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Abstract

Latent Dirichlet allocation (LDA) provides an efficient tool to analyze very large text col-
lections. In this paper, we discuss three novel contributions: (1) a proof for the tractability
of the MAP estimation of topic mixtures under certain conditions that might fit well with
practices, even though the problem is known to be intractable in the worse case; (2) a
provably fast algorithm (OFW) for inferring topic mixtures; (3) a dual online algorithm
(DOLDA) for learning LDA at a large scale. We show that OFW converges to some local
optima, but under certain conditions it can converge to global optima. The discussion of
OFW is general and hence can be readily employed to accelerate the MAP estimation in a
wide class of probabilistic models. From extensive experiments we find that DOLDA can
achieve significantly better predictive performance and semantic quality, with lower run-
time, than stochastic variational inference. Further, DOLDA enables us to easily analyze
text streams or millions of documents.

Keywords: Topic models, latent Dirichlet allocation, MAP estimation, stochastic gradi-
ent, large-scale learning

1. Introduction

Latent Dirichlet allocation (LDA) is the class of Bayesian networks that has gained ar-
guably significant interests. It has found successful applications in a wide range of areas
including text modeling (Blei, 2012), bioinformatics (Pritchard et al., 2000; Liu et al., 2010),
history (Mimno, 2012; Hoffmann, 2013), politics (Grimmer, 2010; Gerrish and Blei, 2012),
psychology (Schwartz et al., 2013), to name a few.

One of the core issues in LDA is the estimation of posterior distributions for individual
documents. The research community has been studying many approaches for this estimation
problem, including variational Bayes (VB) (Blei et al., 2003), collapsed variational Bayes
(CVB) (Teh et al., 2007), CVB0O (Asuncion et al., 2009), and collapsed Gibbs sampling
(CGS) (Griffiths and Steyvers, 2004; Mimno et al., 2012). Those approaches enable us to
easily work with millions of texts (Mimno et al., 2012; Hoffman et al., 2013; Foulds et al.,
2013). The quality of LDA in practice is determined by the quality of the inference method
being employed. However, none of the mentioned methods has a theoretical guarantee on
quality or convergence rate. This is a major drawback of existing inference methods.

Our first contribution in this paper is a proof of the tractability of the following problem:

0" = arg max Pr(6,d) = arg mgxPr(d|9) Pr(6), (1)
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Figure 1: (Top left) Predictiveness of the models learned by DOLDA and SVI when ana-
lyzing 8 millions of articles in the Pubmed central. (Top right) Semantic quality
(measured by Coherence) of the learned models. The higher the better. Note that
DOLDA can achieve a high predictiveness level after analyzing a few thounsand
articles, but SVI has to analyze milions. The models learned by DOLDA are
often significantly more interpretable than those by SVI. (Bottom) Transience of
a topic as DOLDA sees more news in New York Times.

for which the multinomial and Dirichlet distributions compose a conjugate pair for the
variables d and @ respectively. In LDA, d represents a document and 6 represents a topic
mixture in d. This MAP problem was shown to be intractable in the worse case (Sontag and
Roy, 2011). Nonetheless, we will show that it is in fact tractable under certain conditions,
e.g., ||d|[1 or the dimensionality of d is sufficiently large. Note that in practice of text
modeling, the dimensionality often reaches hundreds of thousands (Asuncion et al., 2011)
or even millions (Than and Ho, 2012; Wang et al., 2013). This suggests that the MAP
problem in practice might be tractable with high probability. Therefore, our result provides
a partial justification for why many existing inference methods empirically succeed even
though there is no guarantee on quality.

Our second contribution in this paper is the introduction of an online algorithm, namely
Online Frank-Wolfe (OFW), for solving the MAP problem (1). We prove that OFW con-
verges to a local maximum of the MAP problem. Under certain conditions, OFW the-
oretically converges to the global optimum. Furthermore, OFW is able to jump out of
local maxima to get close to the global solutions owing to its stochastic nature. Hence, it
overcomes many drawbacks of existing inference methods. Those properties help OFW to
be more preferable than existing inference methods in many contexts, and provide us real
benefits when using OFW in a wide class of probabilistic models, including the LDA-based
family.

