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Abstract

Algorithms based on spectral graph cut ob-
jectives such as normalized cuts, ratio cuts
and ratio association have become popular
in recent years because they are widely appli-
cable and simple to implement via standard
eigenvector computations. Despite strong
performance for a number of clustering tasks,
spectral graph cut algorithms still suffer from
several limitations: first, they require the
number of clusters to be known in advance,
but this information is often unknown a pri-
ori ; second, they tend to produce clusters
with uniform sizes. In some cases, the true
clusters exhibit a known size distribution;
in image segmentation, for instance, human-
segmented images tend to yield segment sizes
that follow a power-law distribution. In this
paper, we propose a general framework of
power-law graph cut algorithms that pro-
duce clusters whose sizes are power-law dis-
tributed, and also does not fix the number
of clusters upfront. To achieve our goals, we
treat the Pitman-Yor exchangeable partition
probability function (EPPF) as a regularizer
to graph cut objectives. Because the result-
ing objectives cannot be solved by relaxing
via eigenvectors, we derive a simple iterative
algorithm to locally optimize the objectives.
Moreover, we show that our proposed algo-
rithm can be viewed as performing MAP in-
ference on a particular Pitman-Yor mixture
model. Our experiments on various data sets
show the effectiveness of our algorithms.
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1 Introduction

As one of the most fundamental problems in machine
learning, clustering has received a considerable amount
of attention and has applications in data mining, com-
puter vision, statistics, social sciences, and others.
Spectral graph cut algorithms such as normalized cuts
[1], ratio cut [2] and ratio association [1, 3] are one
of the most studied and utilized classes of cluster-
ing methods. These algorithms aim to cluster data
by first constructing a similarity graph based on the
given data, then “cutting” the graph into groups of
nodes according to a graph-theoretic objective. Nor-
malized cuts has been widely used in the computer vi-
sion community for image segmentation [1] and other
problems [4] while ratio cut has been applied in cir-
cuit layout [2]. Though these graph cut problems can
be shown to be NP-hard, several effective algorithms
have been proposed, including eigenvector-based ap-
proaches [1] as well as methods based on kernel k-
means [3].

Despite the success of spectral graph cut algorithms,
they do suffer from several important limitations. For
one, they require the number of clusters to be known
before running the algorithm, but in many applica-
tions the number of clusters is not known a priori.
More importantly, many graph cut objectives, such
as the normalized cut objective and the ratio cut ob-
jective, favor clusters of equal size or degree, which
typically leads these algorithms to produce clusters
with nearly uniform sizes. Consider image segmen-
tation, the canonical application of normalized cuts.
As shown in [5], human-segmented images yield seg-
ments that are far from uniform; in fact, they follow a
power-law distribution in terms of their segment sizes.
Power-law distributions arise frequently in a number
of other clustering applications as well. For instance,
because income follows a power-law distribution, at-
tempting to cluster individuals into income brackets
using census data would likely fail when applying stan-
dard clustering techniques. Other phenomena exhibit-
ing power-law distributions include the populations of
cities, the intensities of earthquakes, and the sizes of
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power outages [6]. These applications—and the lack
of existing graph clustering methods that specifically
encourage power-law cluster size structure—motivate
our work.

In this paper, we propose a general framework of
power-law graph cut algorithms that encourages clus-
ter sizes to be power-law distributed, and does not fix
the number of clusters upfront. To achieve both goals,
we borrow ideas from Bayesian nonparametrics [7],
which provide a principled way to automatically infer
both the parameters of a model as well as its complex-
ity. We observe that the Pitman-Yor Chinese restau-
rant process [8], a Bayesian nonparametric prior that
generalizes the Chinese restaurant process, yields clus-
ters whose sizes follow a power-law distribution. We
treat the Pitman-Yor exchangeable partition probabil-
ity function (EPPF) [9] as a regularizer for graph cut
objectives, so that the resulting objectives favor clus-
ters that both have a small graph cut objective value
as well as a power-law cluster size structure.

