
⊤uiu⊤

i z⊥. Since ui’s are isotropic, we
have

E[w⊤uiu
⊤
i z⊥] = w⊤z⊥ = 0.

Based on the property ‖η1η2‖ψ1
≤ ‖η1‖ψ2

‖η2‖ψ2

(Koltchinskii, 2009, Page 815), we know that
w⊤uiu⊤

i z⊥ is a sub-exponential random variable, and

‖w⊤uiu
⊤
i z⊥‖ψ1

≤‖u⊤
i w‖ψ2

‖u⊤
i z⊥‖ψ2

≤‖w‖2‖z⊥‖2 ≤ ‖z‖2.

And thus {w⊤uiu⊤
i z⊥}mi=1 is a set of independent cen-

tered sub-exponential random variables. Following the
Bernstein-type inequality for sub-exponential random
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variables (Vershynin, 2012, Proposition 5.16), with a
probability at least 1− e−τ , we have

∣
∣w⊤UU⊤z⊥

∣
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√
τ

m
(7)

for some constant C2 > 0.

Putting everything together, with a probability at
least 1− 2e−τ , we have
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C Proof of Theorem 2

Let X and Y be the support set of x and y, respec-
tively. If |X | ≤ s, we have

‖xs − y‖2 = ‖x− y‖2.

Thus, in the following, we only need to consider the
case |X | > s.

Let A be the indices of the s largest elements in x, and
B = X \ A. Then, we have

‖x− y‖22 =
∑

i∈A\Y
x2
i +

∑

i∈A∩Y
(xi − yi)

2

+
∑

i∈B∩Y
(xi − yi)

2 +
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i ,
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i∈A\Y
x2
i +
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(xi − yi)

2 +
∑

i∈B∩Y
y2i .

Since

|A \ Y|+ |A ∩ Y| = |A| = s ≥ |Y| = |A ∩ Y|+ |B ∩ Y|

we have |A \ Y| ≥ |B ∩ Y|. As a result, we must have

∑

i∈B∩Y
x2
i ≤
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x2
i . (8)
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we have
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