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Abstract

We consider an online matrix prediction problem. FTRL is a standard method to deal
with online prediction tasks, which makes predictions by minimizing the cumulative loss
function and the regularizer function. There are three popular regularizer functions for
matrices, Frobenius norm, negative entropy and log-determinant. We propose an FTRL
based algorithm with log-determinant as the regularizer and show a regret bound of the
algorithm. Our main contribution is to show that the log-determinant regularization is
effective when loss matrices are sparse. We also show that our algorithm is optimal for the
online collaborative filtering problem with the log-determinant regularization.
Keywords: Online matrix prediction, log-determinant, online collaborative filtering

1. Introduction

Online prediction of matrices has been studied as it has many applications in ranking or
recommendation tasks. For example, in online collaborative filtering tasks, the following
protocol proceeds : For each trial t = 1,...,T, (i) the adversary gives a pair of integers
(it, j¢) indicates an user and an item, (ii) the algorithm predicts how much user i; likes item
Jjt, (iil) the adversary returns a loss function ¢; which assess the prediction of the algorithm,
and (iv) the algorithm suffers loss. The goal of the algorithm is to minimize the regret: the
difference between the cumulative loss of the algorithm and that of the best fixed prediction
policy. One can regard the problem as a matrix prediction problem. That is, the algorithm
produces a matrix consisting of estimation for all users and items pairs. After the algorithm
receives the pair (i, j;), the algorithm returns (i, j;)-th entry of the matrix as a prediction.
After receiving a loss function, the algorithm updates its matrix to make more accurate
predictions.

Generally, matrices we are considering are not square, which makes the problem difficult.
Hazan et al. (2012) show that some online matrix prediction problems including collabo-
rative filtering can be reduced to those of symmetric positive semidefinite matrices under
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ONLINE MATRIX PREDICTION FOR SPARSE LOSS MATRICES

linear loss functions with sparse loss matrices. In their settings, the decision set is assumed
to be a convex set K of N x N symmetric positive semidefinite matrices. The reduced
problem is called Matrix Online Linear Optimization (OLO) with the following protocol:
For each trial t = 1,...,T, (i) the algorithm predicts X; € K, (ii) the adversary returns
a loss matrix L; € SV*V and (iii) the algorithm suffers loss L; ® X;, the Frobenius inner
product of L; and X;. The regret of the algorithm is defined as Zle L;eX; — Zthl L;eU
where U = arg minyex Z?zl L;e U.

Thanks to symmetry and positive semidefiniteness, the problems can be handled more
easily. Thus, we focus on the online learning task of symmetric positive semidefinite matri-
ces. The loss matrices of the reduced OLO have only 4 nonzero entries thus they are sparse.
So we mainly consider the case where loss matrices are sparse.

Follow the regularized leader (FTRL) is an efficient online prediction method. Tsuda
et al. (2005) proposed a FTRL based algorithm for online matrix prediction which uses
the von Neumann entropy or the matrix negative entropy as its regularizer for square loss
functions. Hazan et al. (2012) also extended the result for linear loss functions.

Another important function on matrices is the log-determinant which corresponds to
the Burg divergence. There are many applications of the divergence such as metric learning
(Davis et al., 2007) or Gaussian graphical models (Ravikumar et al., 2011). In fact, in
the paper of Tsuda et al. (2005), showing a regret bound of the FTRL with the Burg
divergence is posed as an open problem. Later, Davis et al. (2007) proposed an online
prediction algorithm with the log-determinant regularizer for square losses and they show
a cumulative loss bound for it. The bound, however, contains a data-dependent parameter
and the regret bound is not clear. Recently, Christiano (2014) proposed an online prediction
algorithm with the log-determinant regularizer for linear losses. He introduced the novel
concept of strong convexity namely strong convexity w.r.t. loss functions and show the
regret bound. But the notion is not explicitly stated. His problem formulation is very
specific and not applicable for some online tasks including online collaborative filtering. His
analyses partly depend on a special property of loss matrices that they are sparse and block
matrices.

In this paper, we show an improved regret bound of FTRL with the log-determinant as
its regularizer. In particular, our technical contributions are (i) generalizing the analysis
of Christiano (2014) for a wider class of loss matrices, (ii) showing a better online matrix
prediction algorithm when loss matrices are sparse, and (iii) showing an optimal algorithm
for the online collaborative filtering problem. Further, our algorithm achieves the best
regret bound for the online gambling and online max cut problem as well.