Algorithmically, incorporating the Pitman-Yor EPPF
into existing cut formulations results in an optimiza-
tion problem where standard spectral methods are no
longer applicable. Inspired by the connection between
spectral graph cut objectives and weighted kernel k-
means [3], we derive a simple k-means-like iterative
algorithm to optimize several power-law graph cut ob-
jectives. As with k-means, our proposed algorithm
is guaranteed to converge to a local optima in a fi-
nite number of steps. We further demonstrate that
our graph cut problem may be viewed precisely as a
MAP problem for a particular Pitman-Yor Gaussian
mixture model. Finally, to demonstrate the utility of
our algorithm, we perform extensive experiments us-
ing power-law normalized cuts on synthetic datasets,
real-world data with power-law structure, and image
segmentation.

Related Work: Small-variance asymptotics have re-
cently been extended to Bayesian nonparametric mod-
els to yield simple k-means-like algorithms [10, 11]; one
of the applications of that line of work is a normalized
cut algorithm that does not fix the number of clus-
ters upfront [10]. However, that approach cannot be
directly applied to Pitman-Yor process mixture mod-
els, as small-variance asymptotics on the Pitman-Yor
process model fail to capture any power-law character-
istics.

The most related work to ours is [12], an algorithm
for scalable power-law clustering based on adapting
k-means. Specifically, the authors propose a power-
law data clustering algorithm based on modifying the
Pitman-Yor process and performing a small-variance
asymptotic analysis on the modified Piman-Yor pro-

cess. However, their objective function does not guar-
antee the generation of a power-law distributed cluster
sizes and the optimal clustering solutions for their ob-
jective are often trivial. We will discuss this method
further in Section 4.4 and Section 5.

The work of [13] is complementary to ours in that it
deals with graphs with power-law degree distributions
while our paper applies to graphs with power-law clus-
ter size distributions. Finally, the work of [5] intro-
duces a model for segmentation based on Pitman-Yor
priors, but it is specific to the image domain whereas
our method is a general graph clustering algorithm.

2 Background

We begin with a brief discussion about spectral graph
cut algorithms and their connection to weighted kernel
k-means.

2.1 Spectral graph cut algorithms

In the graph clustering setting, we are given an undi-
rected weighted graph G = (V, E), in which V =
{v1, ..., vn} denotes vertices and E denotes edges. The
weight of an edge between two vertices represents their
similarity. The corresponding adjacency matrix A is
a |V|-by-|V| matrix whose entry Aij represents the
weight of the edge between vi and vj .

The idea behind graph cuts is to partition the graph
into k disjoint clusters such that the edges within a
cluster have high weight and the edges between clus-
ters have low weight. Several different graph cut ob-
jectives have been proposed [1, 2, 14], among which
normalized cuts [1] and ratio cut [2] are two of the
most popular. Denote

cut(V1,V2) =
∑

i∈V1,j∈V2

Aij ,

i.e., the sum of the edge weights between V1 and V2,
and

deg(V1) = cut(V1,V),

the sum of all edge weights between V1 and V. Nor-
malized cuts (sometimes called k-way normalized cuts)
aims to minimize the cut relative to the degree of the
cluster. The objective can be expressed as

NCut(G) = min
V1,...,Vk

k∑
i=1

cut(Vi,V/Vi)
deg(Vi)

.

While this objective can be shown to be NP-complete,
a relaxation of it can be globally optimized using spec-
tral methods by computing the first k eigenvalues of
the normalized Laplacian constructed from the adja-
cency matrix A [15].
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The ratio cut objective differs from normalized cuts in
that it seeks to minimize the cut between clusters and
the remaining vertices. It is expressed as

RCut(G) = min
V1,...,Vk

k∑
i=1

cut(Vi,V/Vi)
|Vi|

.

Note that there are also other graph partitioning ob-
jectives that fall under this framework (see, e.g., Sec-
tion 3 of [3] which generalizes association and cut prob-
lems to weighted variants), and our approach can also
be applied to these objectives.

