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Abstract

We address a problem of learning ordinal classifier from partially annotated examples. We
introduce an interval-insensitive loss function to measure discrepancy between predictions
of an ordinal classifier and a partial annotation provided in the form of intervals of admissi-
ble labels. The proposed interval-insensitive loss is an instance of loss functions previously
used for learning of different classification models from partially annotated examples. We
propose several convex surrogates of the interval-insensitive loss which can be efficiently
optimized by existing solvers. Experiments on standard benchmarks and a real-life appli-
cation show that ordinal classifiers learned from partially annotated examples can achieve
accuracy close to the accuracy of classifiers learned from completely annotated examples.

1. Introduction

We address problem of learning ordinal classifiers from partially annotated examples. The
ordinal classification model (also ordinal regression, ranking) is used in problems where the
set of labels is fully ordered, e.g. the label can be an age category (0-9,10-19,...,90-99) or a
respondent answer to certain question (e.g. from strongly agree to strongly disagree). The
ordinal classifiers are routinely used in social sciences, epidemiology, information retrieval
or computer vision.

Recently, many algorithms have been proposed for discriminative learning of the ordinal
classifiers from completely annotated examples. The discriminative methods learn parame-
ters of an ordinal classifier (the form of which is assumed to be known up to the parameters)
by minimizing a (regularized) empirical risk. A Perceptron-like on-line algorithm PRank has
been proposed in Crammer and Singer (2001). A large-margin principle has been applied to
learning ordinal classifiers in Shashua and Levin (2002). The paper Chu and Keerthi (2005)
proposed the Support Vector Ordinal Regression algorithm with explicit constraints (SVOR-
EXP) and the SVOR algorithm with implicit constraints (SVOR-IMC). Unlike Shashua and
Levin (2002), the SVOR-EXP and SVOR-IMC guarantee that the learned ordinal classifier
is statistically plausible. The same approach have been proposed independently by Ren-
nie and Srebro (2005) who introduce so called immediate-threshold loss and all-thresholds
loss functions. Minimization of a quadratically regularized immediate-threshold loss and
the all-threshold loss are equivalent to the SVOR-EXP and the SVOR-IMC formulation
of Shashua and Levin (2002), respectively. A generic framework proposed in Li and Lin
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(2006), of which the SVOR-EXP and SVOR-IMC are special instances, allows to convert
learning of the ordinal classifier into learning of two-class SVM classifier with weighted
examples.

Estimating parameters of a probabilistic model by the Maximum Likelihood (ML)
method is another paradigm that has been used for learning ordinal classifiers. A plug-
in ordinal classifier can be then constructed by substituting the estimated model to the
optimal decision rule derived for a particular loss function (see e.g. Debczynski et al. (2008)
for a list of losses and corresponding decision functions suitable for ordinal classification).
Parametric probability distributions designed to model the ordinal labels have been pro-
posed in McCullagh (1980); Fu and Simpson (2002); Rennie and Srebro (2005). Besides
the parametric methods, the non-parametric probabilistic approaches like the Gaussian
processes have been also proposed (e.g. Chu and Ghahramani (2005)).

Properties of the discriminative and the ML based methods are complementary to each
other. The ML approach can be directly applied in the presence of incomplete annotation
(e.g. when label interval is given instead of a single label as considered in this paper) by
using the Expectation-Maximization algorithms (Dempster et al. (1997)). However, the
ML methods are sensitive to model mis-specification which complicates their application
in modeling complex high-dimensional data. In contrast, the discriminative methods are
known to be robust against the model mis-specification while their extension for learning
from partial annotations is not straightforward. To our best knowledge, the existing dis-
criminative approaches for ordinal classification assume the complete annotation only, i.e.
that each training input is annotated by exactly one label.

In this paper, we consider the discriminative learning of the ordinal classifiers from
partially annotated examples. We assume that each training input is annotated by an
interval of admissible labels rather than a single label. This setting is common for example
in computer vision applications. For example, consider learning of an ordinal classifier
predicting a person age from an image of his/her face (e.g. Ramanathan and Chellappa
(2009); Chang et al. (2011)). In this case, examples of face images can be downloaded
from the Internet and the age estimated by a human annotator. However, providing a
reliable year-exact age just from a facial image is difficult if not possible, hence, it is more
natural and easier for the annotator to provide an interval of admissible ages. The interval
annotation can be also obtained in an automated way e.g. by the method of Kotlowski
et al. (2008) removing inconsistencies in the data.

