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Abstract

In the paper we discuss applications of the Bayesian approach to new challenges in rel-
evance analysis. Earlier, we formulated a Bayesian approach to Feature Subset Selection
using Bayesian networks to jointly estimate the posteriors of Markov Blanket Memberships
(MBMs), Markov Blanket Sets (MBSs), and Markov Blanket Graphs (MBGs) for a given
target variable. These results of the Bayesian Multilevel Analysis of relevance (BMLA)
correspond respectively to a model-based pairwise relevance, relevance of sets, and to the
interaction models of relevant variables. Now we formulate refined levels in BMLA by
introducing the concepts of k-MBSs and k-MBGs, which are intermediate, scalable model
properties expressing relevance. We consider the extension of BMLA to multiple targets.
We introduce and investigate a score for feature redundancy and interaction based on the
decomposability of the structure posterior. Finally, we overview the problems of condi-
tional and contextual relevance. We demonstrate the use of concepts and methods in the
field of genomics of asthma.

1. Introduction

Earlier, we formulated generalizations of the feature subset selection problem in the Bayesian
framework, based on structural properties of Bayesian networks (4). We presented the
methodology of the Bayesian Multilevel Analysis (BMLA) of the relevance of input vari-
ables, which allows for the analysis of relevance at different abstraction levels (i.e., at the
levels of Markov Blanket Memberships, Markov Blanket sets, and Markov Blanket graphs),
and to express the sufficiency of the data and the uncertainty at the proposed multilevel
representations.
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However, there are many open issues in BMLA such as handling (1) more refined lev-
els, (2) multiple target variables, (3) redundancy and interaction of features, (4) feature
aggregation, (5) contextual relevance, and (6) predictive value of features. In this paper we
discuss these extensions and experimentally investigate the first four issues. In Section 2
and Section 3 we overview the Bayesian approach to the Feature Subset Selection problem
(FSS), including the concept of Markov Blanket Graph and Bayesian Multilevel Analysis.
In Section 4 we formulate the concepts of k-MBS and k-MBG with scalable cardinality
between pairwise relevance and complete subsets of relevant features, and between edges
and subgraphs. In Section 5, we illustrate the concept of input feature aggregation. In Sec-
tion 6, we discuss the concept of redundancy and interaction based on the decomposability
of the structure posterior. In Section 7 we discuss the application of BMLA for multiple
targets. In Section 8 we overview the concept of contextual relevance and its relation to
relevance, conditional relevance, and interactions. In Section 10 we demonstrate the gen-
eral concepts in a discrete, real-world application domain of the genomics of asthma using
single nucleotide polymorphisms (SNPs), which are binary and ternary genomic variables
responsible for most of the genetic variability (8). SNPs and genes are anonymized, because
the biomedical publications of these results are still in progress.

2. Background

In the predictive approach, the concept of relevance can be defined specific to the applied
model class used as a predictor, the optimization algorithm, the data set, and the loss
function, whose generalization leads to the wrapper approach (13). In the filter approach,
typically non-predictive methods rely on the following model-based, probabilistic definition
of relevance for a set of variables X′ (18).

Definition 1 (Markov boundary) A set of variables X′ ⊆ V is called a Markov blanket
set of Xi w.r.t. the distribution p(V ), if (Xi ⊥⊥ V \ X′|X′)p, where ⊥⊥ denotes conditional
independence. A minimal Markov blanket is called Markov boundary. Its indicator function
is denoted by MBSp(Xi,X

′).

Bayesian networks (BNs) and their properties offer a wide range of options for represent-
ing relevance (18). The following theorem gives a sufficient condition for the unambiguous
BN representation of the relevant features.

Theorem 2 For a distribution p defined by Bayesian network (G, θ) the variables bd(Y, G)
form a Markov blanket of Y , where bd(Y, G) denotes the set of parents, children and the
children’s other parents for Y (18). If the distribution p is stable w.r.t. the DAG G, then
bd(Y, G) forms a unique and minimal Markov blanket of Y , MBSp(Y ) and Xi ∈ MBSp(Y )
iff Xi is strongly relevant (22).

