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Abstract

Dimensionality reduction is a fundamental problem of machine learning, and has been in-
tensively studied, where classification and clustering are two special cases of dimensionality
reduction that reduce high-dimensional data to discrete points. Here we describe a simple
multilayer network for dimensionality reduction that each layer of the network is a group
of mutually independent k-centers clusterings. We find that the network can be trained
successfully layer-by-layer by simply assigning the centers of each clustering by randomly
sampled data points from the input. Our results show that the described simple method
outperformed 7 well-known dimensionality reduction methods on both very small-scale
biomedical data and large-scale image and document data, with less training time than
multilayer neural networks on large-scale data.

Keywords: Bootstrap, deep learning, dimensionality reduction, ensemble methods, evo-
lutionary computing, kernel methods, sparse coding.

1. Introduction

An excellent intelligent machine can at least learn the basic semantics of an objective, such
as the sources of a speech or image separation problem, the disease types of a patient’s
DNA sequence, the words of a handwritten or spoken sentence, the topics or sentiment of a
story, without interfered by small variations of the objective. A common learning method
is dimensionality reduction. The vitality of a dimensionality reduction method depends not
only on its performance but also on how easily people in different areas can understand it,
implement it, and use it. A simple and widely used method is principle component analysis
(PCA), which aims to find a coordinate system that the linearly uncorrelated coordinate
variables (called principle components) describe the most variances of data. Because PCA
is insufficient to capture highly-nonlinear data distributions, many nonlinear dimensionality
reduction methods have been proposed.

Among the nonlinear methods, one prevalent class of nonlinear dimensionality reduction
methods are the nonparametric graph models (Schölkopf et al. (1997); Shi and Malik (2000);
Tenenbaum et al. (2000); Roweis and Saul (2000); Ng et al. (2002); Belkin and Niyogi (2003);
He and Niyogi (2004); Yan et al. (2007); Van der Maaten and Hinton (2008)), which mainly
try to keep the pairwise similarities of data points in the low-dimensional space as similar
as possible as those in the original high-dimensional space. Because they need to calculate
each pairwise similarity, their time and storage complexities scale squarely with the number
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of data points, limiting them to small-scale problems. Another typical nonlinear method
is multilayer neural network (Rumelhart et al. (1986); Hinton and Salakhutdinov (2006)),
which gradually reduces the dimensionality of data (i.e., learns more and more abstract
features) through multiple layers of nonlinear transforms. It can handle large-scale problems
well, but it is limited to large-scale problems and is difficult to be trained successfully with
too many layers. Moreover, its structure and its training method (Rumelhart et al. (1986);
Hinton and Salakhutdinov (2006)) are complicated and need careful manual-engineering,
making it restricted to the experts of artificial intelligence.

Besides, many machine learning techniques are doing dimensionality reduction (or ap-
proximation of data distribution) by either reducing the dimensionality of data explicitly or
generating sparse high-dimensional features of data implicitly, such as (hierarchical) proba-
bilistic models (Hofmann (1999); Blei et al. (2003); Hinton et al. (2006)) and sparse coding
(Olshausen and Field (1996)). See (Van der Maaten et al. (2009); Sorzano et al. (2014)) for
excellent reviews of dimensionality reduction.

Here, we describe a very simple and robust multilayer network, named deep distributed
random samplings (DDRS), that can reduce the dimensionality effectively and efficiently
on both large-scale and small-scale problems. Methods, Extended Data figures, Supple-
mentary Discussion and source code are available at http://sites.google.com/site/

zhangxiaolei321/.

2. Algorithm

DDRS contains multiple hidden layers and an output layer (Fig. 1a). Each hidden layer is a
group of mutually independent k-centers clusterings; each k-centers clustering has k output
units, each of which indicates one cluster; the output units of all k-centers clusterings are
concatenated as the input of their upper layer. The output layer is PCA. Parameter k
should be as large as possible at the bottom layer and be smaller and smaller along with
the increase of the number of layers.

DDRS is trained simply layer-by-layer. For training each layer given a d-dimensional
input data set X = {x1, . . . ,xn} either from the lower layer or from the original data space,
we simply need to focus on training each k-centers clustering, which consists of four steps
with the third step for small-scale problems only.

• Random feature selection. The first step randomly selects d̂-dimensional features
of X (d̂ ≤ d) to form a subset of X , denoted as X̂ = {x̂1, . . . , x̂n}.
• Random sampling. The second step randomly selects k data points from X̂ as the

k centers of the clustering, denoted as {w1, . . . ,wk}.
• Random reconstruction. When k approximates to n (i.e., the problem is small-

scale), the third step randomly selects d′ dimensions of the k centers (d′ ≤ d̂/2) and
does one-step cyclic-shift as shown in Fig. 1b.