To deal with the interval annotations, we propose an interval-insensitive loss function
which extends an arbitrary standard loss defined for two labels to the interval setting. The
interval-insensitive loss measures a discrepancy between the interval of possible labels given
in the annotation and a label predicted by the classifier. Our interval-insensitive loss can
be seen as the ordinal regression counterpart of the e-insensitive loss used in the Support
Vector Regression (Vapnik (1998)). We propose a generic convex approximation of the
interval-insensitive loss that can be efficiently optimized by existing solvers for convex risk
minimization. We also derive interval-insensitive variant of existing SVOR-EXP and the
SVOR-IMC algorithms which makes them applicable for learning from partial annotations.

Discriminative learning from partially annotated examples has been recently studied
in the context of a generic multi-class classifiers (Cour et al. (2011)), the Hidden Markov
Chain based classifiers (Do and Artieres (2009)), generic structured output models (Lou
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and Hamprecht (2012)), the multi-instance learning (Jie and Orabona (2010)) etc. All
these methods translate learning to minimization of a partial loss evaluating discrepancy
between the classifier predictions and partial annotations. In most cases the partial loss
is defined as minimal value of a standard loss (i.e. loss defined on a pair of labels, e.g.
0/1-loss) over all admissible labels consistent with the partial annotation. Our interval-
insensitive loss can be seen as an application of such type of partial losses in the context of
the ordinal classification. It worth mentioning that the ordinal classification model allows
to design reasonable convex surrogate of the partial loss in contrast to previously considered
classification models which either require crude approximation (Cour et al. (2011)) or require
minimization of non-convex surrogate loss hard to optimize (Do and Artieres (2009); Lou
and Hamprecht (2012); Jie and Orabona (2010)).

The paper is organized as follows. Formulation of the learning problem and the proposed
interval-insensitive loss is given in section 2. Algorithms minimizing convex surrogate of the
interval-insensitive loss are derived in section 3. Section 4 provides experimental evaluation
of the proposed methods and section 5 concludes the paper.

2. Learning ordinal classifier with the proposed interval-insensitive loss

We consider learning of a classifier for ordinal regression h: R" — Y = {1,...,Y} of the
form
Y-1
h(z;w,0) =1+ > [(@,w) > 6] (1)
k=1
where w € R" and @ € © = {0 e RV "' [0, < 0,,, y =1,...,Y — 1} are admisible
parameters. W.lo.g. the set of labels Y = {1,...,Y} is composed of natural numbers

endowed with a natural order. The classifier (1) splits the space of projections (x,w) into
Y consecutive intervals defined by thresholds 6; < 6y < --- < 0y _1. The observation x
is assigned a label correspoding to the interval to which the projection (w,x) falls. The
classifier (1) is a proper model if the label can be thought of as a rough measurement of a
continuous random variable £(x) = (&, w) + noise McCullagh (1980).

Discriminative methods for learning paramaters (w, @) of the classifier (1) from a set of
completely annotated examples {(x',y'),..., (2™, ™)} € (R” x )™ has been studied e.g.
in Crammer and Singer (2001); Shashua and Levin (2002); Chu and Keerthi (2005); Li and
Lin (2006).

In this paper we address the problem of learning the classifier (1) from partially (or
weakly) annotated examples {(z!, [y, yl]),..., (=™, [y y"])} € (X x P)™ where P =
{[yi,yr] € V? | y1 < yr} is a set of all possible partial annotations. The partial annotation
(z, [y;, yr]) means that a label of @ is from interval [y, y.] ={y €V |y <y <y }.