We also refer to bd(Y, G) as the Markov blanket set for Y in G using the notation
MBS(Y, G) by the implicit assumption that p is Markov compatible with G1. The induced

1. Note that in typical Bayesian scenarios (e.g., in case of Dirichlet distributions applied in the paper
to specify p(θ|G)), the graph-theoretic neighborhood bd(Y, G) is the unique Markov Boundary with
probability 1, i.e. the parameterizations encoding independencies have measure 0 (17).
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(symmetric) pairwise relation MBM(Y, Xj , G) w.r.t. G between Y and Xj is called Markov
blanket membership.

MBM(Y, Xj , G) ⇔ Xj ∈ bd(Y, G) (1)

3. Bayesian Multilevel Analysis of Relevance

Earlier works on using Bayesian network properties in relevance analysis include the Markov
Blanket Approximating Algorithm (15), its recent extensions (24), the IAMB algorithm and
its variants (2; 22; 23). Beside these deterministic, maximum likelihood, or maximum a pos-
teriori (MAP) identification methods, stochastic and Bayesian approaches were proposed
as well (for an ad hoc randomized approach, see (20)). In the computationally more de-
manding, Bayesian approach we are interested in the posteriors for various model properties
expressing relevance for a given target variable Y . In earlier works the goal was the overall
characterization of the domain using edge and MBM posteriors (11; 14; 16).

To extend the scope of the FSS problem we proposed the use of Markov Blanket Graph
(MBG) feature (property), a.k.a. classification subgraph (1; 4).

Definition 3 (Markov Blanket Graph) A subgraph of Bayesian network structure G is
called the Markov Blanket Graph or Mechanism Boundary Graph MBG(Y, G) of variable Y

if it includes the nodes in the Markov blanket defined by bd(Y, G) and the incoming edges
into Y and into its children.

For a probabilistic and causal interpretation of MBGs, a representation of observation
equivalent MBGs, bounds for their cardinality and use in prediction, see (1; 4). An impor-
tant property of the MBG is that it is sufficient for relevance analysis in case of complete
data (which is the direct consequence of Th. 2). Unfortunately, the MBG posterior is not
tractable computationally, but it is easy to show that the ordering-conditional posterior can
be computed in polynomial time, which can be exploited in ordering-MCMC methods (4).

Note that the MBM and the MBS or MBG concepts reflect two different approaches
to Bayesian network properties. The first approach provides an overall characterization as
a fragmentary representation, and the number of features and feature values are tractable
(e.g. linear or quadratic in the number of variables). Such features are pairwise edges,
compelled edges, and Markov blanket relations. At the other extreme of feature learning
we find the identification of arbitrary subgraphs with statistical significance (19). This is
close to our approach to Bayesian network features investigated in the paper, but we restrict
the subgraphs to Markov Blanket Graphs to have a focused representation from a single,
but complex point of view (i.e., from the point of view of the FSS problem) and we use the
Bayesian framework instead of the frequentist framework.

The Bayesian Multilevel Analysis of relevance goes one step further and it yields a
comprehensive view of multiple levels. It allows for the calculation and crosslinking of the
posteriors corresponding to features Xi, sets of features, and (sub)graph models of features
and a target variable Y . Following our assumption about the underlying BN representation,
this implies the calculation of the posteriors for the Markov Blanket Memberships, Markov
Blanket sets, and Markov Blanket graphs. Further levels would be also possible either using
domain specific knowledge for defining groups of variables w.r.t. their types, or collapsing
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the MBG space to the space of class-focused restricted partially directed acyclic graphs (C-
RPDAGs) (1). Note that the MBM, MBS, and MBG features form a hierarchy of increasing
complexity (|MBM | ≪ |MBS | < |MBG | < |BN |).

4. Multivariate Scalability: k-MBS and k-MBG Features

The multiple levels in BMLA offer a wide range of analysis at multiple abstraction levels (i.e.,
with varying complexity). However, the MBG and MBS features are much more expressive
than the edge and MBM features, e.g. their cardinalities are superexponential, exponential,
and linear for a given target respectively. Consequently, the MBG and MBS posteriors
are often too “flat” (i.e. there are hundreds of MBS or MBG features with moderately
high posteriors), even when the MBM posteriors are peaked (for further details see (4)).
Typically, —even in the “flat” posterior case— the most probable MBS and MBG feature
values often share a significant common part. To handle this we define concepts between
MBMs and MBSs, and edges and MBGs, which are focused on target variables and they
have intermediate, scalable complexities.