In particular, we summarize the regret bounds of algorithms for online collaborative
filtering as table 1. In this table, n denotes the number of users, T' denotes time horizon
and G is Lipschitz constant of each loss function. Without loss of generality, we assume
that the number of items is less than n.

2. Preliminaries

Let us define some mathematical symbols and operations used in this paper. In this paper,
a roman capital letter indicates a matrix. Let R™*" SNVNXN Sf XN denote the set of m x n
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Table 1: Regret bounds for online collaborative filtering tasks

Regularizer H Regret bound
matrix negative entropy || O(G+/n3/2log(n)T) (Hazan et al., 2012)
Frobenius norm (OGD) O(GV/n2T) (Zinkevich, 2003)
log-determinant O(GVn3/2T) (Our result)

real-valued matrices, the set of N x N real-valued symmetric matrices, and the set of N x N
real-valued symmetric positive semidefinite matrices, respectively.

We write the trace of a matrix X as Tr(X) and the determinant as det(X). Tr(X)
is defined as the sum of diagonal elements. If X admits eigenvalue decomposition, it is
equivalent to the sum of eigenvalues of X while det(X) is the product of eigenvalues of X.

For a matrix X, we denote the trace norm, the operator norm,and the Frobenius norm
as || X/, [|X[|op ,and [|X]|rr, respectively. For a symmetric positive semidefinite matrix,
the trace norm is equivalent to the sum of its eigenvalues, the operator norm is equivalent
to the largest eigenvalue, and the Frobenius norm is the square root of the sum of squared
eigenvalues.

We write the (i,7)-th element of X as X, ;, if already X has any subscript, we also
write the (7, 7)-th element as X(i,7). The identity matrix is denoted as E. X > 0 means
X is positive semidefinite. For any positive integer m, we write [m] = {1,2,...m}. The
logarithm we use the natural log. We define the vectorization operation of a matrix X €
Rmxn as

vec(X) = (lel, e ,Xm71, XLQ, NN ,Xm?g, e ;Xl,m7 ey Xm’n)T.

X o L denotes the Frobenius inner product of m x n matrices L and X, it is defined as

Xel = Z:r;n X, ;L j = vec(X)Tvec(L).

3. Online linear optimization

In this paper, we deal with the online linear optimization of symmetric positive semidefinite
matrices. First, we formally define these online prediction problems. In a online task, the
decision set or the decision space is a convex set. All predictions of an algorithm should
be some elements in the decision set. The loss space is a set of functions, the adversary is
allowed to give a loss function or a loss matrix in the loss space to an algorithm. Hazan
et al. (2012) reduced the online max cut, the online gambling and the online collaborative
filtering problems as OLO protocols.

3.1. Online linear optimization (OLO)

Let the decision set be K C Sf XN and the loss space be £ C SV*V, respectively. In each
roundt=1,---,T,

1. the algorithm make a prediction X; € K,

2. the adversary gives a loss matrix L; € £ to the algorithm, and
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3. the algorithm suffers the loss £;(X;) = X o L;.

The goal of the algorithm is to minimize the regret Regoro(T, K, L), defined as

Regoro (T, K, L) ZLt X, — mmZLt oU. (1)

We adopt Follow The Regularized Leader (FTRL) to design the algorithm for OLO
tasks. FTRL uses a convex function R(X) as a reguarizer function. At each round ¢, FTRL
makes a prediction as the solution of the following optimization problem

X1 = arg 1t mln )+ 1n Z L, e X). (2)

3.2. Regret for general OLO problem

We show three regret bounds for popular regularizers for the OLO setting.
First we focus on the Euclidean regularization which uses the Frobenius norm as the

regularizer. The Frobenius norm of a matrix X is defined as ||X]||p = /> X? ;- By the fact

that [|X]||g = |Jvec(X)||2, one can analyze FTRL with this regularizer as an online gradient
descent of N2 dimensional vectors and get the following theorem.

Theorem 1 (Regret bound of Euclidean regulariztion (Zinkevich, 2003)) Let the
decision set and the loss space be Ko = {X € SfXN Xl € p} and Lo = {L € SVXN .

|ILllre < 72} respectively. Let the best offline solution of the OLO be U. Then FTRL with

the reqularizer function R(X) = || X[, achieves the following regret bound :

[a—

Regoro(T,Ks, L2) < *\|U||Fr+772\|L\ < —p* + T (3)
t=1

3

Especially, for n = ,Y’;—QT, we get Regoro(T, Ko, L2) < 2py2VT.
2

Next, we show the entropic regularization which uses Tr(X log X — X) as the regularizer.
Note that the matrix logarlthm is defined as the inverse function of the matrix exponential
function e* = > ko k, . For a symmetric positive semidefinite matrix X with the i-th
eigenvalue \;, its logarithm log X has log A; as the ¢-th eigenvalue and the same eigenvectors
as X.

