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Abstract

The paper presents a novel method for transfer learning through prior variable sampling.

A set of problems defined in the same feature space with similar dependencies of target
on features is considered. We suggest a method for learning a decision tree ensemble on
each of the problems by prior estimation of variable importance on other problems in the
set and using it for regularizing model learning for a small amount of training samples.
The method is tested on several simulated and real datasets. In particular, we apply our
method for a set of time series classification (TSC) problems. Our analysis demonstrates
an intriguing result: a model trained on several TSC problems can learn a new problem
with high accuracy from a low number of samples.

1. Introduction

The classical task of discriminative learning is to fit a model to a given data called a training
set. The validity of the fitting method is checked on a test set that is assumed to be i.i.d.
drawn from the same distribution as the training set. A critical parameter that influences
the model predictive power is the size of the training set. Learning from too few samples
can lead to poor generalization of the model coming from either under- or over-fitting.
This is also related to the number of features used for prediction — the more predictors we
have the more samples we need to learn the dependence. A rule of thumb says that the
number of samples should be 5 times larger than the number of features. In many practical
problems the predictive power of a model is limited by the training set size. Problems like
face recognition or gene expression analysis generate datasets with the number of features
much larger than the number of samples. A way to overcome the limitation of the small
training set is to introduce prior knowledge transferred from similar problems. Some of
pioneering works in the field of transfer learning are (Thrun, 1996; Caruana, 1997; Baxter,
2007). (Thrun, 1996; Thrun and Mitchell, 1995) suggest a transfer learning method based on
learning important features from different classification tasks and using feature importance
information (w.r.t. prediction of the target) to fit a model for a new task. (Raina et al.,
2006) shows how co-occurence of words calculated on several text classification problems
can be used as a prior for solving a new problem.

This paper proposes a novel approach to transfer learning. We show a simple modifi-
cation to the Gradient Boosting Trees learning algorithm (Friedman, 1999a,b) that signif-
icantly improves learning efficiency by using information about the importance of features
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with regard to target prediction. This method can be applied to learn a set of problems
that are defined in the same feature space and where the importances of each feature (to be
defined in the next section) are similar for all problems. We use several artificial and real
datasets from different domains to show that the approach is universal and can be applied to
a very wide range of problems. The next section contains an overview of Gradient Boosting
Trees and feature importance, Section 3 describes Prior Feature Sampling algorithm and
Section 4 discusses its application to transfer learning.

2. Feature Importance

We combine transfer learning with one of the best off-the-shelf classification methods — Gra-
dient Boosting Trees (GBT). It has all the properties of a universal learner: fast, works with
mixed-type data, elegantly handles missing data, invariant to monotone transformations of
the input variables (and therefore resistant to outliers in input space), has been proven to be
among the most accurate and versatile state-of-the-art learning machines. GBT is a serial
ensemble of decision trees (Breiman et al., 1984) where every new tree constructed relies on
previously built trees. At every iteration ¢ of GBT a new tree T, is fitted to the generalized
residuals with respect to a loss function, where the size of the ensemble is chosen to avoid
overfitting (usually by monitoring validation errors.)

GBT provides (as a byproduct) a reliable estimate of the variable importance. The
importance measure from a single tree can be defined as (Breiman et al., 1984):

VI, T)=> Al(z;,t) (1)

teT

where AI(xz;,t) = 1(t) —prI(tr) — prlI(tr) is the decrease in impurity due to an actual (or
potential) split on variable x; at a node t. Here py and pr are probabilities of a sample
that appeared in the node ¢ to fall into the left ¢, and right ¢tz nodes correspondingly. We
use Gini index (Breiman et al., 1984) as the impurity function for categorical target and
the square of the target standard deviation for numeric target.

Variable importance for GBT is defined as the variable importance (1) averaged over
all trees in the ensemble (Friedman, 1999a):

1 C

VI(i) = > VI, T.) (2)
c=0

GBT builds shallow trees using all variables (on a subsample of the training data),
and hence, it can handle large datasets with a moderate number of inputs. Very high
dimensional data is extremely challenging for GBT. Apart from computational complexity
problems (time complexity of the algorithm for GBT learning is O(M Nlog(N)) where N
is the number of samples and M — the number of features) the model tends to overfit on
data with few samples and many irrelevant variables. The primary reason for that is the
greedy algorithm for learning a decision tree that can choose an irrelevant variable for a split
because it provides larger impurity reduction by chance. (Borisov et al., 2006) addresses
both issues by introducing a ”Dynamic Feature Selection“ (DFS) method for learning a
GBT ensemble. The cornerstone idea of the method is to sample a subset of variables for
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each split and choose the best one among this subset instead of the whole set. Sampling
weights for each variable are different and are updated iteratively after each new tree is
added to the ensemble. So a variable that provided large impurity reduction for the already
learned trees has a higher probability to be selected for splits in the next tree. However this
method still requires a considerable amount of samples as it is based on reliable estimation
of feature importance. The next section presents a very simple and effective modification
to a GBT learner that can generalize from very few samples given prior feature importance.