Definition 4 (k-MBS) For a distribution p(V ) (|V | = n), if all the variables Xi ∈ s,
where s ⊆ V , are members of a Markov Boundary set mbs and |s| = k, then s is called a
k-ary Markov Boundary subset2 k-MBSp(s, Y ) ⇔ (∃mbs : MBSp(mbs, Y ), s ⊆ mbs.

Definition 5 (k-MBG) A subgraph g of Bayesian network structure G is called the k-
ary Markov Blanket Graph k-MBG(g, Y, G) of variable Y if it includes k edges of the
MBG(Y, G)3.

The graph-theoretic characterization of the k-MBSp concept is as follows.

Proposition 6 For a stable distribution p defined by Bayesian network (G, θ) s is k-ary
Markov Boundary subset k-MBSp(s, Y ), iff s ⊆ bd(Y, G) and |s| = k (otherwise bd(Y, G)
may not be minimal) 2.

The k-MBS and k-MBG offer scalable features for the analysis of relevance, as their
cardinalities are polynomial O(nk). In practice this means, that we can analyze the most
probable k-MBS(Y ) and k-MBG(Y ) feature values in a relatively large range of k values.
The posteriors for k-MBS and k-MBG can be derived off-line from the estimates for the MBS
and MBG posteriors. The maximum value of k, at which model properties (feature values)
with high probability are present is problem dependent. Reasonable limits can be found
either by a bottom-up or a top-down approach starting from k = 1 or k = |V | respectively
(note that for intermediate values of k the number of feature values is computationally not
tractable, e.g.

(

n
k

)

for k-MBS).

2. Because p is stable with probability 1 in case of Dirichlet distributions applied in the paper to specify
p(θ|G) (17), we also use the indicator function k-MBS(s, Y, G) assuming that p is compatible with G.
However, in regard to the possible non-stable cases with potential non-minimality of s, we call these sets
in general k-ary Markov Blanket subsets.

3. The posterior for the presence of a given edge e in the complete domain model G is different from the
posterior for the presence of e in MBG(Y, G), because the presence of an edge in MBG(Y, G) may depend
on the presence of other edges.
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5. A Knowledge-rich Aggregation of Input Features

An attractive property of the Bayesian approach to relevance is that the model posterior
can be transformed and interpreted without theoretical restrictions. In our case, using
the space of Bayesian network structures, it means that the posterior p(G|DN ) can be
aggregated by any partitioning over model structures G, where each partitioning offers a
potentially different interpretation. However, only few partitions have a general or domain-
specific meaning.

Beside noninformative model aggregation, the prior domain knowledge can be used
as well to define interesting partitions. As with the noninformative aggregation, such an
aggregation can (1) provide a more general description of relevance relations in the domain,
and (2) yield more confident numerical results. E.g., a straightforward way to augment the
SNP space is to introduce the level of genes, because many SNPs are related to a given
gene. On the level of genes, we have calculated the aggregated versions of the Markov
blanket membership and Markov blanket set relations. The corresponding equations are
derived from their counterparts belonging to the more specific SNP level, e.g. (where Y, g, s

respectively denote the target, gene, and SNP variables)

p(MBM(Y, g|D)) =
∑

G:∃s:onGene(g,s))∧MBM(Y,s,G)

p(G|D). (2)

6. Interaction, Redundancy based on Posterior Decomposition

In relevance analysis we typically focus on high-scoring subfeatures, although low prob-
abilities may also indicate important relations, because composite measures representing
high-level semantic properties can be constructed. Such a score for the discovery of in-
teraction and redundancy can be constructed using the exact k-MBS posterior and its
approximations as the product of the Markov Blanket Membership probabilities of each
member variable Xi in the given k-MBS, as if their occurrences were independent

p(k-MBS(X′, Y, G)|Dn) ≈
∏

Xi∈X′

p(MBM(Y, Xi, G)|Dn), (3)

These approximations related to the decomposability of the structure posterior enable a
direct Bayesian approach to the concept of redundancy and interaction. If the higher-order
k-MBS posterior is larger than the approximation based on lower-order k-MBS posteriors, it
may indicate that the subset has interacting features. In the opposite case, it may indicate
the redundancy of features. This is formalized in the following definition, which can be
generalized to multiple variables and orders higher than 1 (i.e., not only for MBMs, which
are 1 − MBSs ).