We consider the following statistical formulation of the learning problem. The nature
generates an observation € R", characterizing a studied object, according to some un-
known p.d.f. p(x). Besides the input @, the object is also characterized by a hidden label
y € Y. A human expert provided with & can give an estimate of the hidden label in form
of an interval [y;,y,] € P. We assume that the expert can be modeled as stochastic pro-
cess giving the estimates according to some unknown p.d.f. p([y;,y,] | ). Our goal is to
learn an ordinal classifier (1) whose predictions are as close as possible to annotations of

191



ANTONIUK FRANC HLAVAC

the expert. To measure distance between the expert’s partial annotation [y;,y,] € P and
the classifier’s precise prediction h(x;w, @) € ), we propose the interval-insensitive loss
function Aj: P x Y — R defined as follows:

0 if yelyyl
Ar(ynyry) = Aly,w) if y<u (2)
A(yvyr) if Y >Yr

where A: Y x ) — R is a standard loss defined on pair of labels (we use term standard loss
later in the text to distinguish from the interval-insensitive loss), e.g. the mean absolute
error (MAE) A(y,y') = |y —¢/| or the 0/1-loss A(y,y’) = [y # ¢'] are most frequently used
in the context of the ordinal classification. The interval-insensitive loss A(y;, yr,y) does
not penalize predictions which are in the annotated interval [y;, y,] otherwise the penalty
is either A(y,y;) or A(y,y,) depending which border label of the interval [y;, y,] is closer.
In the special case when A(y,y’) = |y — ¢/|, one can think of the interval-insensitive loss
Ar(y, yr, y) as the ordinal regression counterpart of the e-insensitive loss used in the Support
Vector Regression Vapnik (1998).

Our task is to find Bayes classifier minimizing the expectation of the interval-insensitive
loss, i.e.

(w*,6%) € Argmin R(w, ) := E(mvylvyr)"’p(mvylzyr)(Al(yl’ Yr, (@ w, 0))) (3)
weR” 0€0

with the expectation taken w.r.t. p(x,y;, y,) = p()p(y, yr | ). We adopt the (regularized)
empirical risk minimization framework and learn parameters of the ordinal classifier by
minimizing convex surrogate of the empirical risk

m

1 o .
Remp(wvb) = EZAI(ylZay}wh(xz;wab)) (4)
i=1
that can be evaluated on the partially annotated examples {(z', [y}, y!]), ..., (™, [y, y™])}

(X x P)™.

Before proposing algorithms implementing the risk minimization approach in the next
section, we connect the problem (3) with the formulation of the partial learning considered
e.g. in Cour et al. (2011); Do and Artieres (2009); Lou and Hamprecht (2012); Jie and
Orabona (2010). Assume we want to minimize the expected risk with the standard loss
A(y,y'), then we can write

Rl(w7 0) = E(w,y)Np(m,y)A(y7 h(m; w, b))) = E(w,yl e ) ~p(@,y1,yr) (Al(f‘/lv Yr, h(m§ w, 0)) »

where A"(y1, yr, y') = >,y (Y | @y, yr) Ay, y'). Let us assume that the loss A(y,y’) is
V-shaped Li and Lin (2006), i.e. A(y,k—1) > A(y, k) if k <y and Ay, k) < Ay, k+1)
if £ > y. Let also assume that the annotations are consistent with the true hidden label in
the sense that y ¢ [y;, y,| implies p(y | &, y;, yr) = 0. Under the two assumptions we can see
that

Yr
A/(yl7y7“7y/) = Z p(y ‘ m??/lvyT)A(yay,) > v %}gy A(yay,) = AI(ybyTvy/) .
1Y XYr
Y=y
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Thus the interval-insensitive loss equals to the minimal value of the standard loss over all
labels consistent with the annotation, i.e. the interval-insensitive loss is an instance of partial
loss previously used for learning different classification models from partial annotations.

3. Learning with interval-insensitive loss

The goal is to derive algorithms minimizing a convex surrogate of the empirical risk Remp(w, b)
defined by (4). A direct application of the existing algorithms for supervised ordinal re-
gression is not possible. The generic framework of Li and Lin (2006) is defined for the
standard losses satisfying A(y,y’) > 0, y # v/, which prevents its direct extension to the
interval-insensitive setting.

In section 3.2, we derive a generic algorithm which minimizes a novel convex upper
bound of the interval-insensitive loss Aj(y;, yr, y) induced from any standard loss A(y, ).
The learning is translated to a convex unconstrained minimization problem solvable by
existing large-scale solvers like the Stochastic Gradient Descent or the Cutting Plane based
solvers.