3. Learning GBT with Prior Feature Sampling

Let us assume that we know feature importance V(i) for each variable x;, i.e. we know
that some variables participate in splits more often with higher impurity reduction values.
However impurity reduction that is used as a primary measure for a split has high variance
for a small training set size. As a result even a variable that is not relevant to the target
can be selected for a split. In order to regularize the search for a split we introduce variable
pre-sampling with probabilities proportional to variable importance. Let F' = {z;}|;=1. m
be the set of all variables, AI(7,t) be the maximal impurity reduction obtained by a split
on variable x; in the node ¢, VI(i) — variable importance. We sample a subset F7, of
L variables from F' with probabilities p; o VI(i). The classical GBT algorithm splits

on variable i* = arg max AI(i,t). We suggest searching for the optimal split in a much
x; €
smaller feature subspace Fp: i* = arg max AI(i,t). The number of features L should be
T,ELT,

much smaller than the total number M, in our experiments we use L = [v/M | unless stated
otherwise. We call this algorithm Prior Feature Sampling (PFS). Note that PFS is a method
for training a base learner so it is compatible with other ensemble learning methods such
as Adaboost (Freund and Schapire, 1995) and Random Forests (Breiman, 2001). Various
theoretical results obtained for ensembles of generic base learners (e.g. (Schapire et al.,
1997)) or tree-based learners ((Breiman, 2001)) about generalization error bounds hold for
ensembles of trees learned with PFS.

We will illustrate the method on a simple artificial dataset called Signum. Let the
feature space F' = F| ® Fo ® ... ® Fg be the Cartesian product of G subspaces of the same
dimensionality S so that the total number of features M = SG. Each variable z;, i = 1..M
is sampled from a uniform distribution in the region [—1,1]. Let ¢; = (9 be the importance
of each group where ¢(7) is the index of the group z; belongs to. Target variable

y="r Z cisign Z sign(z;) | , (3)
i=1.G {ilg(s)=i}
where sign(z) is the sign function

. 1,z >0
szgn($):{ lz<0 (4)

Note that importances are decreasing exponentially so that for small § most of target
variation is provided by the first few groups.
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We generate a dataset of M = 30 features consisting of G = 10 groups, § = 0.5.
We learn a GBT model using PFS algorithm with variable importance VI(i) o ¢? (since
impurity is defined as the square of standard deviation of target). The number of trees
in GBT C = 200, and the regularization parameter v = 0.1 are constant throughout the
paper. Figure 1 shows the dependence of test error of classical GBT, GBT-DFS and GBS-
PFES on the training set size. The number of samples in the test set is fixed and equal to
10000. GBT-PEFS is superior to other methods for any number of training samples but the
difference is more significant for smaller number of samples when the variance of impurity
reduction is high and prior information is of more value to the learning engine. This is also
demonstrated by Figure 2 that compares test error for PFS with L = 1 and L = [V/M]|.
The model with L = 1 that we will call PFS; samples only one variable for each split so
that the choice of the variable to split on is entirely based on prior knowledge and does not
depend on the training data. PFS; shows lower test error than PFS on a smaller number of
training samples when high variance of impurity reduction prevents PFS splitting on right
variables. It is no surprise that PFS wins for larger training set size when estimation of
impurity reduction is closer to the expected value.

In order to illustrate how PFS learns a better model than GBT we plot train and test
errors versus the number of trees in the ensemble in Figure 3. To make the results more
interpretable we learn trees of depth equal to 1 — so-called stumps. One can see that while
GBT is able to optimize its training error better than PFS, its generalization accuracy
characterized by test error is weaker. GBT selects variables to split on corresponding to
maximum impurity reduction on the training set but since there are few training samples
these splits do not provide low test error. Figure 4 shows the number of variables outside
the first two groups (i.e. two groups of the most important varaibles that explain 75% of
target variation) selected for splitting normalized on the total number of splits (that is equal
to the ensemble size). One can see that GBT selects many more unimportant variables than
PFS.