The topic modeling literature has seen a fast growing interest in designing large-scale
learning algorithms (Smola and Narayanamurthy, 2010; Asuncion et al., 2011; Mimno et al.,
2012; Than and Ho, 2012; Broderick et al., 2013; Foulds et al., 2013; Patterson and Teh, 2013;
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Hoffman et al., 2013). Existing algorithms allow us to easily analyze millions of documents.
Those developments are of great significance, even though the posterior estimation is often
intractable. Figure 1 illustrates the ability of two large-scale algorithms when working with
8 millions of articles from the Pubmed central. Note that the performance of a method
heavily depends on its core inference subroutine. Therefore, existing large-scale learning
methods seem to likely remain some of the drawbacks of VB, CVB, CVBO0, and CGS.

Our third contribution in this paper is a dual online algorithm (DOLDA) for learning
LDA at a large scale. This algorithm owns the online nature when learning the global vari-
ables (topics), and employs OFW as the core for inferring local variables () for individual
texts. DOLDA overcomes many drawbacks of existing large-scale learning methods owing
to the preferable properties of OFW. Figure 1 illustrates the superior behaviors of DOLDA
over stochatic variational inference (SVI) by Hoffman et al. (2013). From extensive exper-
iments we find that DOLDA often reaches very fast to a high predictiveness level, and is
able to consistently increase the semantic quality and predictiveness of the learned models
as observing more data. Therefore, DOLDA provides us an efficient tool for analyzing text
streams or collections of big size.

ORGANIZATION: in the next section, we study the MAP problem (1) and show some
interesting properties that fit well with the practice of topic models. We discuss the OFW
algorithm for solving (1) in Section 3. We also analyze the convergence property of OFW.
Section 4 presents our dual online algorithm for learning LDA from text streams or big
text collections. Practical behaviors of DOLDA will be investigated in Section 5. The final
section presents some conclusions and discussions.

NoOTATION: Throughout the paper, we use the following conventions and notations. Bold
faces denote vectors or matrices. x; denotes the it element of vector &, and A;; denotes
the element at row 4 and column j of matrix A. For a given vector & = (x1,...,2y)7,
we denote 2 = (%, ey %)T and denote diag(x) as the diagonal matrix whose diagonal
entries are x1, ..., Ty, respectively. The unit simplex in the n-dimensional Euclidean space
is denoted as A, = {z € R" : & > 0, }_, xx = 1}, and its interior is denoted as A,,. We
will work with text collections with V' dimensions (dictionary size). Each document d will
be represented as a frequency vector, d = (dy, ..., dy)? where d; represents the frequency
of term j in d. Denote ng as the length of d, i.e., ng = Zj d;. The 4 unit vector in R” is
denoted as e;.

2. LDA and approximate inference

LDA is a generative model for modeling texts and discrete data. It assumes that a corpus
is composed from K topics 3y, ..., Bk, each of which is a sample from the V-dimensional
Dirichlet distribution Dirichlet(n). A document d arises from the following generative
process:

1. Draw 64|a ~ Dirichlet(a)
2. For the n'* word of d:

- draw topic index zg,|0g ~ Multinomial(0)

- draw word Wan|2dn, B ~ Multinomial(8,, ).
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Each topic mixture 84 = (041, ..., 045 ) represents the contributions of topics to document
d, while f3;; shows the contribution of term j to topic k. Note that 84 € Ay, 3, € Ay, Vk.
Both 6, and z,; are unobserved variables and are local for each document.

According to Teh et al. (2007), the task of Bayesian inference (learning) given a corpus
C = {dy,...,dp} is to estimate the posterior distribution p(z, 8, B|C,«a,n) over the latent
topic indicies z = {z1, ..., 24}, topic mixtures 6 = {01, ...,0,}, and topics B = (B4, ..., B )-
The problem of posterior inference for each document d, given a model {3, a}, is to esti-
mate the full joint distribution p(z4,84,d|3,«). Direct estimation of this distribution is
intractable. Hence existing approaches uses different schemes. VB, CVB, and CVBO try to
estimate the distribution by maximizing a lower bound of the likelihood p(d|3, ), whereas
CGS (Mimno et al., 2012) tries to estimate p(zq4|d, B, ).