Theorem 2 (Regret bound of the entropic regulariztion (Hazan et al., 2012)) Let
the decision set and the loss space be K1 = {X € SY"N ¢ | X1y < 7} and Log = {L € SNV
ILllop < Yoo} respectively. Then FTRL with the reqularizer R(X) = Tr(Xlog X—X) achieves
the following regret bound :

1
Regoro(T, K1, L) < %TlogN + nmy2 T (4)

Especially, for n = 1,;);3]%[, we get Regoro (T, K1, Loo) < 2700/ T log N.
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Finally we use the log-determinant — log det(X + €¢E) as the regularizer. eE stabilizes
the regularizer and it makes the regret bound to be finite. One can derive the regret bound
by the strong convexity of the regularizer and the Lipschitzness of the loss function (Shalev-
Shwartz, 2012). In this case, loss functions are linear and the log-determinant is strongly
convex w.r.t. the operator norm. Strong convexity is easily verified by the fact that the
Hessian of —logdet(X + ¢E) is (X + €E) ™! @ (X + €¢E) ™! for symmetric X where ® denotes
the Kronecker product (Forth et al., 2012).

Theorem 3 (Regret bound of the log-det regularization (Cf. Shalev-Shwartz (2012)) )
Let € > 0. Let the decision set and the loss space be Koo = {X € SN ¢ | X|op < 0} and

L1 = {L € SN . ||L||I1y < 1}, respectively. Then FTRL with the regularizer function

R (X) = —logdet(X + €E) achieves the following bound of the regret ;

1
RegoLo(T, Koo, £1) < ENlog(l + %) +n(0 + €)*43T. (5)

Especially, forn = %jﬁ?éﬂe), we get Regoro(T, K1, L) < (0+€)m \/TN log(1 4 o/e).

Additionally, by setting € = o, we get Regoro (T, K1, Loo) < 4071+v/T'N log 2.

3.2.1. COMPARING REGULARIZERS

We summarize these results and one of the main results of this paper in Table 2. This result
implies that the entropic regularization is effective if predictions have low rank and the log-
determinant regularization is effective if all loss matrices L; have low rank (i.e. 71 ~ Yoo )
and predictions have dense eigenvalues (i.e. No ~ 7). However, like these typical analyses,
bounding the norm of the loss space and the decision set makes overestimating the regret
bound when loss matrices are sparse. The top line of the table is the main result of this
paper, which bounds the regret by the sparsity of loss matrices.

In this paper, we tighten the log-determinant analysis for such sparse loss settings. The
sparse loss setting is useful when reducing particular problems to an OLO. For example,
Hazan et al. (2012) show some online tasks are reduced to the sparse loss OLO. Additionally,
Christiano (2014) considers a specific case of sparse loss OLO, and uses the log-determinant
as the reuglarizer. He showed the regret of log-determinant regularization can be bounded
by the number of nonzero entries instead of norms such as the trace, as a result, he obtained
a tighter regret bound than that of Theorem 3. The main result of this paper is generalizing
the analysis of Christiano (2014) for the sparse loss OLO.

Table 2: Summary of regret bounds

Regularizer ‘ Decision space ‘ Loss space H Regret bound
(3L, 70 <K,
—log det(X + BE) | Xus < B, Xm < 7 Ligl < g 12¢gk? VBTT
—logdet(X + oE) I X|lop < o ILllme < 401/ TN log 2
Tr(Xlog X — X) X|m < 7 IZlop < 7ee 27 o0r/T10g(N)
TXIE, Xl < p [l < o 2072V
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4. Regret for sparse loss OLO (existing methods)

Before describing our main result, we briefly mention existing methods for OLO tasks with
sparse loss matrices.

4.1. Entropic regularization

Tsuda et al. (2005) propose a FTRL based algorithm which uses the negative entropy
R(X) = Tr(X1log X—X) as the regularizer function, and they analyzed its relative loss bound
for quadratic loss functions. Hazan et al. (2012) adopt the negative entropic regularization
for OLO tasks with specialized form sparse loss matricesand show the following regret
bound.

Theorem 4 (Regret of Entropic regularization (Hazan et al., 2012)) Let the deci-
ston space IC and the loss space L be

K = {Xes*N:Tr(X) < 7,Vie [N], Xi; < B},

L = {LeSY*N.Tr(L?) <~,L% is a diagonal matriz}.