In this paper we leave open the question of how good is our sampling strategy compared
to others (such as, for example, taking into account the number of splits on each variable
rather than impurity reduction). However we show below that importance-based sampling
provides a significant improvement over GBT on a wide range of machine learning problems.

Practical machine learning problems rarely assume known variable importance. The
next section considers transferring variable importance from other problems.

4. Prior Feature Sampling for Transfer Learning

Let us assume that we have a set of problems D = {Dj}|x=1. x defined on the same
feature space F'. Furthermore we will assume that problems in D have similar variable
importance. However all of the problems have small training sets so that an estimation of
variable importance on one dataset has high variance. Suppose that we want to learn a
model of D; € D. We start by learning a GBT model for each of the datasets Dy € D\D;
and calculating variable importance VI %) (7). Then we average importance over datasets
VI,(,k) (i) = 725 > VI®) (i) and use VI;,(,k) (1) as feature importance for the PFS method.
k#£k
Note that because of our leave-one-out strategy sampling weights do not depend on Dj.
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Figure 3: GBT and PFS stumps training
and test error versus ensemble size.

If variable importances for Dy are different and in order to benefit from more samples we
might want to take into account variable importance from D;.
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Below we demonstrate the results on several artificial and real datasets. In each experi-
ment we learn DFS and PFS models 10 times on each dataset to account for model variance
coming from random variable selection for each split. We also learn 10 GBT models for
each experiment. We compare test errors distribution of different learning algorithms for
each dataset using two one-sided t-tests with p-values 0.05.

4.1 Signum

The first example is a class of datasets obtained by Signum generator described in the
previous section. We generate 10 datasets with the same 3 equal to 0.5 and different ~
sampled from a uniform distribution in [0,1]. The number of samples in each training
dataset is equal to N = 100. As responses in different datasets have different variation we
calculate the ratio of PFS test error to GBT test error. The value of this ratio averaged over
all 10 datasets is equal to 0.87. t-tests show that PFS is superior to GBT for 8 datasets and
the difference between methods on the remaining two datasets is not statistically significant.

4.2 Linear regression

This section considers experimental results on the class of datasets with linear dependence

of response on predictors. Let © = (x1,...,Zm, Tm+1,...,2Zp) be a numeric vector of
variables, uniformly distributed in [0, 1], where z1,...,x,, are features that influence the
target, Tm41,...,2y are "noise“ features. The target variable y is a linear function of
Ti1,.o Tt Y = Z:L c;x;. Coefficients ¢, ..., ¢, are drawn from the uniform distribution

in [0, 1] for each dataset independently. We generate 10 datasets with the number of training
samples N = 100, number of test samples Niesy = 100, m = 4, M = 104 (so the number of
"noise“ variables is equal to 100). As a result we get datasets where target depends on the
same 4 variables but the dependences are different for different datasets. Also each dataset
has 100 variables irrelevant to the target. As in the previous section we run PF'S using leave-
one-out scheme, calculating variable importance on 9 datasets and using it for learning a
model on the remaining one. A success of a learning engine on this dataset depends strongly
on the ability to filter out irrelevant variables. This is not the strongest side of GBT so we
use a classical filter based on Pearson test (p-value 0.05) for each predictor variable versus
target. Baseline GBT model is learned on variables selected by the test. The results are
shown in Figure 5. When the training set size is sufficiently small PF'S does a better job of
filtering irrelevant variables than Pearson test as it takes advantage of more samples.

Let us note that there are methods such as (Argyriou et al., 2006) that successfully solve
exactly the same problem. Our goal here is to show that PFS, being a general method that
does not make any strong assumptions about the dependence of response on predictors, can
filter out a large set of irrelevant variables and learn an accurate model.