2.2 Weighted kernel k-means and graph cuts

Consider the k-means objective function with clusters
`1, . . . , `k:

k∑
c=1

∑
xi∈lc

‖xi − µc‖2,

where µc = (1/|`c|) ·
∑
xi∈`c xi. It is straightforward

to extend this to the weighted setting by introducing
a weight wi for each data point, which yields the fol-
lowing:

k∑
c=1

∑
xi∈`c

wi‖xi − µc‖2,

where now the mean µc is the weighted mean µc =∑
xi∈`c wixi/

∑
xi∈`c wi. Further, we can replace the

original data with mapped data φ(xi) and treat the
entire problem in kernel space by expressing both the
k-means algorithm, along with the objective, in terms
of inner products. This is necessary for the connection
to graph cuts.

Dhillon et al. [3] showed that there is a connection be-
tween the weighted kernel k-means objective and sev-
eral spectral graph cut objectives. We will discuss in
particular the connection to normalized cuts. Define
the degree matrix D as the diagonal matrix whose en-
tries Dii are equal to the degree of node i. The surpris-
ing fact established in [3] is that normalized cuts and
weighted kernel k-means are mathematically equiva-
lent, in the following sense: ifA is an adjacency matrix,
then the normalized cuts objective on A is equivalent
to the weighted kernel k-means objective (plus a con-
stant) on the kernel matrix K = ρD−1 + D−1AD−1,
where ρ is chosen such that K is a positive semi-
definite matrix, and where the weights of the data
points are equal to the degrees of the nodes. Thus,
for the purposes of minimizing the weighted (kernel)
k-means objective function, we can effectively inter-
change the objective with the normalized cut objec-
tive, i.e.,

min

k∑
c=1

∑
x∈`c

wi‖x− µc‖2 ≡ min

k∑
c=1

cut(Vc,V/Vc)
deg(Vc)

(1)

for the appropriate definition of the kernel matrix. In
particular, this result gives an algorithm for monotoni-
cally minimizing the normalized cut objective—we just
form the appropriate kernel and set the weights to the
degrees, and then run weighted kernel k-means on that
kernel matrix. Similar equivalences hold for both the
ratio cut and ratio association objectives—by forming
appropriate kernels and weights, the graph cut objec-
tives can be shown to be mathematically equivalent to
the weighted kernel k-means objective.

3 The Power-law Normalized Cut
Objective

Our goal is to propose and study a new set of graph cut
objectives that produce power-law distributed cluster
sizes. In order to achieve this, we will borrow some
key ideas from Bayesian nonparametrics. More specif-
ically, we look at the Pitman-Yor Chinese restaurant
process [8], a generalization of the Chinese Restaurant
Process that specifically yields power-law distributed
cluster sizes. For simplicity, we will focus on the nor-
malized cut objective as an example. One can simply
replace the normalized cut objective with other graph
cut objectives to obtain other power-law graph cut al-
gorithms in our framework.

3.1 Pitman-Yor EPPF

The canonical Bayesian nonparametric clustering prior
is the Chinese restaurant process (CRP) [7]. It yields
a distribution on clusterings such that the number of
clusters are not fixed, and where the sizes of the clus-
ters decay exponentially. The description of the CRP
is as follows: customers enter a restaurant with an
infinite number of tables (each table corresponds to a
cluster). The first customer sits at the first table. Sub-
sequent customers sit at tables with probability pro-
portional to the number of seated customers at that
table, and with probability proportional to α sit at a
new table. The Pitman-Yor process leads to an ex-
tension of the CRP such that the cluster sizes instead
follow a power-law distribution. In this modified ver-
sion of the CRP, when customers sit down at tables,
they sit at an existing table with probability propor-
tional to the number of existing occupants minus θ
(0 ≤ θ < 1), and at a new table with probability pro-
portional to k ·θ+α, where k is the current number of
occupied tables. Thus, as the number of tables k in-
creases, there is a higher probability of starting a new
table; this leads to the heavier power-law distribution
of cluster sizes.