We also show that the state-of-the-art Support Vector Ordinal Regression (SVOR) al-
gorithms Chu and Keerthi (2005); Li and Lin (2006), can be extended to minimize the
interval-insensitive loss. First, in section 3.3, we extend the SVOR with the explicit con-
straints (SVOR-EXP) which originally minimizes the standard 0/1-loss. Second, in sec-
tion 3.4, we extend the SVOR with the implicit constraints (SVOR-IMC) which minimizes
the mean-absolute-error (MAE) being another loss frequently used in the context of ordi-
nal classification. We name the modified algorithms IIL-SVOR-EXP and IIL-SVOR-IMP,
respectively. We also show that the proposed generic upper bound provides a tighter ap-
proximation of the interval-insensitive loss than the modified IIL-SVOR-IMC.

Before introducing the generic algorithm, we show in section 3.1 that the ordinal classifier
is an instance of a multi-class linear classifier. This equivalence allows to use a convex loss
approximation technique known from the structured output SVMs Tsochantaridis et al.
(2005).

3.1. Ordinal classifier as multi-class linear classifier

The ordinal classifier (1) can be reparametrized as a multi-class linear classifier, in the sequel
denoted as multi-class ordinal (MORD) classifier, which reads

b (z;w, b) = argérjljax ((w, w) -y + by> (5)
y

where w € R" and b = (by,...,by) € RY are parameters. Note that the MORD classifier
has n + Y parameters and any pair (w,b) € (R" x RY) is admissible. In contrast, the
original ordinal classifier (1) has n+Y — 1, however, the admissible parameters must satisfy
(w,0) € (R"x0O). It is seen that the MORD reparametrization is more suitable for learning

as we do not need to care about constraints @ € ©. The equivalence between the standard
ordinal classifier (1) and the MORD reparametrization (5) follows from Theorem 1.

Theorem 1 The ordinal classifier (1) and the MORD classifier (5) are equivalent in the
following sense. For any w € R"™ and admissible @ € © there exists b € RY such that
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hx,w,0) = h'(xz,w,b), Ve € R". For any w € R™ and b € R", there exists admissible
0 € © such that h(x,w,0) = h/(x,w,b), Ve € R".

Proof of Theorem 1 is given in Antoniuk et al. (2013) as well as conversion formulas between
these parametrizations, however they are not needed in this paper.

3.2. Generic algorithm for interval-insensitive loss minimization

We propose to learn the parameters of the MORD classifier (5) by minimizing a convex risk

m

A 1 S
(w*,b*) = argmin F(w,b):= §Q(w,b) + — ZA’I('w,b, YY) (6)
weR” beRY mia

where
Aj(w. by yr) = max [AGw) + (@ w)(y —u)+ by ~ by

- max [ Ay, ) + (@, w)(y = ) + by — by,
Y>Yr

is a convex upper bound of the interval-insensitive loss given by formula (2) as stated in
Theorem 2. The term Q(w,b) is a regularizer typically set to be a quadratic function
Q(w,b) = ||lw||? or Q(w,b) = ||w]|? + ||b||?>. Other convex regularizers can be potentially
used as well though in experiments we consider only the quadratic one.

Theorem 2 For any © € R™, [y;,y-] € P, w € R" and b € RY the inequality
A[(yla Yr, h/(fB, w, b)) S A/I<w7 b7 T, Y, yT‘)
holds where h'(x;w, b) denotes response of the MORD classifier (5).

PROOF: Let us first consider triplet of labels (v, v, y») such that y ¢ [y, y,]. In this case,
the left max-term max [A(y, ) + (x,w)(y — yi) + by — by,] is an instance of well known
y<ui

margin-rescaling upI;er bound of Tsochantaridis et al. (2005) applied for the standard loss

A(y,y;) defined on labels y € [1,y;,—1] and, in turn, it is also an upper bound of Az (y;, yr, y)-

Analogically, we can see that the right max-term max [A(y, Yr) + <zc, w>(y —Yr) + by — byr]
Y=Yr

is margin-rescaling upper bound of the loss A(y,y,) on labels y € [y, + 1,Y] and, in turn,
also upper bound of A;(y;,yr,y). Thanks to the assumption that A(y,y) = 0, Vy, both
max-terms are non-negative therefore their sum upper bounds the value of A;(y;, y,,y) for
y ¢ [y, yr]. In the case when y € [y;, y,] the value of A;(y;, yr,y) is defined to be zero hence
it is also upper bounded by the sum of the non-negative max-terms. |