2.1. MAP inference of topic mixtures

We now consider the MAP estimation of topic mixture for a given document d:

0" = arg max Pr(0,d|3, «) = arg max Pr(d|0, 3) Pr(0|«). (2)
OcAk ISANS

It is easy to show that this problem is equivalent to the following one:
K
0" = arg Jnax Zd logZHkﬁk] (a—1) Zlog 0. (3)
k=1

Sontag and Roy (2011) showed that this problem is NP-hard in the worst case when
a < 1. In the case of @ > 1, one can easily show that the problem (3) is concave, and
therefore it can be solved in polynomial time. Unfortunately, in practice of LDA, the
parameter « is often small, says a < 1, causing (3) to be nonconcave. That is the reason
for why (3) is intractable in the worst case.

2.2. Tractability of the M AP inference problem when o < 1

In this section we discuss the tractability of the problem (3) under certain conditions. More
specifically, we will show that it is concave with high probability when the dimensionality
V or the length of d is large. It implies that in many practical situations, the problem (3)
can be solved efficiently.

Let f(0) = >_;d;log Zszl OrBrj + (o —1) Zle log 6. be the objective function of (3).
We have its first and second derivatives at a 8@ € Ax as follows:

of a—1
= = + , t=1,K (4)
90, Z ’ Zf 1 Hkﬂkzg Ot
1
" = —ATA - (a—1)diag (02> , (5)
where A = (aj;)yvx i for aj; = B”\é; Note that, denoting B = Adiag(0),
k=1YkPkj
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7" = ding ) 100~ i —diag(0) (A" A)diag @) i ( 6
= diag <;> [(1 = ) Ix — B B].diag (el)) , ©)

A classical result in Algebra (Abadir and Magnus, 2005, exercise 8.28) says that for
any symmetric matrix A and nonsingular Y, the product Y AY” is positive semidefinite if
and only if A is positive semidefinite. Consequently, the matrix (1 — a)Ix — BT B decides
negative semidefiniteness of f”. This implies the negative semidefiniteness of (1 — a)lx —
BT B decides the concavity of f. As a result, we have

Lemma 1 Denote f(0) =3, d;log DOy OrBr; + (a—1) S log b, for nonnegative vec-
tors d and Byq,...,Br. Then f is concave over Ay if the matriz (1 — o)Ix — BTB is
negative semidefinite.

Let )\mm(BTB) be the least eigenvalue of BT B. One can easily see that if )\mm(BTB) >
1 — « then matrix (1 — a)Ix — BT B is negative semidefinite.

Lemma 2 Function f(0) in Lemma 1 is concave over A if Amin(BTB) > 1 — .

The remaining task to see concavity of f is to investigate the conditions for which
/\mm(BTB) > 1 — «. Note that 6 is a random variable and belongs to the simplex Ag.
Therefore B is a random matrix. This observation suggests that one can use results from the
theory of random matrix to investigate B. However, it seems to be very difficult, because
of the unknown distribution of the elements in B. Indeed, the elements of B are

=M, t=TK, j=1V (7)
Zk;:1 Hk/Bkj

Even though 0 follows the Dirichlet distribution with parameter o, deciding the distribution

of Bj is really difficult. As a result, further assumptions on B are needed to see Amin(BTB).
There is a nice result by Rudelson and Vershynin (2009) for estimating the least singular

value of a random matrix with sub-Gaussian entries. Recall that a random variable & is

called sub-Gaussian if its tail is dominated by that of the standard normal random variable,

i.e., if there exists D > 0 such that

gt

—42
Pr(|¢] > t) <2exp <D2> for all t > 0. (8)

The minimal D is called the sub-Gaussian moment of £. Note that any bounded random
variables are sub-Gaussian.

Theorem 3 (Rudelson and Vershynin, 2009) Let S be a V' x K random matriz with V >
K, whose elements are independent copies of a sub-Gaussian random variable with unit
variance, zero mean, and sub-Gaussian moment D. Then for every € > 0, we have

Pr <smm(S) <e (\/\7 - \/ﬁ)) < (Ce)V K+ 4 o=V, (9)
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where constants C,c > 0 depend polynomially on the sub-Gaussian moment D; Spmin(S) is
the least singular value of S.