One can explicitly write down the probability of ob-
serving a particular seating arrangement under the
Pitman-Yor CRP, and the resulting formula is known
as the Pitman-Yor exchangeable partition probability
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function (EPPF) [9]. If we let Z be an indicator matrix
for the resulting clustering, then the probability distri-
bution of Z under the Pitman-Yor CRP is expressed
by the following unintuitive and somewhat cumber-
some form:

p(Z|α, θ) =
[α+ θ]k−1,θ
[α+ 1]n−1

·
k∏
c=1

[1− θ]nc−1 (2)

where

[x]m,a =

{
1 m = 0

x · (x+ a) · · · (x+ (m− 1)a) m = 1, 2, ...,

nc is the size of cluster c, and [x]m is defined as [x]m,1.
One can verify that, when θ = 0, we actually obtain
the original CRP probability distribution. One can
also show that the expected number of clusters under
this distribution is O(αnθ), and that we obtain the
desired power-law cluster size distribution [9].

3.2 Power-law normalized cut objective

To obtain power-law distributed cluster sizes within
a graph clustering setting, we treat the Pitman-Yor
EPPF as a regularizer for the cluster indicator matrix
of normalized cuts. Then our resulting objective is
given as below:

min
Z,k

k∑
c=1

cut(Vc,V\Vc)
deg(Vc)

+ λ · rα,θ(Z), (3)

rα,θ(Z) = − ln p(Z|α, θ)

where Z = [z1, ..., zn] is the indicator for the cluster
assignment of each node, rα,θ(Z) is the negative log
of the Piman-Yor EPPF and λ is a tradeoff between
the original graph cut objective and the regularization
term. The first term is the standard normalized cut
objective. The desired power-law distributed partition
would give a high value of the Pitman-Yor EPPF and
thus a low value of the second term. Therefore, the
clustering result that minimizes this objective should
give a partition of the graph such that both similarity
information is preserved and cluster sizes are power-
law distributed.

4 Optimization

The objective function (3) defined in the previous sec-
tion enforces a tradeoff between standard normalized
cuts and a preference for power-law cluster size struc-
ture. We now turn to optimization of the resulting
objective.

4.1 The vector case

The first observation that we can make is that spectral
methods will not apply to our proposed objective. Re-
call that for the normalized cut objective, a standard

approach is to relax the cluster indicator matrix Z to
be continuous, leading to a simple eigenvector problem
that can be optimized globally. When applying such
a technique to the power-law normalized cut objec-
tive, one would need to incorporate the regularization
term appropriately into the trace maximization prob-
lem that emerges from the spectral solution, but this
turns out to be impossible.

Instead we must turn to the other main optimization
strategy for normalized cuts—namely the equivalence
to weighted kernel k-means—and we will adapt the
weighted kernel k-means algorithm for our problem.
To start, in this section we will derive a k-means-like
algorithm for the following regularized k-means prob-
lem:

min
Z,k

k∑
c=1

∑
xi∈`c

wi‖xi − µc‖2 + λ · rα,θ(Z),

where the means µc are the weighted means of the
points in `c as in standard weighted k-means as dis-
cussed in Section 2.2. Once we have obtained the algo-
rithm for this case, we can easily extend the connection
between normalized cuts and weighted kernel k-means
to obtain an algorithm for monotonic local convergence
of the power-law normalized cut objective. Note that
this treatment is equally applicable to the ratio cut
and ratio association objectives.

We observe that, when the cluster indicators Z are
fixed, the weighted mean is justified in the above ob-
jective since it is the best cluster representative for
each cluster in terms of the objective function, i.e., for
fixed Z and any choice of c, the regularizer is constant
and we have by simple differentiation∑

xi∈`c

wi‖xi − µc‖2 = min
m

∑
xi∈`c

wi‖xi −m‖2.

Therefore, the updates on µc will be exactly as in stan-
dard weighted k-means.