FTRL with the regularizer function R(X) = Tr(Xlog X — X) for the OLO achieves

Regoro(T, K, L) < 2+/B1vlog(N)T.

4.2. Log-determinant regularization

Christiano (2014) considers the local prediction problem, in which each prediction is a set
of n? probability distributions over k items and each loss in round ¢ is defined against only
one of n? distributions. This problem can be formulated as an OLO task with some specific
class of loss matrices which have the following form :

0k><k 0k><k Oka Oka
: .. : : .. kxk
T e R L - 0
Y L : N LR V| :
okxk ... .. okxk okxk ... e QRxE

: (6)

where M € RF*¥ is some matrices and 0°** is k x k zero matrices. He adopt FTRL with the
regularizer R(X) = —logy det(X + €E) and implicitly introduces a novel concept of strong
convexity to derive the regret bound. He also shows the effectiveness of the log-determinant
against the entropic regularization in Hazan et al. (2012) for the online maxcut problem.

This problem formulation is established based on the local prediction problem which
asks the relation between only a pair of two same kind of items in each round. For example,
in the online gambling problem, the adversary asks which of two teams will win the game
in each round. Thus if we have a pair of different kind of items, like the online collaborative
filtering problem which have a pair of users and items, we cannot apply this approach
directly. Additionaly, if an OLO tasks with loss matrices are not in form of (6) and one
cannot use the analysis of Christiano (2014). In the next section, we generalize the analysis
of Christiano (2014) for general sperse loss matrices.
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5. Regret for sparse loss OLO (our result)

We generalize the decision set and the loss space in Christiano (2014) and derive the regret
bound of log-determinant regularization for general OLO tasks. Our analysis partly follows
that of Christiano (2014).

First, we mention the following well-known lemma.

Lemma 1 (FTL-BTL lemma (Hazan, 2009)) Let the loss function at roundt be £,(X) =
L; e X. Then, FTRL with the regularizer function R : K — R achieves the following regret
bound.

T
Reg < ;(R(U) S RKD)+ 3 Lee (Xp - Xopa).
t=1

where U is the best offline solution and X; = arg minxex R(X)D

Thanks to this lemma, all we have to do is bounding R(U) — R(X;) and L; e (X; — X¢41).
Next, to tighten the regret bound, we use the following property. Intuitively, this prop-
erty combines Lipschitzness of loss functions and strong convexity of the regularizer.

Definition 1 (Strong convexity w.r.t. the loss function) We call R : K — R is s-
strongly convex w.r.t. L on K if 3s € Ry, Va € [0,1],VL € L,

R(aX + (1 - a)Y) < aR(X)+ (1 - a)R(Y) — ga(l —a)|Le (X —Y)[ (7)

This definition is equivalent to the following condition c.f.(Nesterov, 2004) :
R(X) — R(Y) > VR(Y).(X—Y)+§|Lo(X—Y)|2. (8)

Note that for a function R : R™*"™ — R, its gradient VR means a m X n matrix consist of
%};zg(j) as the (7, j)-th element (Dattorro, 2005).

We usually adopt the definition of strong convexity as inequality (8), but in log-determinant
analyses we also use inequality (7) as the strong convexity.

Using the above property, we can bound the term L; o (X; — X;41) by 2 and we get the

following lemma.

Lemma 2 (FTRL with the strongly convex regularizer (Shalev-Shwartz, 2012))
Let R: K — R. Assume that Vt € [1,T],YX¢, X1 € K the following conditions holds

s
R(X;) — R(X441) > VR(Xiy1) @ (X — Xyq1) + §|Lt o (Xy — X11))?,

S
RXe+1) = R(Xe) 2 VR(X¢) @ (Xegr = Xe) + 5 [Le o (Xe — Xi1) [,

Then, for any sequence of loss functions €,(X) = L @ X with t = 1,...,T, FTRL with the
reqularizer function R achieves the following regret bound
1 nT
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To use the Lemma 2 in our situation, we need to prove the strong convexity of the
log-determinant w.r.t. the loss function.

Christiano (2014) proves the strong convexity of the log-determinant w.r.t. the total
variation distance between two covariance matrices by properties of the negative entropy.
To use the analysis of Christiano (2014), we need to evaluate the total variation distance
between Gaussians with zero mean. The following lemma provides us a relation between
covariance matrices and the total variation distance.