This theorem essentially says that the least singular value of a tall random matrix is
not so small. In particular, $,,;,(S) > ¢ (\/‘7 - VK — 1) with high probability. spin(S)
increases as V increases with high probability.

Returning to the matrix B in (7), we easily observe that 0 < Bj; < /ng for any (j,1).
It suggests that each Bj; is a copy of a sub-Gaussian variable. Further, Bj;//ng is a copy
of a sub-Gaussian variable with variance < 1. As a result, Theorem 3 implies the following.

Theorem 4 For given nonnegative d, 3, a, and V > K, consider matriz B whose elements
are defined as in (7). Assume all elements of B/\/ng are copies of a sub-Gaussian variable
with variance 1, and mean 0, and sub-Gaussian moment D. Then for every € > 0, we have

Pr ( Smin 1 p <e(VV VK —=1)) < (Ce)VEH 47V, (10)
(o () = )

Pr <)\mm (nldBTB> < ¢? (W - \/ﬁ)2> < (Ce)VEH f o=V, (11)

where constants C,c > 0 depend polynomially only on D.

V-K+1 _ ,—cV

Inequality (11) suggests that with probability at least 1 — (Cke) e %", we have

2
Amin (BTB) > eny (VV = VK —1) (12)
Combining this observation with Lemma 2, we obtain the following result.

Corollary 5 Using the notations and assumptions in Theorem 4, consider the function

£(8) =X, djlog S8 6By + (a — 1) K log . If e2ny (W VK 1)2 >1—a, for

V—-K+1__ _—cV

anye € (0, %), then f(0) is concave over A with probability at least 1—(Ce) e

This corollary immediately implies our main result about the tractability of the MAP
inference problem (3).

Theorem 6 (Concavity of MAP inference) Using the notations and assumptions in
Theorem 4, for any ¢ € (O, %), if

2ng (ﬁ/— \/ﬁf >1—a, (13)

then the MAP inference problem (3) is concave over A with probability at least 1 —
(Cg)V_K+1 o e—cV'

For the first time the tractability of the MAP inference problem in LDA has been proved,
in the case of a < 1. This is in contrast with the intractability result in the worst case by
Sontag and Roy (2011). From (13) one can easily find that when the document length ng4
or the dimensionality V are very large, the MAP problem is concave with high probability.
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Corollary 7 (Concavity for long documents) Using the assumptions in Theorem 4,

+ if ng(vV — VK —1)* > C*(1 — a)? then the problem (3) is concave with probability

—Lwv-K+1) _ —cv

at least 1 — (ng)~ 1 e

+ As ng — 400, the problem (3) is concave with probability at least 1 — e~V

P

Proof The first statement can be derived from Theorem 6 by choosing ¢ = %n; . The

second statement thus follows. [ |

Corollary 8 (Concavity for high dimensionality) Using the notations and assump-
tions in Theorem 4, let K and nq be fired. Then the MAP problem (3) is concave over
Ag with probability 1 as V — +oo.

2.3. Connection to practices

Both Corollaries 7 and 8 show the two extremes for which the MAP problem in LDA is
tractable. Corollary 7 suggests that as the document length grows, the MAP problem is
more likely tractable, and can be solved in polynomial time. This result is similar in merit
with the one by Tang et al. (2014), who showed that the LDA model is more likely to be
recovered as the document length grows.

The result in Corollary 8 is much more interesting, because it seems to fit well with the
practice of topic models. When modeling text collections, the dimensionality V' (dictionary
size) easily reaches hundreds of thousands (Asuncion et al., 2011; Smola and Narayana-
murthy, 2010) or even millions (Than and Ho, 2012; Wang et al., 2013). For such collections,
posterior inference for individual texts is concave with very high probability. Inequality (13)
tells even more about the tractability of problem (3) in practice. We observe that K in
practice is often significantly less than V. Further, the document length in some types of
texts might be large (Mimno et al., 2012). Combination of those factors makes (13) to hap-
pen more likely, and hence (3) is concave with high probability. All of these observations
suggest that the results in Theorem 6, Corollaries 7 and 8 provide a new perspective that
explains the practical success of many existing inference methods.