Definition 7 (Interaction and redundancy) The features X′ = {Xi1 , . . . , Xik} are 1,k-
product interacting (redundant), if the posterior p(k-MBS(X′, Y, G)|DN ) is larger (less) than
∏

j p(MBM(Xij , Y, G)|DN ).

The task of finding redundant subfeatures can be regarded as the complement of finding
stable subfeatures, e.g. in the first case we are looking for those elements which often
supplement the stable parts of features.
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7. Relevance for Multiple Targets

If there are multiple possible target variables Y which have to be examined together and
the relations among them are irrelevant one may ask for the variables relevant to the target
set. Note, that this is similar to the aggregation of input features in Section 5, but in this
case the target variables are “aggregated”. Fortunately, the basic concepts of relevance
discussed earlier can easily be extended to use target sets instead of a single target node.

Definition 8 (Multi-target relevance) A feature (stochastic variable) Xi is strongly (weakly)
relevant to Y , if it is strongly (weakly) relevant to any Yi ∈ Y

It is easy to see that the union of the MBSs of the targets, except the elements of the
target set itself, is a Markov Blanket set for the target set.

Proposition 9 If MBS(Y) = (
⋃

Yi∈Y
MBSp(Yi)) \ Y, then MBS(Y) is a Markov blanket

for Y w.r.t. distribution p.

An equivalent proposition can be stated for Markov boundaries, although the effects of
logical dependencies should be handled appropriately. Note, that the posterior for a given
target set Y cannot be calculated from the posteriors corresponding to the members of any
partitioning of Y =

⋃

i Y i, because of the dependencies. However posteriors corresponding
to subsets of the target set can be used for an approximation. In case of MBMs and singular
variables Yi, e.g.

p(MBM(Xj , Y , g)|DN ) ≈ 1 −
∏

i

(1 − p(MBM(Xj , Yi, g)|DN )) (4)

Still, in case of MBMs, if the posteriors are available for all of the subsets Y ′ ⊆ Y , then
for any Y ′′ ⊆ Y , using inductively p(A ∩ B) = p(A) + p(B) − p(A ∪ B), we can compute
the posterior probability that Xj is a Markov blanket member for each Yi ∈ Y .

The extension of the MBG concept for multiple targets is similarly straightforward,
which again defines the necessary and sufficient dependency structure and parameters for
predicting the targets under general conditions.

8. Conditional and Contextual Relevance

The fundamental definitions of relevance in Def. 1 are based on the general concept of
conditional independence. However, as conditional independence can be made more specific
by introducing contextual independence, we can introduce the concept of contextual relevance
to support more refined analysis. Recall that contextual independence is a specialized form
of conditional independence, i.e when conditional independence is valid only for a certain
value c of another disjoint set C (for its use in the context of Bayesian networks, see
e.g. (6)). Let us denote the contextual independence of X and Y given Z and context c

with (X ⊥⊥ Y |Z, c), that is

(X ⊥⊥ Y |Z, c) iff (∀x, y, z p(y|z, c, x) = p(y|z, c) whenever p(z, c, x) > 0). (5)

An analogous extension for relevance is as follows.
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Definition 10 (Contextual Irrelevance) Assume that X = X′ ∪C′′ is relevant for Y ,
that is (Y 6⊥⊥ (X′ ∪ C′′), and (X′ ∩ C′′) = ∅). We say that X′ is contextually irrelevant if
there exists some c′′ for which (Y ⊥⊥ X′|c′′).