3.3. Modified SVOR-EXP for minimization of interval-insensitive 0/1-loss

The original SVOR-EXP algorithm for learning the parameters of the classifier (1) from
completely annotated examples {(z!,y!),..., (™, y™)} € (R" x V)™ is defined as a convex
quadratic program Chu and Keerthi (2005)

r—1 nJ
(w6 = orgmin | Sl + 3 (L6 +
j=1 =1

weR”,OcRY —1

nitl

> )] U
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subject to
(@l w) —bj < -1+, & >0, Vi=1,...,0,
(@ w) by 1 > 1 €9 9 S0 o1, it
bj—1 >bj, Vj.
Using auxiliary variables 6y = —oo and 0y = oo, we can rewrite (7) as an equivalent
problem
(w*,0*) = argmin F'(w,0):=
weR” €O

A < i i
§HwQH + Z [max(l —(x',w) + 0,i_1,0) + max(1 + (z', w) —Hyi,O)] )
i=1

It is not hard to see that objective function F'(w, ) is a convex approximation of
>‘Hw2|\ + Z (i, w) < 6, 1] + [(ws,w) > 6,:]), ie., it upper bounds the empirical risk
with the 0/1 loss.

We propose an extension of the SVOR-EXP to minimize the interval-insensitive variant
of the 0/1-loss by changing the objective function to

A ks 4 .
Fl(w,0) = §HwH2 + Z (max(l —(z',w) + 0y1i7170) + max(1 + (', w) — 0y£,0)> ,
i=1

m
which is a convex surrogate of the actually desired 3 |jw|>+ " ([(z, w) < Oy 1]+ (@i, w) >
i=1
04i]). The interval-insensitive SVOR algorithm with explicit constraints (IIL-SVOR-EXP)
for learning from partially annotated examples {(z!,y},y}),...,

(™ y™y")} € (R™ x P)™ then reads

(w*,0%) = argmin Fj(w,0),
weR™,0€0

which can be easily rewritten as a convex quadratic program similar to (7).

3.4. Modified SVOR-IMC for minimization of interval-insensitive MAE loss

The original SVOR-IMC algorithm for learning the ordinal classifier (1) from completely
annotated examples {(z!,y!),...,(z™, y™)} € (R® x J)™ leads to a convex quadratic
program Chu and Keerthi (2005)

r—1 j nk r nk )
(w",0%) = argmin [ ol + 03 el+ 22529] (®)

weR™,HeRY ~1 j=1 k=1i= k=j+1 i=1
subject to
(@b w)—0; <-1+¢,, €,>0, k=1,...,j z‘:1,...,nk,
(wf,w)—6j21—§kz,§zj>0 k=j+1,...,r,i=1,...,nF.
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The authors of Chu and Keerthi (2005); Li and Lin (2006) proved that the optimal param-
eters are admissible, i.e. (w*,0%) € (R", ©) holds, hence the explicit constraints 8 € © are
not needed in this case. It is also shown that the sum of slack variables in (8) upper bounds
the average of the MAE loss A(y,y') = |y — ¢/| computed on the training examples.

We now derive a modification of the SVOR-IMC algorithm which optimizes the interval-
insensitive variant of the MAE loss. Let us first rewrite the problem (8) as an equivalent
unconstrained minimization problem

(w*,0*) = argmin F"(w,0)
'wER",BGRY*1

with the objective defined as

y'-1

A “ ,
F'(w,0) = ZlwlP+ Y | > max(0,1 - (a',w) +6,-1) +
i=1  y=1
Y—-1 '
Y max(0,1 + (2, w) —ey)} ,
y=y'

n
where we use the convention »_ a; =0 if m > n.
i=m
In the case of partially annotate examples {(z!,y},yl), ..., (@™, y", y™)} € (R" x P)™,
we propose to change the objective of the SVOR-IMC to

m y;—l
Fl(w,0) = %||w\|2+ [ max(0.1— (& w) 4 0,1) +
=1  y=1
Y—-1
Zmax(o,1+<xi,w>—ey)}.
Y=y

We denote the modified algorithm minimizing F}'(w, ) as the interval-insensitive SVOR
with implicit constraints (IIL-SVOR-IMC).