3. Online Frank-Wolfe for M AP inference

We have discussed the tractability of the MAP inference problem in the last section. Next
we present a novel algorithm for doing inference of topic mixtures for documents. Our
algorithm, namely Online Frank-Wolfe (OFW), is theoretically guaranteed to converge to
a local maximum. In some cases, it converges to the global solutions. To the best of
our knowledge, OFW is the first algorithm for posterior inference for individual texts that
has a guarantee on inference quality and convergence rate. Hence, OFW overcomes many
drawbacks of VB, CVB, CVBO0, and CGS.

Details of OFW is presented in Algorithm 1.' It is worth noting that OFW is a careful
adaptation of the general algorithm by Hazan and Kale (2012). A crucial point is that

1. In practice, we can set a = 1/\/Z+ ¢ for a very small constant €, says e = 1071, to assure that 8, always
stays in the interior of Ak.
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Algorithm 1 Online Frank-Wolfe for MAP inference
Input: document d, and model {3, a}.
Output: 6 that maximizes f(6) =3_; d;log K OrBi; + (v —1) SO log by
Initialize @; arbitrarily in Ax = {z € R¥ : Zszl xzp =1, > 0}.
for /=1,...,00 do
Pick f; uniformly from {3, d;log Zle OrBrj; (a—1) Zszl log 6y}
2\
Fp:=7 Zh:l Ju

i’ := argmax; VFy(0y);; (maximal partial gradient)

a:= 1/\/@;
9@+1 = ae;y + (1 — CL)H@.
end for

OFW here has significantly better bounds on both quality and convergence rate than that
of Hazan and Kale (2012).

Theorem 9 (Convergence for concavity) Consider the objective function f(0) in prob-
lem (3), given fized d, B, . Assuming f is concave over Ak, Algorithm 1 returns an iterate

0, with a regret bound of O (1/\/@) after { iterations, i.c., maxg Fy (8) —F; (87) < C//Y for
some constant C' > 0. Furthermore, Fy(0) — f(0) as { — +oo, implying that Algorithm 1
converges to the global solution at a rate of O (1/\/@)

Proof The regret bound has been proven in Theorem 3.1 by Hazan and Kale (2012) (for
the setting b = 0,d = 0.5).

Denote g1 = Zj d;log Zle OrBrj and go = (v — 1) Z,[f:l log ;. Let ay and by be the
number of times that we have already picked g; and go respectively after £ iterations. Due
to the uniform sampling of f;, we have that a; + b, = ¢ and a;/¢ — 0.5,b;/¢ — 0.5 as
¢ — +o00. Therefore, F; = %Ele fi = % (agg1 + bege) — f as £ — +oo. [ |

It is worth remarking that OFW follows the common greedy approach, using gradient
to guide the direction for searching. Therefore when f (6) is not concave, OFW is able to
converge to a local maximum because of the last statement in Theorem 9. As a result, we
have the following.

Corollary 10 (Convergence for non-concavity) Consider the objective function f(0)
for fixed d, B, . If f is non-concave, Algorithm 1 converges to a local mazimum of (3) at

a rate of O <1/\/Z>

Comparing with other inference approaches (including VB, CVB, CVB0 and CGS),
our algorithm has many preferable properties. The most attractive property of OFW is
the theoretical guarantees on quality and convergence rate, as shown in Theorem 9 and
Corollary 10. Existing inference methods often do not have any guarantee. In the case
of non-concavity of the MAP problem (3), OFW is able to jump out of local maxima to
get close to the global solutions owing to its stochastic nature. This is another interesting
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Algorithm 2 DOLDA: online learning for latent Dirichlet allocation
Input: K,a>0,7>0,x € (0.5,1]
Output: 3
Initialize B° randomly
for t=1,...,00do
Pick a set C; of documents
For each d € C; do inference for d by OFW to get 84, given B¢~!

~t ~
Compute intermediate topics 3 as: ﬁ,ij x Yy, daec, 40k

K

Set step-size: pr = (t+7)"

Update topics: B := (1 — py) B + ptﬁt
end for

property. One can easily see that the memory requirement for implementing OFW is very
modest, says O(K), which is significantly less than that of VB, CVB, CVBO0, and CGS.
OFW is very general for solving the MAP problem (2). Hence, it can be adapted easily
to a large class of probabilistic models, including the LDA-based family, for which the
multinomial distribution is used to model a discrete variable d with a Dirichlet prior.