We have repeated the experiment 3 times and for only one dataset and only one model
instance (once in 300 cases — we have 10 datasets and we learn 10 models for each one)
we got a PFS model with higher test error than DFS model (the rest of the data shows
superiority of PFS).
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4.3 Handwritten digit and letter recognition

A large class of machine learning problems comes from computer vision. We illustrate PFS
approach on the task of handwritten digit recognition with MNIST dataset (LeCun and
Cortes). We learned GBT models on even digits (classifying each versus each) represented
by intensity values in each pixel and calculated feature importance for each feature (pixel).
Images of feature importance (resolution 28x28 pixels) are presented in Figure 7. Then
GBT and PFS models were learned on odd digits, each versus each, with 10 samples per
task (5 samples per class) chosen randomly from the training dataset. Each model was
tested on 10000 samples sampled from the test dataset. Table 1 summarizes experimental
results for GBT and PFS methods. Each model was trained 10 times independently. The
table shows average test errors, bold indicates statistically significant difference in test error
distributions (detected with one-sided t-tests, p-value equal to 0.05). One can see that PFS
is able to learn more accurate models compared to GBT for all tasks except for one. The
most of the PF'S models have low test errors (less than 0.2) in spite of low number of training
samples.

We also make the similar experiment on the task of handwritten letter recognition with
LETTERS dataset (). There are 8 binary classification tasks under consideration (that are
shown in Table 2). For each task we made experiment, as described in Section 4. One can
see that PFS shows better accuracy than GBT for all tasks except one.

141



ERUHIMOV, MARTYANOV AND POLOVINKIN

(a) (b) ()

Figure 7: Variable importance for MNIST dataset: (a) average, (b) 5% quantile, (c¢) 95%
quantile. Black corresponds to the maximum importance.

4.4 Time series classification

Time Series Classification (TSC) is a field recently bursting with new results and applica-
tions. Variables used for prediction in a TSC problem are ordered and represent a process in
time. An extensive overview of time series classification methods is given in (Keogh, 2004).
One of the frequently used approaches to a TSC problem is to extract salient features from
each signal and transform TSC task into a regular machine learning problem. Many fea-
ture sets have been evaluated including SVD (Singular Value Decomposition) features, DF'T
(Discrete Fourier Transform), coefficients of the decomposition into Chebyshev Polynomials,
DWT (Discrete Wavelet Transform), PLA (Piecewise Linear Approximation), ARMA (Au-
toRegression Moving Average) coefficients, various symbolic representations (Huang and
Yu, 1999; Geurts, 2001). However none of these feature sets is universal enough to give
competitive results on a wide variety of problems. A study done in (V.Eruhimov et al.,
2007) showed that a learning engine can benefit from multiple feature sets, but at the
same time learning on too many features causes overfitting. Following this work we con-
struct our feature set by combining several different types of features: Wavelets, Chebyshev
polynomials, Raw features, first 5 statistical moments.

Surprising as it may seem, one of the best state-of-the-art methods for TSC is one-
nearest-neighbor (INN) with measure between two series called Dynamic Time Warping
(DTW) (Xi et al., 2006). One of the important reasons for strong performance of 1NN
method on TSC problems is invariance to warping of time axis that is provided by DTW
measure. In order to have our method generalize well on datasets with significant time
warping we add warp-invariant features to our feature set. A detailed description of our
feature set is given in (V.Eruhimov et al., 2007).

We have tested PFS on the UCR corpus (Keogh et al., 2006) of TSC problems. Each of
the datasets has a different number of features due to different time series length so for each
dataset with time series length ) that we learn we scale time series from all other datasets
to () by piecewise-linear interpolation in order to match feature spaces.

Although there is no explicit indication that different TSC problems have similar feature
importance there are several clues pointing to this conclusion. To start with, most of the
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Table 2: Average test errors on LET-
TERS dataset.

DATASET GBT PFS

C VS E 0.0700821 0.0662416
GVSY 0.3728834 0.3479886
M VS N 0.122022 0.1176734
A VS G 0.1004495 0.0707497
1VSJ 0.0997431 0.1699722
A VSO 0.0971361 0.0759824
FVST 0.3084912 0.2661707
H VS N 0.3598787 0.2618528

signals in UCR TSC problems are smooth and classes are defined by smooth features. This
means that most of the time a class could be rather recognized by large time-scale features
than by small time-scale. However this is not true for all datasets so we cannot filter out
small-scale features. Another argument was pointed out in (V.Eruhimov et al., 2007) where,
although all feature types were important and removal of one of them caused increase of
test errors on at least one dataset, the removal of wavelet features caused larger increase
of test errors on more datasets compared to other feature types. Figure 6 shows variable
importance averaged over all UCR datasets and 95% quantile versus the feature index, the
features being sorted by the decreasing average variable importance. These results are taken
for time series length @@ = 5051 of Lighting2 dataset. Note that both curves decrease very
fast so there are around 100 variables with average importance greater than 107°. However
after this point both curves decrease slowly and 95% quantile is always much larger than
the average value. This means that there is a group of few variables that are consistently
important for all datasets and another group of variables (much larger than the first one)
that are important on few datasets and thus cannot be filtered for all TSC problems. Also
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many datasets in UCR corpus have less than 50 samples per class with time series length
more than 100. This is another argument for applying PFS to UCR corpus, recalling that
PFS strong sides show themselves on datasets with a small number of samples and a large
number of features.