For completeness, recall the definition of conditional relevance

Definition 11 (Conditional Relevance) Assume that X = X′ ∪ C′ is relevant for Y ,
that is (Y 6⊥⊥ (X′ ∪ C′)), and (X′ ∩ C′ = ∅). We say that X′ is conditionally relevant if
(X′ ⊥⊥ Y ), but (X′ 6⊥⊥ Y |C′).

This definition applies to both weak and strong relevance. Note that conditional rel-
evance and contextual irrelevance are independent, although typically somewhat opposite
concepts. In case of conditional relevance, we have to know a value of a relevant feature C ′

to ensure the relevance of an otherwise irrelevant feature X ′. Whereas in case of contextual
irrelevance there should be a value c′′ whose knowledge makes an otherwise relevant feature
irrelevant.

The BMLA method based on standard BNs allows for a model-based Bayesian inference
about conditional relevance (see Section 11). However, to handle contextual relevances,
a Bayesian network representing contextual dependencies is necessary, e.g. using decision
trees as local dependency models (6).

9. Algorithmic Aspects

The Bayesian inference over structural properties of Bayesian networks was proposed in (7;
9). In (16), Madigan et al. proposed a Markov Chain Monte Carlo (MCMC) scheme
to approximate such Bayesian inference. The MCMC method over the DAG space was
improved by Castelo et al. (12). In (11), Friedman et al. reported an MCMC scheme over
the space of orderings. In (14), Koivisto et al. reported a method to perform exact full
Bayesian inference over modular features.

To estimate the posteriors we applied both a DAG-based and an ordering-based Metropo-
lis Coupled Markov Chain Monte Carlo (MC3) method (4; 11; 12). Because of their cor-
respondence, and the direct applicability of the DAG-MC3 in the proposed extensions, we
report results only from this method.

The settings are as follows. The number of chains is 10, the temperature parameter T

is 1 (3). The length of the burn-in and MC simulation is 106 and 5 · 106, the probability
of the DAG operators is uniform (12). The CH parameter prior and the uniform structure
prior are used (9). The maximum number of parents is 4.

10. Results

We demonstrate the newly proposed general concepts in discrete domains using a small
artificial model and a realistic reference model (see Fig. 6). The small model (G−

0 , θ−0 )
contains a binary target variable, its four ternary children, of which one has two other
parents, and for the purpose of testing a completely independent uniform ternary variable
was included. Its parameters are set so that dependence is weakening between C1 and
its parents T , P1, P2 in this order; and similarly between T and its children C1, C2, C3,
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C4. The realistic reference model (G+
0 , θ+

0 ) was learned from a real data set containing
1117 samples (5), which was slightly modified to test special cases of relevance. The model
contains three clinical variables (Asthma, Allergy, Rhinitis) and forty-six SNPs selected from
the asthma susceptibility region of chromosome 11q13 (21). We generated 10,000-10,000
complete random samples D− and D+ from the reference models. A data set DN with size
N is defined as the first N samples. We always use the corresponding set of variables for
the data set (i.e., the domain is always identified implicitly by the data set in the paper).

Table 1 and Table 2 show a summary of the MAP outputs of Bayesian methods with
MBM posteriors. For each set the corresponding members are marked with ’1’. The MBG
rows show a more refined picture. They not only identify the relevant variables, but also
the type of interaction between them. Members of an MBG for a given target variable can
be classified into the following types with decreasing precedence:

• sp: single parent of the target variable.

• mp: one of multiple parents of the target variable.

• sc: child of the target variable with no other parents.

• mc: child of the target variable with no parents not connected to the target.

• ic: child of the target with at least one parent not connected to the target.

• op: other parent (i.e. another parent of the target node’s child(ren)) .

The distinction between single and multiple parental status is important, because of the v-
structure formed by the multiple parents and the target. The last three cases are noteworthy,
as they indicate various roles in interactions.