The other step is the update on the indicators Z. In
standard k-means, these updates are derived by fix-
ing the means and minimizing the k-means objective
function with respect to each zi, which yields the usual
k-means assignment step. The Pitman-Yor EPPF reg-
ularizer makes the assignment updates somewhat less
trivial, but it is still fairly straightforward. For each
data point we consider the objective function when as-
signing that point to every existing cluster, as well as
to a new cluster, and assign to the cluster that results
in the smallest objective function. The regularizer ef-
fectively adds a “correction” to each distance compu-
tation wi‖xi−µc‖2. Let nc be the number of points in
cluster c. After going through the algebra, we arrive at
the following: if xi is currently assigned to `c, then we
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have that the distance to another cluster `c′ (ignoring
constants, which do not affect re-assignment) is given
by the following cases:

• If c′ = c:

d(xi, c
′) = wi‖xi − µc′‖2.

• if nc > 1 and c′ is an existing cluster,

d(xi, c
′) = wi‖xi − µc′‖2 + λ · ln

(
nc − 1− θ
nc′ − θ

)
.

• if nc = 1 and c′ is an existing cluster,

d(xi, c
′) = wi‖xi−µc′‖2 +λ · ln

(
α+ (k − 1)θ

nc′ − θ

)
.

• if nc > 1 and c′ is a new cluster

d(xi, c
′) = λ · ln

(
nc − 1− θ
α+ kθ

)
.

• if nc = 1 and c′ is a new cluster

d(xi, c
′) =∞.

Observe that the distance to new clusters goes down
as k increases, which is analogous to the property in
the Pitman-Yor version of the Chinese restaurant pro-
cess of being more likely to start a new table as the
number of tables increases. In a similar way, when
computing the distance to existing clusters, the dis-
tance becomes smaller as the cluster gets larger (i.e.,
as nc′ goes up), leading to the “rich gets richer” be-
havior. Finally, whenever a new cluster is started by
some point xi, we immediately set the mean to be xi.
See Algorithm 1 for a full specification. Note that,
analogous to the convergence proof of k-means, one
can easily show that this algorithm monotonically de-
creases the regularized k-means objective until local
convergence.

4.2 Power-law normalized cut algorithm

Recall that in Section 2.2 we discussed the equivalence
between the graph cuts formulation and the weighted
kernel k-means objective, as in (1). With this equiva-
lence in hand, the extension from the vector case to the
power-law graph cut objectives follows easily: we sim-
ply replace the weighted k-means term with a graph
cuts term, which gives exactly the same objective with
our power-law graph cuts objective in (3) up to a con-
stant; then we apply Algorithm 1 in kernel space to
solve the resulting optimization problem.

More specifically, given a graph G = (V, E) with ad-
jacency matrix A, our power-law normalized cut algo-
rithm is described as follows:

Algorithm 1 Power-law-means (vector case)

Input: x1, ...,xn: data points; w1, ..., wn: weights;
λ: trade-off parameter; α, θ: Pitman-Yor EPPF
parameters

Output: Clustering `1, ..., `k; k : number of clusters
1: Init. k = 1, `1 = {x1, ...,xn},µ1 the global mean
2: Init. cluster indicators zi = 1 for all i = 1, ..., n.
3: Repeat 4 to 17 until convergence.
4: for each data point xi, suppose xi is currently

assigned to cluster `c do
5: if nc = 1, i.e. xi is a singleton cluster then
6: compute its “regularized” distance d(xi, c

′) to
the other clusters according to the following:

• If c′ = c, d(xi, c
′) = 0.

• if c′ 6= c and `c′ is an existing cluster,

d(xi, c
′) = wi‖xi−µc′‖2+λ·ln(α+(k−1)θ

nc′−θ
)

• if `c′ is a new cluster, d(xi, c
′) =∞

7: else
8: compute its “regularized” distance d(xi, c

′) to
the other clusters according to the following:

• If c′ = c, d(xi, c
′) = wi‖xi − µc′‖2.