4. Dual online algorithm for learning LDA

In this section we describe a novel algorithm, namely Dual Online Algorithm (DOLDA),
for learning LDA from large corpora. DOLDA employs OFW to do MAP inference for
individual documents, and the online scheme (Hoffman et al., 2013) to infer the global
variables (topics). Hence, the online nature appears in both local and global inference
phases. Note that the inference of local variables by OFW has theoretical guarantees on
quality and convergence rate. Such a property might help DOLDA be more attractive than
other large-scale learning methods.

4.1. Derivation of batch learning

We first discuss how to design a batch learning algorithm using OFW. The MAP learning
problem, given a corpus C = {dy,...,dy} and o > 0, is to estimate the topics By, ..., Bx
that maximize

L(B) = logPr(84,d|B, )

deC
K K (14)
= Z Z d;log Z OarPrj + (o — 1) Z log 64r | + constant
dec \ j k=1 k=1

We maximize £(3) by alternating the following two steps until convergence: Step 1 max-
imizes Pr(04,d|3,a) by OFW to infer 8; for each d € C; Step 2 maximizes £(8) with
respect to 3 for fixed 61, ...,0,,. By using the same arguments as Than and Ho (2012) we
can arrive at the following formula to update 3 in Step 2:

Brj Z dj0ax (15)

deC
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4.2. Adaptation to online learning

Formula (15) forms the batch learning of topics for LDA. We use the simple method by Hoff-
man et al. (2013) to design an online algorithm from (15). More specifically, the algorithm
repeats the following steps:

- Sample a set C; of documents. Optimize the local variables for each document d € Cy,
given the global variable 8~! in the last step.

- Form an intermediate global variable ,Bt for C;.

- Update the global variable to be a weighted average of the intermediate Bt and g1

Hoffman et al. (2013) show that with such a scheme, the online algorithm works as
stochastic natural accent on the global variable. When working on a fixed corpus, the
algorithm will converge to a stationary point of the objective function.

Algorithm 2 is an adaptation from the batch learning (15) to online learning, using the
technique by Hoffman et al. (2013). Note that the step-size p; = (¢ + 7) " must satisfies
two conditions: Y 5% pr = 0o and > 12, p? < co. These conditions are to assure that the
learning algorithm will converge. x € (0.5, 1] is the forgeting rate, the higher the lesser the
algorithm weighs the role of new data.

5. Empirical evaluation

In this section, we evaluate the practical performance of DOLDA and OFW. We first want
to see the predictiveness and semantic quality of the models which are learned by DOLDA.
We then want to see how fast DOLDA learns a qualified model as more data come. Finally,
we want to see how fast OFW does inference in practice, despite of the theoretical guarantee
for fast convergence in Section 3. To this end, we take stochastic variational inference (SVI)
(Hoffman et al., 2013) into consideration as the state-of-the-art method for learning LDA
at a large scale.?

We use two large data sets for evaluation: Pubmed consisting of 8.2 millions of medical
articles from the pubmed central; New York Times consisting of 300K news.® The vocab-
ulary size (V') of each corpus is more than 110,000. For each corpus we set aside randomly
1000 documents for testing, and used the remaining for learning.

Parameter settings: There are some parameters (7, %) in SVI and DOLDA that have to
be carefully considered. To avoid any possible bias in comparisons, we follow the study by
Hoffman et al. (2013) to select the best values for those parameters. According to Hoffman
et al. (2013), the performance of SVI does not depend heavily on 7, and is better for greater
values of k. Therefore we chose 7 = 1 and x = 0.9 in our experiments. Larger size of
minibatches often helps SVI to learn better, hence we chose minibatches of size 5000. We
allowed at most 50 iterations for VB in SVI and OFW in DOLDA to do inference for
individual documents. More interations did not help VB consistently increase the quality
in our observation. The hyperparamenters for the Dirichlet priors in LDA were set as
a=1/K,n=1/K, which were suggested in previous studies.