It is interesting to compare the modified IIL-SVOR-IMC algorithm with the generic
algorithm (6) instantiated for the interval-insensitive MAE loss. In particular, the objective
function of the generic algorithm, using the same quadratic regularizer as the IIL-SVOR-
IMC, reads

Flw,b) = 3llw?l] + 5 max [y —y+ (@ w)(y — o) + by ~ by
=1 y<y] 9)
o max |y -yl (2 w)(y — y) by — by
i=1 Y=Yy

We can prove that the generic algorithm uses a tighter upper bound of the interval-
insensitive MAE compared to the IIL-SVOR-IMC:
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Theorem 3 Let (w*,b*) be a minimizer of F(w,b) defined by (9) and let (w"*,0"*) be a
minimizer of Fj'(w,0) defined by (9). The the inequality

F(w*,b*) S FI//(’LU/*,O/*)
holds true.

PROOF: W.l.o.g we consider the generic algorithm and the IIL-SVOR-IMC in the case of
a single training example. Then the corresponding objectives read F(w,b) = 3||lw?|| +

max [yz—y+<w,w>(y—yz)+by b }erax [y—yr+< >(y_yr)+by_byr] and
y<uy

—1
Fl(w,0) = 3|lw?]| + ylZ max (0,1 — (z,w) + 0,—1) + Z max(0,1 + (z,w) — 6,). Let
y=1 Y=Yr
(w*, b*) be a minimizer of F'(w, b) and (w'*, 8*) be a minimizer of F'(w, #). Let us further
introduce a function G(w,b,0) = F(w,b) + 0o - [0, = by, —by11,Vy =1,...,Y — 1] and
denote its minimizer by (wg, by, 0¢). For a fixed (w,0) we say that b is admissible if
G(w,b,0) < co. By construction of G(w,b,8) we have G(w, b, 05) = f(w*,b*) and
G(w§, b, 0¢) < %11111 G(w, b,0™). Since for fixed 8 the value of G(w, b, ) does not de-

pend on any admissible b, we see that min G(w,b,0™) < H(w',0™),Vw', where we used

)

y—1
H(w,0) = 3||w?|| +m%x [max(() y—y+ (x,w)(y—u) —|—y/2:y0y/)} +

y—1
max [max(O Y=Y+ <CI3 w>(y Yr) — Y Hy/)} Since max [max(O y—y+ <ac 'w>
y>yr V= y<y

y) + Ziz_)iey/)} < max[ Z max(0,1 — (z,w) + b )] Z max(0,1 — (z,w) + 6;) and

y<y

y—1
max [maX(O,y —y+{x,w)(y—y) — 2 Hy/)} < Z max(0,1 + (@, w) — 6;) we get
y=yr y'= I=yr

7yr
H(w,0™) < F'(w,0™), Vw. Hence, we have F(w*, b*) = G(w},, b, 0%) < miilG(w,b, 0;) <

H(w,0f) < F'(w"™,0™), Yw, and, therefore, F(w*,b*) < F'(w"™,0"™). [ ]

4. Experiments

We evaluate the proposed algorithms on i) a set of standard benchmarks that have been
previously used for benchmarking ordinal classification methods and ii) on a real-life appli-
cation of predicting age from a photograph. The experiments on the standard benchmarks
are reported in Section 4.1 and the real-life problem is described in Section 4.2.

4.1. Standard benchmarks

We perform experiments on six datasets previsously used to benchmarks ordinal regression
algorithms (Li and Lin (2006); Chu and Keerthi (2005)). The data were produced by
discretising metric regression problems into Y = 10 bins. The data are randomly partitioned
to training/test part. The partitioning was repeated 20 times. The features are normalized
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| CPU [ BOSTON | ABALONE | BANK | COMPUTER | CALIFORNIA

dimension 27 13 8 32 21 8
train 50 300 1,000 3,000 4,000 5000
test 24 206 3,177 5,192 4,192 15,640

Table 1: Table shows the number of dimensions, number of training and testing examples
for the six datasets used in the experiments.

to zero mean and unit variance coordinate wise. Table 1 summarizes dimensions of the
datasets.

We compare the original SVOR-IMC algorithm learning from completely annotated
examples with the two proposed algorithms learning from partial annotation. Namely, we
consider an instance of the generic algorithm optimizing the MAE loss, denoted as IIL-
Generic-MAE, and the modification of the SVOR-IMC denoted as IIL-SVOR-IMC. All
compared methods, SVOR-IMC, ILL-Generic-MAE and ILL-SVOR-IMC optimize different
surrogates of the MAE loss.