To evaluate the sufficiency of the data for the multivariate analysis of relevance, we
report the ranked MBS posteriors in Fig. 1. To indicate the relations within the multilevel
approach, Fig. 1 also shows the MBM-based approximations of the posteriors calculated as

p(MBS(X, Y, G|DN ) ≈
∏

Xi∈X

p(MBM(Y, Xi)|DN )
∏

Xi /∈X

(1 − p(MBM(Y, Xi)|DN )). (6)

For more information about the power of the data in the multivariate case, we computed
the posteriors of the Markov blanket sets of the target variable for increasing data size (see
Fig. 2). Furthermore, to provide quantitative measures characterizing the uncertainty, Fig. 2
shows the entropy for the MBM, MBS, and MBG posteriors as well for growing sample size.

Next, we report results about the effects of syntactic and semantic aggregations. Fig. 3
and Fig. 4 report the maximal posteriors for k-MBS, also showing the posterior of the MAP
MBS.

Fig. 5 reports the probability of relevance of SNPs at the aggregation level of genes.Fig. 6
indicates the decomposability of the MBS posteriors according to Section 6. Finally, Fig. 7
reports the sequential posteriors that a given SNP is relevant for Asthma, Allergy and
Rhinitis, both separately and jointly. It also shows the approximation of the MBM posterior
for the joint target set based on the MBM posteriors for individual targets according to
Eq. 4.
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Figure 1: (Left) The peakness of the posteriors of the most probable MB sets using the
D−

100 data set. The bold line denotes the estimated posteriors, the dots denote
the corresponding MBM-based approximation. (Right) The ranked posteriors of
the most probable MB sets using the D+ data sets with growing sample size. The
horizontal axis shows the posteriors of the MB sets; the vertical axis shows the
ranks.
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Figure 2: (Left) Sequential posteriors of relevant MB sets using data set D+. The sets are
the MAP sets for the 200, 500, 1000, 2000, 5000, and 10000 sample sizes. (Right)
The summed entropies of the p(MBM(Y, Xi, G)|D−) posteriors, and the entropy
of the MBS and MBG posteriors for the data set D−.

11. Discussion

At the pairwise level, the advantage of the MBM posteriors compared to standard pairwise
statistical association tests is that despite its pairwise representation it correctly indicates
whether the variables are part of a multivariate, direct relation. This is the consequence
of the fact that it is still a model-based statistical relation (derived by Bayesian model
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Figure 4: The maximal posteriors for k-MBS-s compatible with the MAP MBS for increas-
ing k = 1, . . . , 15 using the D+

1000 data set. The last data point shows the posterior
of the MAP MBS.

averaging). Another general advantage of the MBM posteriors is that their multiple use is
not hindered by the problem of multiple testing and they can be used in sequential analysis.

To evaluate the necessity of the multivariate approach, we have to investigate the re-
lation of the MBM posteriors and the MBS posteriors. Note that because of the Bayesian
foundation the MBM posteriors are marginal distributions of the MBS posterior. Fig. 1
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Figure 5: The sequential posteriors that a given gene contains a SNP relevant for asthma
using the data set D+. The probability of relevance is induced by the posterior
p(MBM(SNPi, Asthma|D+) for varying sample size.
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Figure 6: (Left) The quantification of interaction and redundancy by the decomposability of
the posterior using the data set D+

1000. The 2-MBS posteriors, their MBM) based
approximation, and their difference are reported for the 5 most interacting, 5 most
independent, and 5 most redundant pairs of variables (i.e., when the difference is
minimal, closest to zero, and maximal). (Right) The Markov Blanket Graph for
the target set Asthma, Allergy, Rhinitis in the reference SNP model G+

0 and the
complete artificial model G−

0 .

reports the posteriors of the MAP MB sets and their pairwise MBM-based approximated
values. The monotone decreasing curve corresponds to the ranked estimated MBS posteriors
(the posteriors are insignificant for sets with ranks larger than 100). A good approximation
indicates the conditional independence of the features. As Fig. 1 shows this is not the
case, as the MBM-based approximation performs badly both w.r.t. estimation and rank-
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Figure 7: The MBM posteriors that a SNP is relevant for asthma, allergy and rhinitis, both
separately and jointly using the data set D+

1000. It also shows the approximation
of the posterior for the joint target set based on the posteriors for individual
targets.