• Sparse representation learning. The fourth step assigns each input data point x̂
to one of the k clusters and outputs a k-dimensional indicator vector h = [h1, . . . , hk]T

which will be part of the input feature of x to the upper layer as shown in Fig. 1a,
where operator T denotes the transpose of vector. For example, if x̂ is assigned to the
second cluster, then h = [0, 1, 0, . . . , 0]T . The assignment is calculated according to
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Figure 1: Description of DDRS. a, The DDRS network. Each square represents a k-
centers clustering. b, Random reconstruction. The columns represent the centers
of a 3-centers clustering. Each square represents an entry of a center. c, Principle
of DDRS. The regions in the red circles represent the local areas of the data point
x1, which are further amplified in the dashed circles. Each red point in the dashed
circles is the closest center of a k-centers clustering to x1. The new representation
of x1 in each layer is marked as a red cross in the dashed circle. The local principle
components are shown in the upper and left corners of the dashed circles.

the similarities between x̂ and the k centers, in terms of some predefined similarity
measurement at the bottom layer, such as the Euclidean distance arg mink

i=1 ‖wi−x̂‖2,
or in terms of arg maxk

i=1w
T
i x̂ at all other hidden layers.

DDRS handles large-scale problems well. For training each layer, the time complexity is
O
(
nsk2V 2

)
, and the storage complexity is O(2nskV ), where V is the number of clusterings

and s the sparsity of the input data (i.e., the ratio of the non-zero elements over all elements);
particularly, s = 1/k (see Supplementary Discussion).

3. Theoretical justification

DDRS has a simple geometric explanation. It first conducts the piecewise-linear dimension-
ality reduction—a local PCA that gradually enlarges the local region (Fig. 1c)—implicitly
in the hidden layers, and then gets low-dimensional features explicitly by PCA. Specifically,
each data point (e.g., x1 in Fig. 1c) owns a local region supported by the centers of all clus-
terings that are closest to the data point. The centers define the local coordinate system.
The new representation of the data point is the coordinates of the data point in the local
coordinate system. If some other data points share the same local region, they will also be
projected to the same coordinates, which means the small variances (i.e., small principle
components) of this local region that are not covered by the local coordinate system will be
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discarded. It is easy to image that when k is smaller and smaller, the local region is grad-
ually enlarged, making larger and larger relatively-unimportant local variances discarded.
However, when k approximates to n, the areas of most local regions are zero, resulting in no
approximations (i.e., dimensionality reductions) in these regions. To prevent this unwanted
situation, we borrowed the reconstruction step (a.k.a., crossover) of the genetic algorithm
(Holland (1975)). After random reconstruction, the centers not only will not appear in the
input data but also can still define the coordinate systems of the local data distributions.

Besides the geometric explanation, DDRS is also rooted in the bootstrap theory and
regularization theory from the statistics and machine learning perspectives. According to
the theories of bootstrap resampling (Efron (1979); Efron and Tibshirani (1993); Breiman
(1996)), weak learnability (Schapire (1990)), and ensemble methods (Dietterich and Bakiri
(1995); Dietterich (2000); Breiman (2001); Zhou et al. (2002); Strehl and Ghosh (2003);
Fred and Jain (2005); Zhou (2012)), DDRS is a stack of bootstraps or clustering ensembles:
each k-centers clustering is a bootstrap sample or a weak learner that is slightly better than
random guessing; multiple clusterings group to a strong learner that reduces the variances of
local regions effectively. According to the theory of regularization (Tikhonov (1963); Poggio
and Girosi (1990a,b)), DDRS is a stack of regularization networks: each k-centers clustering
is a `∞-norm-regularized two-layer network; motivated by the relationship between adaptive
boosting and support vector machine on Vapnik-Chervonenkis dimension (Schapire et al.
(1998); Freund and Schapire (1995); Cortes and Vapnik (1995); Vapnik (1998)), we proved
that learning a group of k-centers clusterings is a sparse coding that is lower bounded by
the `1-norm-regularized sparse coding (Olshausen and Field (1996)). See Supplementary
Discussion for the detailed explanation.