To measure benefit of learning from partially annotated examples we used the following
protocol. Let myay denote the maximal number of examples in the training split (different
for each data set). We trained IIL-SVOR-IMC and IIL-Generic-MAE from m = mcomp +
Mpart €xamples where we fixed the number of completely annotated examples to meomp =
0.1mmax and we varied the number of partially annotated examples mpar from 0 to 0.9mpmax.
We consider two case of partial annotations:

Case 1: the partial annotation was set randomly with uniform distribution to be one of
the following intervals [y — 1, 9], [y,y + 1], [y — 1,y + 1] where y is the true label.

Case 2: the partial annotation was set randomly with uniform distribution to be one of
the following intervals [y — 1,9}, [y,y + 1], [y — Ly + 1], [y — 2,9} [y,y + 2], [y — 2,y +
2], [y —2,y+1],[y — 1,y + 2] where y is the true label.

In the case of the original SVOR-IMC we just varied the number of fully annotated examples
m. The regularization constants were found by cross-validation on the training splits. The
reported results are averages and standard deviations computed over the 20 random splits.

Figures 1 and 2 show results for the case 1 and 2, respectively. The x-axis denotes
the varied number of training examples m and the y-axis corresponding estimate of the
(complete) MAE loss on test examples.

The results show that adding the partially annotated examples steadily decreases the
test MAE of the classifiers learned by ILL-Generic-MAE and ILL-SVOR-IMC. The classifier
learned by the SVOR-IMC from complete annotations has consistently lower test MAE
compared to the IIL-SVOR-IMC and IIL-Generic-MAE using the partial annotations. Both
surrogates of the interval-insensitive loss, i.e. the IIL-Generic-MAE and the IIL-SVOR-IMC,
work equally well in terms of the accuracy. The gain from using the complete annotation is
relatively low especially in the case 1. Not surprisingly the gap between complete and partial
algorithms increases with the increased uncertainty in the partial annotation (compare the
cases 1 and 2).
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Figure 1: Experiment with partially annotated examples — Case 1 (see text for description).
The x-axis corresponds to the number of partially (in case of IIL-SVOR-IMC and
IIL-Generic-MAE) and completely (in case of SVOR-IMC) annotated exaples.
The y-axis corresponds to the test estimate of the MAE loss. We show means
(line) and standard deviations (error bars) of the mean absolute error (MAE) for

a corresponding dataset.
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Figure 2: Experiment with partially annotated examples — Case 2 (see text for description).

4.2. Visual age estimation

We consider problem of estimating an apparent age of a person from an image of his/her
face. We use the MORPH database (Ricanek and Tesafaye (2006)) which contains 55,134
face images with exact age annotation ranging from 16 to 77 years '. The faces were first
localized by AdaBoost based face detector and consequently we found facial landmarks by

1. Because the age category 70+ is severely under-represented (only 9 examples in total) we removed faces
with age higher than 70.
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SVOR-IMC MAE 6.23+£0.04 | 6.27+0.08 | 6.21 =£0.04 | 5.98 &+ 0.05
comp+part | 10% + 0% | 40% +0% | 70% + 0% | 100% + 0%
IIL-SVOR-IMC | MAE 6.31 +0.10 | 6.38 £0.04 | 6.25+0.03 | 6.03 £ 0.02
comp+part | 10% + 0% | 10% + 30% | 10% + 60% | 10% + 90%

Table 2: The estimation error of the ordinal classification based visual age predictor trained
the MORPH database by the SVOR-IMC and the proposed IIL-SVOR-IMC. For
each method, the first line shows that mean and the standard deviation of the
MAE. The second line shows the percentage of completely and partially annotated
examples used for training.

a Deformable Part Model based detector (Uricar et al. (2012)). The detected landmarks
are used to transform the input face into a canonical pose by an affine transform. Finally,
the canonical image is described by a pyramid-of-LBP descriptors (Sonnenburg and Franc
(2010)) which is n = 159, 488-dimensional binary sparse vector serving as an input of the
ordinal classifier. The data were randomly split 3 times into training/validation/test part
in the ratio 60/20/20. The validation part was used to tune the regularization constant A.
The reported results are averages and standard deviations computed of the error measures
computed over the 3 splits.