ing. Specifically, the MAP MB set and the set defined by the pairwise MAP MBM values
are different. Indeed, there are no trivial thresholds for the pairwise MBM posteriors to
identify the certain and uncertain members of the MB sets with high posteriors, for which
the k-MBS concept was proposed. Furthermore, Fig. 1 indicates the lack of a dominating
MB set, i.e. the lack of single set of variables with an outstanding posterior. The joint
evaluation of these indicators at multiple levels can support a detailed evaluation of this
phenomenon as follows. Flat posteriors at the MBM and MBS levels can be the consequence
either of insufficient data or the redundancy of the features, which can be decided by the
evaluation of the posterior at the MBS level, because it explicitly shows the alternative sets
of features. Because such alternating sets are not present in the most probable MB sets,
the data set probably does not define a posterior at the MBS level that is peaked enough.
We also investigated the change of the entropy at the MBM and MBS levels for amount
of data D−

0 in the small domain. This shows a rapid convergence for 1000 samples for all
levels; the non-zero value of the entropy at the MBG level is the consequence of the 4 MBGs
in the observationally equivalent class of G−

0 . Note that the sum of the entropies for the
MBM posteriors approximates closely the entropy of the underlying MBS posterior, which
shows that the MBM features are relatively independent of each other (equality holds only
for total independence, otherwise the sum of decomposed entropies is strictly larger then
the original, see (10)).

The reference models contain several interactions and features of conditional relevance,
see Fig. 6. Their MBS and MBG properties can be correctly identified by the MAP MBS
and MBG above 104 samples (see Table 1 and 2), which asymptotic observation holds for
the newly introduced k-MBS and k-MBG features, gene level aggregation, and for multiple
target variables as well. Furthermore, the sequential analysis in Table 1 is also consistent
with strength of dependencies encoded in (G−

0 , θ−). To illustrate the effect of input ag-
gregation and multiple outputs we used 103 samples, which is moderate, typical sample
size w.r.t. this set of variables. This sample size was also used for the investigation of the
decomposability of the posterior to infer interaction and redundancy.

As for the proposed k-MBS and k-MBG features with intermediate complexity, Fig. 3
indicates that for the G− domain 300 samples are enough to ensure a high posterior (0.9 <)
for k < 6. In the G+ domain Fig. 4 indicates that 103 samples are enough to ensure a
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high posterior (0.9 <) for k < 5. It is also noteworthy, that the posterior of the MAP
MBS (0.0592) is significantly lower than the corresponding 8-MBS defined by its members
(0.345). Despite the restriction in the use of maximal posteriors, these results clearly justify
that the proposed k-MBS feature can fulfill its intended role to fill the gap between MBM
and MBS features.

Fig. 5 shows the result of feature aggregation based on domain knowledge using a se-
quential approach, which illustrates the easy transformation and fusion of Bayesian results
to support interpretation.

The evaluation of interactions and redundancy according to Def. 7 indicated mostly
independence, but in Fig. 6 we report the five-five pairs with maximal difference between
their estimated posteriors and MBM based product approximations according to Eq. 3 in the
reference model G+

0 . The pair SNP3,SNP4 with “highest” difference indicating interaction
really does form an interaction in the reference model (SNP3 is a child of Asthma and
SNP4 is another parent of SNP3 ). The members of the pair SNP9,SNP31 with “highest”
difference indicating redundancy are potentially redundant, multiple parents of Asthma.

Finally Fig. 7 demonstrates the joint use of multiple target variables, although in this
case one of the target variables (Asthma) nearly determines the MBM posteriors for the
whole set. Furthermore, the relevant variables for the target variables in the reference model
are mostly different, thus the approximation in Eq. 4 gives close values.

12. Conclusion

The Bayesian multilevel methodology using Bayesian network features together with the
optional sequential analysis using growing sample size provides deeper insight to the suffi-
ciency of the data. It is also capable for incorporating wide range of prior knowledge, thus it
is especially applicable for the analysis of data with small sample size. The exact modeling
of interactions by the MBG features using Bayesian networks and the Bayesian approach to
the feature subset “selection” problem offered a principled solution for quantifying the un-
certainty in inferring relevant features and their joint interactions. In the paper we treated
the following issues.