Lemma 3 (Covariance matrix and total variation distance (Christiano, 2014) )
Let G1,Go are Gaussian distributions with zero mean with covariance matriz X1, Yo, respec-
tively. If they satisfies

3(i,5) € [N] % [N, [Z14,5 — Baq50 > 6(X14 + Boq + Xaj5 + X2j5),
then total variation distance between G and Go is at least g% = Q(d).

Lemma 3 provides us a connection of the strong convexity of the log-determinant and
covariance matrices.

Lemma 4 (Strong convexity of log-determinant (Christiano, 2014) ) Let 31,9 be
covariance matriz satisfying the condition of the Lemma 3. Then the following inequality
holds:

1462

—logdet(aXi + (1 — a)X1) < —alogdet(X1) — (1 — ) logdet(X2) — (1 — 04)5@.
The proof of this lemma is in Appendix.

We aim to evaluate the total variation distance between probability distributions using
covariance matrices. The following lemma is a generalization of (Christiano, 2014). This
generalization allows us to use the sparsity of loss matrices when even loss matrices are not
in the form of (6).

Lemma 5 (Total variation distance with linear function) Let X,Y € SfXN, Xe =
X+ €E,Ye =Y + €E, and L € SY*N with V(i,5) € [N] x [N],L;; € [~g,g]. Let © = {i €
[N]:3j € [N],L;j # 0}. Assume that Y ;.o Xii < 1, ) ico Yii < p. Then the following
inequality holds:

. ILe (X —-Y)|
3(i,7) € [N] x [N],|Xeij — Yei ] >
(,7) € [N] X [N], [Xei 1= 4g|0|(1 + |Ole)

(Xei,i + Xej,j + Yez‘,i + Yej,j)- (10)

Proof Let di,j = g|X¢7j — Y;'J| and a; = Xm + Y;’i + 2¢. Then,
doodig= > gXe =Ygl = Y |Ligll Xy — Vil
(i,/)€OX O (1,§)€OXO (1,/)€OX O

S Li(Xiy —Yig)|> [Le(X=Y).
(4,7)€EOxO

v
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On the other hand,

Soo(wta) < YD a+d D> a

(4,J) €O %O j€EO €O 1€0 jEeO
= 18] Y (Xii+ Yii+26) + (0] Y (X5 + Y, +2€) = 4/0|(1 + €[O)).
i€ j€O

Therefore the following inequality holds

i, ) € [N] x [V] .t dy; > 1o XY

S i+ el )

By definition of d; ; and a;, we get the lemma. |

Combining these lemmas, we can derive the following theorem.

Theorem 5 (Main theorem) Let the decision set and the loss space be K C SJXXN and
L ={L e SN : L,; € [~g,9]} respectively. Assume that ©; = {i € [N] : 3j €
[N], Li(i,5) # 0} has O <k and Y ,co, Xii < i) ico, Yii < . Then FTRL with the

loss function £,(X) = XeL, at round t and the regularizer function R.(X) = — log det(X+€E)
achieves the following regret bound

H,
Regoro(T, K, L) < 70 + 36e2ng2 (k(p + ke))2T, (11)

where Hy = R(U) — Re(X1). Additionally, we get Regoro(T, K, L) < 6egk(u + ke)/HoT
1

) H
by setting n = ;\/%‘

Proof Using Lemma 5 with X = X; and Y = X;1, then we assure the lower bound of total
variation distance between a Gaussian with the covariance matrix X; + ¢E and a Gaussian
with the covariance matrix Xy41 + €E is at least % Then we get the strong con-

vexity of —logdet(X+€E) w.r.t. £ by Lemma 4. Applying Lemma 2, we get the theorem. B

This theorem provides us a strong regret bound. If L; has only O(1) nonzero entries
(i.e. k= 0(1)), our result improves O(y/log(N)) factor from Theorem 4.

6. Online matrix prediction and online linear optimization

In this section, we deal with an online matrix prediction via reduction to an online linear
optimization. An online matrix prediction can be reduced to a sparse loss OLO problem
with all loss matrices have only 4 nonzero entries. In this section, we formally define these
online prediction problems and describe the reduction technique.

6.1. Online matrix prediction (OMP)

Let W C [—1,1]™*" be the decision set of the online matrix prediction (OMP). The OMP
is the protocol between an algorithm and an adversarial environment. In each round ¢ =
1, T,
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1. the adversary gives a pair (i, j;) € [m] x [n] to the algorithm,
2. the algorithm chooses W; € W and output Wy(is, 5:) € [-1,1],

3. the adversary gives G-Lipschitz convex loss function ¢; : [—-1, 1] — R to the algorithm,
and

4. the algorithm suffers a loss £, (W3 (i, ji)).