Because the IIL-SVOR-IMC and I1L-Generic-MAE have been shown to give comparable
results (c.f. the previous section) here we test only the former surrogate loss. To measure
benefit of learning from partially annotated examples we used the same protocol as described
in Section 4.1. IL.e. we trained the proposed IIL-SVOR-IMC from m = mcomp + Mpart €X-
amples where the number of completely annotated examples was fixed to mcomp = 0.1Mmax
and the amount of the partially annotated examples mpart was varied from 0 to 0.9mmax
(mmax denotes the total number of training examples ). The partial annotation was gen-
erated by rounding the exact age into 5-year intervals, i.e. interval annotation is from
{[15,20], [21,25],...,[61,70]}. In the case of SVOR-IMC we just varied the total number
of fully annotated examples.

The results are summarized in Table 2. It is seen that the proposed IIL-SVOR-IMC
achieves almost the same accuracy as the SVOR-IMC for all used amounts of training
examples. In particular, when using all training examples the MAE of the SVOR-IMC is
5.98 + 0.05 compared to 6.03 + 0.02 of the IIL-SVOR-IMC. Note, that the IIL-SVOR-IMC
is trained only from 10% of fully annotated examples while 90% of had the cheaper interval
annotation. We point out that the state-of-the-art approach using the SVM based ordinal
classifier trained from the completely annotated examples achieves MAE of 6.07% on the
very same database (Chang et al. (2011)).

5. Conclusions

We have proposed an interval-insensitive loss function suitable for risk minimization based
learning of ordinal classifiers from partially annotated examples. We derived a generic al-
gorithm optimizing a convex surrogate of the proposed interval-insensitive loss. We also
derived other surrogate losses for learning from partial annotations by extending the ex-
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isting state-of-the-art SVOR-EXP and SVOR-IMC methods. We provided theoretical and
experimental comparison of the proposed methods. The experiments conducted on stan-
dard benchmarks and a real-life problem of visual age estimation show that learning ordinal
classifiers from partially annotated examples is competitive with the so-far used methods
requiring completely annotated examples.
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Appendix A

PROOF: of Theorem 3. W.l.o.g we consider the generic algorithm and the IIL-SVOR-IMC
in the case of a single training example. Then the corresponding objectives read

A
F(w,b) = §|Iw2\l+max [yz—y+<w,w>(y—yz)+by—byl} +max [y—yr+<a:, w) (y—yr)+by—by,
y<u Yy>yr

and
by y—1 Y-1
Fl(w,0) = §HwQH + ; max(0,1 — (z,w) + 0,_1) + g max(0,1 + (z,w) — 0,) .

Let (w*,b*) be a minimizer of F(w,b) and (w'*,6"™) be a minimizer of F'(w,0). Let us
further introduce a function G(w, b, 0) = F(w,b) +o00- [0, = by, —by41,Vy=1,...,Y —1]
and denote its minimizer by (w¢,,bf;, 0¢). For a fixed (w, @) we say that b is admissible
if G(w,b,0) < co. By construction of G(w, b, 8) we have G(w¢,, by, 05) = f(w*,b*) and
G(w§, b, 07%) < ?Ulilrle(w, b, 0’*). Since for fixed 0 the value of G(w, b, @) does not depend

on any admissible b, we see that miglG('w, b,0™) < H(w',0™),Vw', where we used

w,
Hw,0) = 3lfw?|| +max | max(0,y —y + (@ w)(y - u)
y—1 y—1
+ > Gy/)] + max [max <0,y —yr +{z,w)(y—yr) — > Gylﬂ .
y'=y y>yr Y =yr
yi—1 y—1
Since max [max(0,y, — y + (z,w)(y — y) + Y by)] < max| max(0,1 — (z, w) +
y<uy Y=y Y<Y ~ g=y
y—1 y—1
Oy)] = Y max(0,1— <ac,'w> +6;) and LI;EZX [max((), Yy — Y + <m,w>(y —Yr)— >, Qy/)] <
g=1 " y'=yr

Y-1

> max(0, 14 (@, w)+6;) we get H(w, 0™) < F'(w, 6’), Vw. Hence, we have F(w*, b*) =
J=yr

G(w§, b, 0%) < rlrvlin G(w,b,0y,) < H(w§, 0%) < F'(w'™,0™), Yw, and, therefore, F(w*, b*) <

F,(wl*, 9/*)‘ m
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