• if c′ 6= c and `c′ is an existing cluster,
d(xi, c

′) = wi‖xi−µc′‖2 +λ · ln(nc−1−θ
nc′−θ

)

• if `c′ is a new cluster,
d(xi, c

′) = λ · ln(nc−1−θ
α+kθ )

9: end if
10: Assign xi to the cluster corresponding to the

smallest regularized distance. Update Z:

zi = arg min
c′

d(xi, c
′).

11: if zi corresponds to a new cluster then
12: set k ← k + 1, zi = k, and µk = xi.
13: end if
14: end for
15: for each cluster `c do
16: Update µc based on the weighted mean of the

data points in cluster `c:

µc =

∑
x∈`c wixi∑
x∈`c wi

.

17: end for

• Compute the degree matrix D from A as the di-
agonal matrix whose entries Dii are equal to the
degree of node i.

• Compute the kernel matrix K from A using K =
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ρD−1 +D−1AD−1.

• Run Algorithm 1 in kernel space with kernel K
and weights given by the degrees of the nodes.
The power-law normalized cut clustering result is
then obtained directly from Algorithm 1.

In kernel space, the regularized distance remains un-
changed. The only change is that now we need to com-
pute ‖φ(xi)−µc‖2 instead of ‖xi −µc‖2. We expand
the last distance computation and use the formula for
µc and obtain:

φ(xi) · φ(xi)−
2
∑
xj∈lc wjφ(xi) · φ(xj)∑

xj∈lc wj

+

∑
xj ,xl∈lc wjwlφ(xj) · φ(xl)

(
∑
xj∈lc wj)

2
.

Using the kernel matrix K, the above may be written
as:

Kii −
2
∑
xj∈lc wjKij∑
xj∈lc wj

+

∑
xj ,xl∈lc wjwlKjl

(
∑
xj∈lc wj)

2
.

We note that, as when applying weighted kernel k-
means to the standard normalized cut problem [3],
each iteration of Algorithm 1 when applied in kernel
space with K requires time O(|E|), making it very scal-
able for applications to large graphs. Also note that by
using an appropriate kernel matrix K, we can utilize
other graph cut objectives in this framework.

4.3 Connection to Pitman-Yor MAP
inference

Finally, we briefly consider the connections between
our proposed objective and a simple Pitman-Yor pro-
cess mixture model. Consider the following Bayesian
nonparametric generative model:

Z ∼ PYCRP(α, θ);

xi ∼ N (µzi , (σ/(2wi))I), i = 1, ..., n,

where PYCRP refers to the Pitman-Yor Chinese
Resturant Process. To perform MAP inference, we
can write down the joint likelihood and maximize with
respect to the relevant parameters:

argmaxZ,k,µp(X,Z)

≡ argminZ,k,µ − ln

( n∏
i=1

N (µzi ,
σ

2wi
I) · p(Z |α, θ)

)

≡ argminZ,k,µ
1

σ

k∑
c=1

∑
xi∈`c

wi‖xi − µc‖2 − ln p(Z |α, θ)

≡ argminZ,k,µ

k∑
c=1

∑
x∈`c

wi‖xi − µc‖2 + λ · rα,θ(Z),

where λ = σ. Note that the minimization with respect
to µ yields precisely the weighted means, and so based
on the equivalence between weighted kernel k-means
and normalized cuts, we can see that our proposed
objective function may be viewed in a MAP inference
framework. This framework also justifies the use of
the log of the Pitman-Yor EPPF as a regularizer.

4.4 Comparison to existing power-law
clustering algorithm pyp-means

In [12], the authors propose a different objective for
power-law data clustering, namely:

arg min
l1,...,ln

k∑
c=1

∑
i∈lc

‖xi − µc‖+ (λ− ln k · θ)k,

which adds a −k ln k · θ term to the dp-means objec-
tive function [10]. While this objective function does
incorporate the number of clusters into the optimiza-
tion, it does not require or encourage the cluster sizes
to follow a power-law distribution. Moreover, in their
experiments, the authors set θ = λ/6. In this case, the
objective function becomes:

arg min
l1,...,ln

k∑
c=1

∑
i∈lc

‖xi − µc‖+ λ

(
1− ln k

6

)
k,

One can show that, when the number of data points
exceeds ln 403 ≈ 6, the trivial clustering result, namely
every data point is a singleton cluster, will minimize
this objective. This can be seen by the fact that the
trivial clustering result minimizes the k-means objec-
tive by simply being 0 and that k = the number of data
points minimizes the regularization term. In short,
this objective is not appropriate for power-law cluster-
ing applications. In the following experiment section,
we will also compare our algorithm with their method
empirically.