2. SVI was taken from http://www.cs.princeton.edu/~blei/downloads/onlineldavb.tar.
3. The data were retrieved from http://archive.ics.uci.edu/ml/datasets/
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Figure 2: Performance of DOLDA and SVI on two large corpora when learning 100-topic
LDA. The higher the better for Predictive Probability and Coherence, whereas
lower is better for Learning hours. The last row shows how long the two methods
reach to the same generalization level.

Performance measures: We used Coherence and Predictive Probability to measure the
quality of a model which has been learned from the training data. Coherence (Mimno
et al., 2011) measures the semantic quality of individual topics, while predictive probability
(Hoffman et al., 2013) measures the predictiveness and generalization to new data.

Coherence computation: To calculate the coherence of a topic k, we first choose the set
VF = {oF .., vF} of the top ¢ terms that have highest probabilities in that topic, and then

k .k
compute C(k,V*) = S Zﬁ;llogw where D(v) is the document frequency

D(vf)
of term v, D(u,v) is the number of documents that contain both terms u and v. In our
investigation, we chose top ¢t = 20 terms, and coherence is averaged across all topics:

Coherence = % Zé(:l C(k,VF).

Predictive Probability shows the predictiveness and generalization of a model M on new
data. We followed the procedure in (Hoffman et al., 2013) to compute this quantity. For
each document in a testing dataset, we divided randomly into two disjoint parts w,s and
wpe With a ratio of 80:20. We then did inference for w,,s and then estimate the predictive
distribution Pr(wpe|weps, M) where M is the model to be measured. Predictive Probability
was averaged from 5 random splits, each was on 1000 documents.
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5.1. Performance of DOLDA

We first want to see how well DOLDA learns in comparison with SVI. Figure 2 presents
the results on two corpora. One can easily observe that as seeing more documents, both
DOLDA and SVI reached to better predictiveness levels with a fast rate. For Pubmed,
DOLDA performed significantly better than SVI even just after seeing a few thounsands
of documents. DOLDA often reached at the same generalization level (measured by log
predictive probability) as SVI within a much less runtime. SVI often needed much more
time and data to reach the same prediction level as DOLDA. This demonstrates the goodness
of our algorithm.

The fast rate of generalization of the two methods seems to inherit from the goodness
of their inference algorithms. VB has been known to work well in many previous studies
and empirically has a good convergence rate, even though no explicit guarantee has been
derived. This might be the main reason for the good performance of SVI in terms of
predictiveness. Remember from Section 3 that OFW has a provably fast rate of convergence
and a theoretically good bound on inference quality. Also, OFW is the core subroutine of
DOLDA. As a result, DOLDA seems to owe the good performance to the goodness of OFW.

There is a strange behavior of SVI in terms of Coherence. The second row in Figure 2
shows that the semantic quality of the models learned by SVI gradually decreases as seeing
more data. According to Mimno et al. (2011), Coherence agrees highly with human assess-
ment about the semantic quality and interpretability of individual topics. This suggests that
the interpretabilty of topics seems to decrease as SVI sees more documents. This behavior
is unexpected in practice, and should be studied further. In contrast, DOLDA can learn
more interpretable topics as seeing more documents. There is a big gap between DOLDA
and SVI in terms of coherence, just after learning from a few thounsands of documents. All
of those observations suggest the superior behaviors of DOLDA.

5.2. Sensitivity of DOLDA

We next investigate the effects of the parameters on the performance of DOLDA. The
parameters include: the forgetting rate k, 7, the number L of interations for OFW, and
the minibatch size. Inappropriate choices of those parameters might affect significantly the
performance of DOLDA. To see the effect of a parameter, we changed its values in a finite
set, but fixed the other parameters. Results of our experiments are depicted in Figure 3.

We observe that k and L did not significantly affect the performance of DOLDA. These
behaviors of DOLDA are interesting and beneficial in practice. Indeed, we do not have
to consider much about the effect of the forgetting rate x and thus no expensive model
selection is necessary. Figure 3(b) reveals a much more interesting behavior of OFW. One
easily observes that more iterations in OFW did not necessarily help the performance of
DOLDA. Just L = 10 iterations for OFW resulted in a comparable predictiveness level as
L =100. It suggests that OFW converges very fast in practice, and that L = 10 might be
enough for practical employments of OFW. This behavior is really beneficial in practice,
especially for massive data or streaming data.