DDRS was motivated from the weakness of DBN (Hinton et al. (2006); Hinton and
Salakhutdinov (2006)) and was developed step-by-step as follows. (i) It is known that DBN
lacks the explaining away property (Bengio et al. (2013); Bengio (2009)). In order to own
the explaining away property, we generalized the most compact product of experts (PoE)
(Hinton (1999, 2002)) that each expert owns only one hidden unit to a PoE that each
expert owns multiple hidden units. (ii) Motivated by the factorization and fast training
method of restricted Boltzmann machine (Hinton et al. (2006); Hinton and Salakhutdinov
(2006)) (the building block of DBN), we proposed to train each expert independently via
the expectation-maximization optimization (Bishop et al. (2006)), which is formulated as
learning a group of k-means clusterings. (iii) Motivated by the contrastive divergence (CD)
learning (Hinton (2002)), which is a t-step (t ≥ 1) approximation of maximum likelihood
learning, we proposed to discard the expectation-maximization optimization but only pre-
serve the default initialization method—random sampling for modeling the k-centers. (iv)
Because random sampling on small-scale data sets will cause overfitting, we borrowed the
reconstruction step of the genetic algorithm to further process the selected data points. (v)
DDRS is also related to convolution neural networks, sparse coding, ensemble learning, and
manifold learning. See Supplementary Discussion for the detailed explanation.

4. Empirical study

To demonstrate the effectiveness of DDRS on small-scale data sets, we compared DDRS
with PCA and 4 well-known nonlinear dimensionality reduction methods, including isomet-
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Figure 2: Reducing the dimensionality of the 7,129-dimensional AML-ALL
biomedical data which consist of 72 examples. A, a-d, Visualizations
produced by PCA, Isomap, LLE, and DDRS at layer 4 respectively. The visu-
alizations produced by other layers of DDRS are shown in Extended Data Fig.
1. B, Accuracy comparison of the k-means clusterings using the low-dimensional
features produced by DDRS and 5 competitive methods respectively.

ric feature mapping (Isomap) (Tenenbaum et al. (2000)), locally linear embedding (LLE)
(Roweis and Saul (2000)), spectral clustering (Spectral) (Ng et al. (2002)), and t-distributed
stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton (2008)), on the acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) biomedical data which
consist of only 38 training examples and 34 test examples (Golub et al. (1999)) (see Meth-
ods). Because multilayer neural network cannot handle such a small-scale data set, we will
not compare with it. We produced low-dimensional features of the data set for visualization
(Fig. 2A and Extended Data Fig. 1) and clustering (Fig. 2B). The clustering accuracy was
measured by the normalized mutual information (Strehl and Ghosh (2003)). Experimental
results show that DDRS outperformed the competitive methods on both visualization and
clustering accuracy.

We also compared DDRS with the aforementioned 5 competitive methods and deep
belief network (DBN) (Hinton and Salakhutdinov (2006)), a multilayer neural network with
a special stochastic initialization method, on small subsets of the MNIST handwritten digits
(Lecun et al. (2004)), each of which consists of 5,000 images (see Methods). Experimental
results show that (i) DDRS achieved an ideal visualization of the 10 digits and outperformed
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other competitive methods; (ii) although t-SNE also achieved a clear visualization, the
visualization produced by DDRS had larger between-class distances and smaller within-
class variations (i.e., clearer visualization when we do not draw colors on the digits) than
that produced by t-SNE (Fig. 3 and Extended Data Fig. 2). When the low-dimensional
features were applied for clustering, DDRS outperformed the competitive methods, and the
highest accuracy of DDRS was over 80% (Fig. 4).

To investigate the scalability and effectiveness of DDRS on large-scale problems, we
compared DDRS with PCA and DBN on the MNIST handwritten digits (Lecun et al.
(2004)) which consist of 60,000 training images and 10,000 test images (see Methods).
Because Isomap, LLE, Spectral, and t-SNE cannot handle such a large-scale problem, we
did not compare with them. Experimental results show that DDRS achieved a better
visualization than DBN (figure 3B in ref. (Hinton and Salakhutdinov (2006))) on the 10
digits, such as the digital pair “3, 5, and 8” (Fig. 5a and Extended Data Fig. 3). When
the low-dimensional features were applied for clustering, DDRS was as good as DBN when
they had the same number of layers, and outperformed DBN when more layers were easily
stacked (Fig. 5b). When the experiment was run on a one-core computer, DDRS consumed
one-order less training time than DBN (Fig. 5c).

We also compared DDRS with DBN and latent semantic analysis (LSA) (Deerwester
et al. (1990)), a well-known document retrieval method based on PCA, on a larger data set—
Reuters newswire stories (Lewis (2004)) which consist of 804,414 documents with half of the
documents used for training and the other half for test (see Methods). Experimental results
show that DDRS achieved a better visualization than DBN (figure 4C in ref. (Hinton and
Salakhutdinov (2006))) on the 9 demo topics, such as the topics “European Community”
and “moneytary/economic” (Fig. 6a and Extended Data Fig. 4). When the documents
were reduced to five-dimensional features for document retrieval, DDRS reached an accuracy
of about 10% higher than LSA when only a handful of documents were retrieved, and this
superiority was enlarged slightly when more documents were retrieved (Fig. 6b). When the
experiment was run on a one-core personal computer, DDRS was faster than DBN on the
training time (Fig. 6c).