5 Experiments

We conclude with a brief set of experiments demon-
strating the utility of our methods. Namely, we will
show that our approach enjoys benefits over the k-
means algorithm on real power-law datasets in the vec-
tor setting and benefits over standard normalized cuts1

on synthetic and real data in the graph setting. We
also compare our method with the pyp-means [12] and
show that our method achieves better clustering re-
sults. Throughout the experiments, we use normalized
mutual information (NMI) between the algorithm’s
clusters and the ground-truth clusters for evaluation.

1Normalized cut image segmentation code:
http://www.cis.upenn.edu/ jshi/software/.
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Figure 1: Results on a Pitman-Yor generated stochastic block model graph. Left: Adjacency matrix of the
graph, indexed by clusters. Middle: Power-law normalized cut results; NMI is 0.866. Right: Normalized Cuts
result; NMI is 0.687.

1 2 3 4 5 6 7 8
0

50

100

150

Cluster  identities

N
u
m

b
e
r 

o
f 
d
a
ta

 p
o
in

ts

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

Cluster  identities

N
u
m

b
e
r 

o
f 
d
a
ta

 p
o
in

ts

1 2 3 4 5 6 7 8 9
0

50

100

150

Cluster Identities

N
u

m
b

e
r 

o
f 

d
a

ta
 p

o
in

ts

1 2 3 4 5 6 7 8
0

50

100

150

Cluster  identities

N
u

m
b

e
r 

o
f 

d
a

ta
 p

o
in

ts

Figure 2: Cluster size distributions on the ecoli data set. Left: Ground-truth. Middle left: Algorithm 1; NMI is
0.723. Middle Right: pyp-means; NMI is 0.608. Right: Result of k-means; NMI is 0.582.

Synthetic power-law graph data. We begin with a
synthetic power-law random graph dataset generated
by the Pitman-Yor process applied to the stochastic
block model. Specifically, the Pitman-Yor CRP is first
used to generate data cluster assignments and then a
standard stochastic block model uses the assignments
to generate a random graph. We create a dataset
with 4000 nodes with 14 disjoint clusters using the
above process, with the corresponding adjacency ma-
trix shown in the left of Figure 1. The parameters α
and θ we use in the Pitman-Yor process model are 1
and 0.2, respectively. In the stochastic block model,
the stochastic block matrix is sampled from two Gaus-
sian distributions: one being N (0.3, 0.001) for diago-
nal entries and the other being N (0.01, 0.001) for non-
diagonal entries. Our power-law normalized cut algo-
rithm is then applied on this dataset with parameters
validated on a separate validation dataset generated
from the same process. We compare with normalized
cuts with its k set to be the ground-truth. The re-
sults are shown in Figure 1; normalized cuts splits the
big clusters while our algorithm nearly produces the
ground-truth clusters.

Real world power-law data sets. Next we con-
sider comparing Algorithm 1 with k-means and pyp-
means [12] on real world benchmark data sets to
demonstrate that our algorithm performs best on clus-
tering vector data when cluster sizes are power-law
distributed. We selected 6 UCI classification datasets
whose class labels are power-law distributed (see Fig-

Table 1: NMI scores on a set of UCI power-law
datasets.