The goal of the algorithm is to minimize the regret Reg, defined as

T T
Reg = 3" (Wil i) — gmin " 6(W (ie, i) 12
t=1 =1

Hazan et al. (2012) formulate the online max cut, the online gambling and the online
collaborative filtering problems as OMP protocols.

Online max cut problem Given a graph G over [n], on each round, the algorithm re-

ceives a pair of graph nodes (7, j) € [n] x [n], and outputs y; € [—1,1]. The algorithm
predicts 1 with probability % and 1 with the remaining probability. The adver-
sary then gives the true outcome y; where y; = 1 if (i, j;) are joined by an edge or
yr = —1 the onosite outcome. The loss suffered by the algorithm is the absolute loss

0() = |yt;yt .

Online gambling problem On each round, the algorithm receives a pair of teams (i, j) €
[n] x [n], and predicts whether 7 is going to beat j or not in the upcoming game. The
decision set is the convex hull of all permutations over the teams, where a permutation
will predict that ¢ is going to beat j if ¢ appears before j in the permutation. Per-
mutations can be encoded naturally as matrices, where W; ; is either 1 (if ¢ appears
before j in the permutation) or 0.

Online collaborative filtering problem We already described this problem in Introduc-
tion.

Generally, predictions of the OMP are asymmetric matrices and it makes OMP hard to
handle. To avoid this hardness, Hazan et al. (2012) reduced the OMP to an OLO.

6.2. Reduction to OLO

In Hazan et al. (2012), they reduced an OMP to an OLO task. For completeness, we
describe their technical details of the reduction. Let the decision space of the OMP be
W e [-1,1]™*". First, we show any member of W can be represent as a symmetric
positive semidefinite matrix. Second, we define appropriate linear loss functions and show
that the regret bound of the OLO task is also the regret bound of the OMP task.

Definition 2 (Symmetrization) Given a mxn non-symmetric matrizc W, its symmetriza-

0 W} . If W is already

tion sym(W) is m +n x m +n matric defined as sym(W) = {WT 0

symmetric then sym(W) = W.

259



MoriDOMI HATANO TAKIMOTO TSUDA

Note that, thanks to symmetry, we can obtain the eigenvalue decomposition of sym(W).

Definition 3 ((3, 7)-decomposability) Letp be the size of sym(W). W is (8, 7)-decomposable
if there exists P,N € S’rp such that sym(W) = P — N and satisfies following conditions

Tr(P) + Tr(N) <7, Vie [p]: P;;,N;; < B.
W is called to be (B, T)-decomposable if any member of W admits a (B, T)-decomposition.

Hazan et al. (2012) show instances of W which are appropriate for the online max cut
problem, the online gambling problem and the online collaborative filtering problem with
(8, T)-decompositions with small § and 7, respectively.

Definition 4 (Positive semidefinite embedding) Given m x n matriz W, there ezists
some symmetric positive semidefinite p X p matrices P, N such that sym(W) =P — N, then
P O]

2p X 2p symmetric positive semidefinite matirz (W) is defined as ¢(W) = {O N

For the sake of simplicity, ¢ = m if W contains asymmetric matrices, ¢ = 0, otherwise.
We represent any member of (3, 7)-decomposable W as ¢(W). Then ¢(W) is a member of
a convex set IC defined as follows :

K={XeSP st Viel2): Xy <B,Te(X) <7,
V(i,5) € [m] x [n] : X; jrq — Xptiptjg € [-1, 1]} (13)

Then we shall run a OLO task with the decision space K. In round ¢, the OMP receives
(i, j¢) from the adversary and the OLO algorithm predicts X; , then our prediction of the
OMP is §¢ = Xy(it, jt + q) — Xe(p + i, p + jt + q).

Next, we define the loss matrix L; of the OLO at round ¢ by the subgradient of the loss
function of the OMP in round ¢. Let g be a subgradient of G-Lipschitz loss function of the
OMP i.e. g = d{’i’éy) ly=g.- By G-Lipschitzness and convexity of ¢;, we get |g| < G. Then we

define each loss matrix of the OLO, L; € S?*?P as follows.

g (Y’aj):(Zta]t+Q)\/(lv.]):(]t+QaZt)
0 otherwise.

So, L is only (i¢+q,it+q), (e + ¢, je + ), (p+ic +q,p+ic+q), (0+ je + ¢, p+ ji + q)-th
diagonal entries are nonzero, and all of them are g2. Thus Tr(L?) = 4¢® < 4G2.