7 and minibatch size did affect DOLDA significantly. Similar with the observation by
Hoffman et al. (2013) for SVI, we observe that DOLDA performed consistently better as
the minibatch size increased. It can reach to a very high predictiveness level with a fast
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Figure 4:

when fixed {x = 0.9,7 = 1,L = 50}. (b) Change the number L of iterations for
OFW when fixed {x = 0.9,7 = 1}. (c) Change the forgetting rate x when fixed
{r =1,L =50}. (d) Change 7 when fixed {x = 0.9, L = 50}. The minibatch size
in the cases of (b), (c), (d) is 5000. All of these experiments were done on New
York Times, with K = 100 topics.
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Convergence and inference time of OFW and VB as the number of iterations
increase. The first two subplots show how fast OFW and VB maximize their
objective functions, while the last two subplots show how long they took. The last
subplot shows how long VB did inference when the lower bound of Pr(d|3, «, 1)
was used to check convergence. Note that VB did hundreds of times faster than
VByound, i-€., checking bounds for convergence in VB requires intensive time.
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rate. In contrast, DOLDA performed worse as 7 increased. The method performed best at
7 = 1. It is worth noting that the dependence between the performance of DOLDA and {7,
minibatch size} is monotonic. Such a behavior enables us to easily choose a good setting
for the parameters of DOLDA in practice.

5.3. Convergence, time, and stability of OFW

Next we investigate the performance of OFW. We want to see its convergence rate, inference
time, and stability. To this end, we took the 100-topic LDA as a fixed model which has been
learned by SVI previously from New York Times; and then we did inference on individual
testing documents by OFW and VB. Both methods were allowed 100 iterations to do
inference on a document. Results are depicted in Figure 4.

Observing Figure 4 we find that both method converged very fast. VB reached conver-
gence just after L = 20 iterations, while OFW consistently improved approximate solutions
with a high rate as allowing more iterations. The early convergence of VB is very inter-
esting and might be beneficial in practice. Note that such an early convergence does not
neccessarily reflect the goodness of approximating Pr(d|3, a,n), since VB is just able to
compute a lower bound. The inferior performance of SVI on Pubmed in terms of predictive
probability suggests that there might be a big gap between the likelihood and the lower
bound used in VB. Hence, VB might require more than 20 iterations to do inference on
each document. In contrast, few iterations for OFW may be sufficient to help DOLDA learn
well, as illustrated in Figure 3(b). This shows a better behavior of OFW over VB.

OFW often performed significantly faster than VB, since no convergence check is re-
quired and the computation in OFW is very basic. Meanwhile, VB needs to compute a
lower bound of the likelihood which is very expensive to estimate, since VB does inference
by maximizing that lower bound. That is the reason for why VB performed hundreds of
times more slowly than OFW. Hoffman et al. (2013) suggested to avoid the lower bound
computation to reduce runtime, which agrees with our experiments as illustrated in the
third subplot in Figure 4.

Stability of OFW: our last investigation is whether or not OFW performs stably in
practice. We have to consider this behavior as there are two probabilistic steps in OFW:
initialization of 87 and pick of f;. To see the stability, we took 100 testing documents to
do inference given the 100-topic LDA model previously learned by DOLDA from New York
Times. For each document, we did 10 random runs for OFW and then saved the objective
values of the last iterates. We found that all of 10 objective values centralized around their
mean with a standard deviation of 2.4035 (on average among 100 documents). Such a small
deviation strongly suggests that OFW can perform very stably.

6. Conclusion

We have presented three main contributions in this paper. The proof of the tractability of
the MAP problem is not only for LDA, but a wide class of probabilistic models. It partially
explains why existing inference methods succeed in practice of topic modeling, inspite of
no theoretical guarantee on quality and convergence rate. Our method, OFW for solving
the MAP problem, has many nice properties that existing ones do not have. OFW can
be readily employed to do the posterior estimation in a wide class of models. Finally, our
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online algorithm (DOLDA) for learning LDA at a large scale has many preferable behaviors
in practice. DOLDA overcomes existing learning algorithms for LDA in various aspects,
including a theoretical guarantee on inference quality, a fast rate of convergence to a high
predictiveness level, and a streaming nature for dealing with text streams.
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