NMI

Dataset Ours k-means pyp-means

audiology 0.621 0.518 0.417
ecoli 0.700 0.545 0.608
glass 0.427 0.315 0.297

hypothyroid 0.024 0.009 0.077
page-blocks 0.209 0.123 0.088

flags 0.275 0.198 0.178

ure 2) and use class labels as the ground-truth for clus-
ters2. Each dataset is then randomly split 30/70 for
validation/clustering. We normalize the datasets so
that the values of all features lie in [0, 1]. On each
validation set, we validate the parameters of Algo-
rithm 1 (i.e. λ, α, θ) and the parameters of pyp-means
only to yield cluster numbers close to the ground-truth
(to make a fair comparison with k-means). On each
clustering set, we use the validated parameter settings
for Algorithm 1 and pyp-means and the ground-truth
k for k-means to perform the clustering. The NMI
are computed between the ground-truth and the com-
puted clusters, and results are averaged over 10 runs,
as shown in Table 1. As we can see, Algorithm 1 per-

2See https://archive.ics.uci.edu/ml/datasets.html
for detailed descriptions of the selected data sets.
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Table 2: NMI scores on graphs generated from UCI
power-law datasets.

NMI

Dataset Ours Normalized cuts

audiology 0.662 0.561
ecoli 0.702 0.591
glass 0.432 0.356

hypothyroid 0.011 0.008
page-blocks 0.222 0.126

flags 0.357 0.200

forms better than k-means on all 6 datasets in terms of
NMI. Also, it is better than pyp-means on all datasets
except on the hypothyroid. Note that the pyp-means
is better than k-means in 3 datasets and worse than
k-means in the other 3. Such high variance results on
power-law datasets make us doubt that pyp-means is
really able to achieve power-law clustering. In Fig-
ure 2, we show the resulting clusterings on the ecoli
dataset given by Algorithm 1, pyp-means and k-means,
in which we use the whole dataset for clustering with
validated parameters. It is clear that k-means pro-
duces more uniform clusters and pyp-means also splits
the largest cluster in the dataset.

Real world power-law graph data sets. In this
part we convert the UCI vector datasets used in the
preceding experiment to form power-law graphs and
perform power-law normalized cuts on these graphs.
We also run normalized cuts algorithm on these graphs
to compare with our method. To obtain the graphs,
we first form the adjacency matrix by using a Gaussian
similarity kernel on the vector data after normalizing
them to [0, 1]. Then we use the adjacency matrix to
form the kernel matrix and the weights as dsiccused
in Section 4.2. We randomly split data into valida-
tion/clustering with ratio of 30/70. Parameters are
selected on the validation set so that cluster numbers
are close to the ground-truth. The number of clusters
in normalized cuts is set to the true number of clusters.
This is again for a fair comparison with normalized
cuts. Finally, we apply our power-law normalized cuts
and normalized cuts on the clustering dataset. NMI
averaged over 10 runs are shown in Table 2. As we
can see, our power-law normalized cuts is better than
normalized cuts on all the graphs in terms of NMI.

Image segmentation. Finally, we briefly demon-
strate some qualitative results on image segmentation
on the Berkeley segmentation data set [16]. We adopt
an approach that is similar to the approach in [1] to
compute the affinity matrix. Then we perform our
power-law normalized cuts with the affinity matrix.

Figure 3: Image segmentation results. Left to right:
ground-truth, our method, normalized cuts. This fig-
ure is best viewed in color.

We compare standard normalized cuts with our pro-
posed method on graphs generated from input images.
Figure 3 displays some example images; we see that
normalized cuts tends to break up large segments more
often than our approach.

6 Conclusion

We proposed a general framework of power-law graph
cut algorithms that produce clusters whose sizes are
power-law distributed, and also does not fix the num-
ber of clusters upfront. The Pitman-Yor exchange-
able partition probability function (EPPF) was incor-
porated into power-law graph cut objectives as a regu-
larizer to promote power-law cluster size distributions.
A simple iterative algorithm was then proposed to lo-
cally optimize several objectives. Our proposed algo-
rithm can be viewed as performing MAP inference on
a particular Pitman-Yor mixture model. Finally, we
conducted experiments on various data sets and com-
pared to existing baselines.
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