1. Joint management of interactions. We discussed an exact generalization of the FSS
problem with interactions using the concept of MBGs. It allows the identification of
interactions of relevant variables, and conditionally relevant features.

2. Bayesian MultiLevel Analysis of relevance. The joint usage of different feature levels
has multiple advantages: we can better understand the types of the relevance re-
lations, and the necessity and possibility of the multivariate, and the multivariate-
interactionist analysis. Using Bayesian networks in the Bayesian framework, we
showed that there is a significant amount of uncertainty at the level of feature subsets
and their joint interaction in typical scenarios with less than 10000 samples. That
is the size of the data is typically not enough for a dominant MAP solution, which
means that there are many MBSs with high posteriors, see Fig. 1.

3. Concepts of k-MBS and k-MBG. We introduced new prediction-oriented (focused)
Bayesian network properties for relevance analysis with scalable O(nk) polynomial
complexity.
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4. Multiple target variables. We formulated concepts for the relevance analysis in case
of multiple targets and showed that it is a distinct problem in the Bayesian approach
in general, because the posterior for the target set cannot be reconstructed from the
posteriors for the partitions of the target set.

5. Interaction and redundancy discovery. We introduced a direct Bayesian approach to
evaluate interaction and redundancy, which is based on the decomposability of the
structure posterior.

Note, that these extensions, e.g. the concepts of k-MBS or k-MBG and “multi-target”
relevance can be useful in frequentist methods as well.
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Table 1: The MAP summary of the BMLA of relevance with target T for the G−

0 reference
model using a small (102), medium (103), and large (104) data set from D−.
The first row shows the types of the nodes in G−

0 w.r.t. List 10, then the MBM
posteriors, the MAP Markov blanket sets, and the MAP Markov Blanket Graphs
are shown for varying sample size. For the MBG type codes see Section 10.

P P C C C C F
1 2 1 2 3 4

G−

0
op op ic sc sc sc

MBM 100 87 76 95 100 98 69 58
MBS 100 1 1 1 1 1 1 1
MBG 100 sp sc sc
MBM 1000 100 4 100 100 100 100 1
MBS 1000 1 1 1 1 1
MBG 1000 op ic sp sc sc
MBM 10000 100 100 100 100 100 100 0
MBS 10000 1 1 1 1 1 1
MBG 10000 op op ic sp sc sc

Table 2: The MAP summary of the BMLA of relevance with Asthma target for the G+
0

reference model using a (s)mall (2 · 102), (m)edium (103), and (l)arge (104) data
set from D+. The first row shows the types of the nodes in G+

0 w.r.t. List 10, then
the MB(M) posteriors, the MAP Markov Blanket (S)ets, and the MAP Markov
Blanket (G)raphs are shown for varying sample size (denoted by the combinations
of s/m/l and M/S/G). Only the first two digits of the posterior values are shown
and “+” denotes 1.00. The variables (Gender, Allergy, Rhinitis) are denoted by
“G.”, “A.”, and “R.”, for the SNP variables only their indices are shown (the
following SNP variables are omitted as their MBM posterior is always less then
0.1 and never enter a MAP MBS and MBG: 1, 16, 18, 19, 21, 20, 22, 23, 24, 25, 26,
28, 32, 34, 35, 36, 37, 40, 41, 42, 43, 44. For the MBG type codes see Section 10.

A. G. R. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 27 29 30 31 33 38 39 45 46

G+

0
ic mp ic op mp op mp ic mp op

s-M 65 4 22 14 24 3 46 5 13 13 13 8 31 13 17 8 15 15 1 53 61 24 25 86 24 30 80
s-S 1 1 1 1 1 1 1
s-G op mp mp mp op ic mp
m-M + 98 0 27 46 46 99 11 99 18 47 67 5 64 1 92 14 14 1 0 0 33 0 7 0 0 3
m-S 1 1 1 1 1 1 1 1
m-G ic ic mp op mp op mp mp
l-M + + 0 + + + + 0 + + + 0 0 +
l-S 1 1 1 1 1 1 1 1 1 1
l-G ic mp ic op mp op mp ic mp op
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