Let we consider an OLO task with the decision set K as (13) and the loss matrix at
round ¢ is L; defined as (14). Let the best offline solution of an OMP be W*. By convexity
of ¢; we get Xy o Ly — ¢(W) @ Ly = 29(9 — Wi, j,) > 2(e(ye) — €e(Ws, 5,)) for any W, hence
the regret of an OMP and an OLO have the following inequality :

T T T T
. 1 . RegoLro
*
tglﬁt(yt)— tglﬁt(Wimt) < B (ngtoLt—argmel% tngoLt> = 9 . (15)
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6.3. Applying OLO to OMP

In this section, we make a comparison between existing methods and ours in the OMP
situation. The decision set of the reduced OLO is defined as (13) and the loss function in
round ¢ is ¢;(X) = L; @ X where L; defined as (14).

Especially, we focus on the online collaborative filtering problem. In the online collabo-
rative filtering problem, the decision space W = {W € [—1,1]"*" : ||W||1y < 7} admits the
(v/m + n, 27)-decomposition (Hazan et al., 2012). Thus we set 8 = /m + n and one typi-
cally setting is 7 = O(y/mn) (Shamir and Shalev-Shwartz, 2011). Without loss of generality
we assume n > m.

First we briefly mention existing methods including online gradient descent(OGD) and
the entropic regularization.

6.3.1. EUCLIDEAN REGULARIZATION (OGD) (ZINKEVICH, 2003)

OGD can be used in two ways. That is, We can apply OGD to the OLO reduced from

an OMP or we can apply OGD to the OMP directly. First we consider applying OGD to

the OLO with reduction from an OMP, i.e. we consider an FTRL based algorithm with
1

the regularizer R(X) = 3|/ X[|%, for the OLO problem. In this case, one can obtain the

regret bound Reg < 47G+/T using Theorem 1 and the fact that || X ||z > || X||m. In the

collaborative filtering task, a typical setting is that 7 = O(y/mn), and it makes the regret
bound O(GvVmnT).

Next we apply OGD algorithm to the OMP directly, i.e. FTRL makes a prediction
according to Wiy = argminW€W<%||W||pr +n>t Ks(Wi57js)>. In this case, we can
derive the regret bound using the property of the Frobenius norm ||W/||m = ||[vec(W)||2 and
G-Lipschitzness of ¢; (Shalev-Shwartz, 2012). A loss function ¢; only takes (i, j;)-th entry

as arguments, thus the gradient of ¢; is a m x n matrix with only (i, j;)-th entry is nonzero
and its absolute value has less than G by G-Lipschitzness of ¢;. Therefore, [|[V{:(W)|r < G,

0l(x) ‘2

2
2() mn + nTG*, (16)

T
1
Reg < Wl +nY)
t=1

where W* is the best offline solution of the OMP task. In this case, regret bound is also
O(GvmnT) in the collaborative filtering task.
6.3.2. ENTROPIC REGULARIZATION (HAZAN ET AL., 2012)

By Theorem 4, FTRL with the entropic regularization for the OLO reduced from an OMP
with G-Lipschitz loss function and the (3, 7)-decomposable decision space achieves

Regoro < 2G+/B7log(2p)T.

Note that p = m + n if W has asymmetric elements, p = m = n, otherwise.
In the collaborative filtering tasks, using the decomposability of the decision space, we

get the regret bound Reg = O(GvmnT) = O(G\/n% log(n)T) with 7 = O(y/mn), B =
vm4+n,n>m.
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6.3.3. OUR RESULT

Let us apply Theorem 5 to the OLO reduced from an OMP. By equation (14), L; satisfies
O] =4 and Vi,j € N x N,L(i,j) € [-G,G] and u < 4/ by definition of . Then we apply
Theorem 5 and get the following bound.

R.(U) — R.(X1)

Regoro < +36 x 16 x e*nG?(48 + 4¢€)*T (17)

The first term can be bounded by the property of the determinant and the logarithm

R (U) — R(X;) = — log det(U + eE) + log det(X; + eE)

- S S (M) < A

=1

where \;(X) is the i-th eigenvalue of X. The second inequality uses log(z+1) < z for x > —1.
By setting € = 8 with an appropriate learning rate n, we get the following corollary.

Corollary 6 (Regret for (3, 7)-decomposable decision space) Assume that the deci-
sion space of OMP admits (8, 7)-decomposition. Then FTRL with the regularizer function
—logdet(X + BE) achieves following regret bound :

RegoLo < 6 x 4eG(45 + 48), /%T = 192¢G\/7BT. (18)

Thus we get a regret bound of OMP, Reg = O(G+/78T). This result is O(y/log(2p))
times better than entropic regularization.