Besides the above empirical comparisons, we further analyzed the impacts of different
parameter settings of DDRS on the performance (see Methods). Experimental results show
that (i) fortunately, the time complexity of DDRS scaled linearly but not squarely with V ,
which can only be explained as that the input features of each layer were sparse (Extended
Data Fig. 5); (ii) the performance of DDRS was robust to the parameter selection (Extended
Data Figs. 6 to 9).

5. Concluding remarks

In this paper, we have proposed a new deep (i.e., multilayer) network for nonlinear dimen-
sionality reduction—DDRS. DDRS has a novel network structure that each expert in a layer
is a k-centers clustering. The k centers of each expert is only k randomly sampled data
points from the training data. For small-scale problems, the k centers are reconstructed
by a simple cyclic-shift operation. The time and storage complexities of DDRS scale lin-
early (but not quadratically) with the size of the training data. Moreover, it is quite easily
understood, implemented, and used, even without the knowledge of machine learning. It
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Figure 3: Reducing the dimensionality of subsets of the 784-dimensional MNIST
handwritten digits, each of which consists of 5,000 images for visualiza-
tion. a-g, Visualizations produced by 6 competitive methods and DDRS at layer
7. The visualizations produced by other layers of DDRS are shown in Extended
Data Fig. 2.

performs robustly with different parameter settings. It can support distributed computing
naturally. Empirical results have shown that DDRS can learn more and more abstract
representations successfully on both large-scale and small-scale problems with less training
time than DBN on large-scale problems.

227



Zhang

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

2-dimensional feature

 

 

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
3-dimensional feature

 

 

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5-dimensional feature

 

 

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of layers

A
cc

ur
ac

y

10-dimensional feature

 

 

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of layers

20-dimensional feature

 

 

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of layers

30-dimensional feature

 

 

PCA
Isomap
LLE
Spectral
DBN
t-SNE
DDRS

Figure 4: Reducing the dimensionality of subsets of the 784-dimensional MNIST
handwritten digits, each of which consists of 5,000 images, for cluster-
ing. Accuracy comparison of the k-means clusterings using the low-dimensional
features produced by DDRS and 6 competitive methods respectively.

Theoretically, DDRS extended bootstrap resampling methods (Efron (1979); Efron and
Tibshirani (1993); Breiman (1996); Schapire (1990); Freund and Schapire (1995)) and ker-
nel methods (Poggio and Girosi (1990a,b); Cortes and Vapnik (1995); Vapnik (1998)) to
the unsupervised deep architecture, borrowed evolutionary computing (Holland (1975)) to
prevent the overfitting problem, and made kernel methods competitive on large-scale prob-
lems. With the recent big explosion of data and fast development of computing power, it
was once thought that kernel methods cannot compete with neural networks, since they
have squared time and storage complexities. Our results show that kernel methods could
still be highly competitive with neural networks on large-scale problems by simply stacking
multiple sub-samplings of the columns of the kernel matrix without calculating the entire
kernel matrix.

Compared to learning with kernels (Cortes and Vapnik (1995); Vapnik (1998); Schölkopf
and Smola (2002); Schölkopf et al. (1997); Shi and Malik (2000); Ng et al. (2002)), DDRS
scales linearly with the size of the dataset, which overcomes the fundamental weaknesses of
learning with kernels (or graphs). Compared to traditional neural networks which minimizes
the empirical risk with many bad local minima (Vapnik (1998)), DDRS minimizes the
structural risk (Vapnik (1998)) under the smooth assumption that a small variation on
the input data results in only a small variation on the output target (Poggio and Girosi
(1990a)), such that it performs well not only on large-scale problems but also on very small-
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Figure 5: Reducing the dimensionality of the 784-dimensional MNIST handwrit-
ten digits which consist of 70,000 images. a, Visualization of MNIST pro-
duced by DDRS at layer 7. For clarity, only 500 images per digit are drawn.
The visualizations produced by other layers of DDRS are shown in Extended
Data Fig. 3. b, Accuracy comparison of the k-means clusterings using the low-
dimensional features produced by DDRS, PCA and DBN respectively on the
10,000 test images. c, Training time (in hours) comparison between DDRS and
DBN on MNIST.

scale problems. As a word, DDRS, as a stack of unsupervised bootstraps, integrates the
generalization ability of learning with kernels and the scalability of neural networks.
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