Using (S, 7)-decomposability of the decision space, we can derive the regret bound of
online gambling, online collaborative filtering and online maxcut problems. We summarize
these as following corollaries.

Corollary 7 (Log-determinant regularization for online collaborative filtering) The
regret bound of FTRL with the log-determinant regularization for the online collaborative
filtering task is Reg = O(G+/7+/nT) with B < v/2n by the decomposability of the decision

space. Additionally setting T = O(n), the regret bound is Reg = O(G'V n%T)

The order of this upper bound matches a lower bound of regret for online collaborative

filtering Reg > G/ 37+/nT shown in Hazan et al. (2012).

We can also derive an regret bound for the online gamblling problem. In the online
gambling problem, the problem formulation of Christiano (2014) does not work well and its
regret bound is O(GvVnAT). Our bound is much better.

Corollary 8 (Log-determinant regularization for online gambling) The regret bound
of FTRL with the log-determinant regularization for the online gambling task is Reg =
O(G+/nlog? nT) with B = O(logn),™ = O(nlogn) by the decomposability of the decision
space.

In the online max cut problem, the regret bound of our approach is of the same order
as Christiano (2014).
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Corollary 9 (Log-determinant regularization for online maxcut problem) The re-
gret bound of FTRL with the log-determinant regularization for the online maz cut problem
is Reg = O(GvVnT) with 8 = 1,7 =n by the decomposability of the decision space.

This upper bound also matches the lower bound of online max cut in Hazan et al. (2012).

7. Conclusion

In this paper, we consider the online symmetric positive semidefinite matrix prediction
problem. We proposed a FTRL based algorithm with the log-determinant regularization.
We tighten and generalize existing analyses. As a result, we show that the log-determinant
regularizer is effective when loss matrices are sparse. Reducing online collaborative filtering
task to the sparse loss OLO, our algorithms obtain optimal regret bounds.

Our future work includes (i) imploving a constant factor in the regret bound, (ii) apply-
ing our method to other online prediction tasks with sparse loss settings, (iii) developing a
fast implementation of our algorithm.
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Appendix A. Proof of the Lemma 4
We prove Lemma 4 by using properties of the negative entropy.

Definition 5 (Negative entropy) The negative entropy of a probability distribution P :
x = p(x) over RY is defined as H(P) = Egp[logy p(x)]

Negative entropy is strongly convex w.r.t. total variation disctance. This property
connects the total variation distance and the strong convexity.

Lemma 6 (Strong convexity of negative entropy (Christiano, 2014) ) Let P,Q be
probability distribution over RN with total variation distance [ |P(x)—Q(z)|dx = 6. Then
the negative entropy satisfies following inequality.

H(aP + (1-a)Q) < aH(P) + (1 — a)H(Q) — (1 — )

In Christiano (2014), the proof was given for only descrete entropies and the differential
entropies are regarded as the limit of the descrete entropies, but this assertion is incor-
rect (Cover and Thomas, 2012). We fix the problem by considering the limit of the ”dif-
ference” of discrete entropies as described below. First we fix a discretization interval
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A. As in Sec 8.3 of Cover and Thomas (2012), for a continuous distribution P, we de-
fine its descretized distribution P?, and thus we can define the discrete entropy H(P?).
Then we have H(P?) = H(P) + log A, and thus for two continous distributions P and Q,
lima_o(H(P?) — H(Q®)) converges H(P) — H(Q). Using this, we can prove this lemma.

The following lemma provides us the connection between the entropy and the log-
determinant.

Lemma 7 (Upper bound of entropy (Cover and Thomas, 2012) ) For any proba-
bility distribution P over RN with 0 mean and covariance matriz X, its entropy is bounded
by log-determinant of covariance matriz.

—H(P) <  log,(det(S)(27e)"),

N | =

where the equality holds iff P is a Gaussian.

Now we give a proof of Lemma 4.
Proof By assumption, total variation distance between G; and G- is at least %—g. By Lemma
6 and 7,

—logy det(aX; 4+ (1 — a)¥1) < 2H(aGy + (1 — a)Gs) — logy(2me)Y

462
< a(2H(G1) — logy(2me)™) + (1 — a)(2H(G2) — logy (2me)™) — a(1 — O‘)ﬁi?
= 1 det(X 1 1 det(2 1 1 46°
= —alogy det(X1) — (1 — a) logy det(32) — af —a)@@

Multiplying log 2 to both sides and converting the floor of logarithm, we complete the proof.
|
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