Table 3: Average test errors on UCR datasets.

DATASET NUMBER OF NUMBER OF GBT PFS DTW+1NN
TRAIN SAMPLES FEATURES (USES WHOLE TRAIN SET)
BEEF 30 6023 0.1233  0.1233 0.467
CBF 30 1113 0.0287 0.0012 0.004
COFFEE 28 2462 0 0.1679 0.179
ECG200 50 740 0 0.151 0.12
FACEALL 50 2453 0.5303 0.5028 0.192
FACEFOUR 24 4420 0.0761  0.0455 0.114
FisH 50 5981 0.3411 0.256 0.160
GUNPOINT 50 1286 0.087 0.087 0.087
LIGHTING2 50 5051 0.1934 0.1508 0.131
LIGHTINGT 50 5117 0.34 0.28 0.288
OLIVEOIL 30 8080 0.1967 0.1867 0.167
OSULEAF 50 5765 0.5221  0.4505 0.384
SWEDISHLEAF 50 1667 0.4755 0.4118 0.157
SYNTHETICCONTROL 50 875 0.061 0.0407 0.017
TRACE 50 4045 0 0 0
TWOPATTERNS 50 1390 0 0 0.0015
WAFER 50 1292 0.0554 0.03902 0.005
YoGca 50 2882 0.4354 0.333 0.155

18 datasets with the number of classes less than 30 were selected. For each dataset
we have learned 10 GBT and PFS models and compared the results as described in the
beginning of Section 4. The sizes of training and test datasets are taken as in (Keogh
et al., 2006) unless stated otherwise. The results are summarized in Tables 3-4. We have
limited the training set size to 50 samples if it was larger. Bold values show cases where
the difference between two methods is statistically significant. The last column shows the
performance of INN with DTW measure, cited from (Keogh et al., 2006). It is important
to note that 1NN model uses the whole training set. PFS has lower test error compared to
GBT for 11 datasets and higher test error for 2 datasets. These two, Coffee and ECG200
have a very different distribution of variable importance from the rest of TSC problems.
GBT is able to find features that help building extremely accurate model for these particular
tasks. However for the most of the datasets PF'S achieves dramatic improvement over GBT
model. Figures 9 (a-b) show the dependence of test error on the training set size N for
two datasets. Note that PFS is always superor to GBT when N is small and regularization
in the form of prior variable importance plays a significant role. Each curve tends to a
constant in the area where N is sufficiently large and a small change in the number of
training samples does not affect test error much. However PFS test error converges to this
constant faster than GBT, this is more clear in Figure 9 (b).
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Table 4: Average test errors on UCR datasets (continue).

DATASET PFS PFS
(EQUAL FEATURE WEIGHTS) (FI ARE CALCULATED ITSELF)
BEEF 0.137 0.217
CBF 0.0253 0.0023
COFFEE 0.0357141 0.025
ECG200 0.134 0
FACEALL 0.5317 0.5128
FACEFOUR 0.049 0.0602
Fisu 0.389 0.38
GUNPOINT 0.073 0.079
LIGHTING2 0.289 0.175
LIGHTINGT 0.354 0.34
OLIVEOIL 0.1867 0.1467
OSULEAF 0.512 0.522
SWEDISHLEAF 0.5032 0.407
SYNTHETICCONTROL 0.1087 0.337
TRACE 0 0
TWOPATTERNS 0 0
WAFER 0.0374 0.066
YoGA 0.3687 0.174667

5. Conclusion

We presented a transfer learning method that is based on sampling a subset of variables
for each tree split with probabilities proportional to the importance of variables with re-
gard to target prediction. Importance distribution was calculated on other datasets with
similar feature spaces and targets. The method demonstrated a significant improvement in
generalization error on a wide variety of datasets including Time Series Classification UCR
corpus. We came to a surprising conclusion: different TSC problems are like each other
and the model, trained on several TSC problems, can learn a new one with high accuracy
from extremely low number of samples (5-10 per class).

This investigation opens several directions for future work. The problem of the optimal
sampling weights even for a simple class of problems is still open. Information such as the
number of splits and, maybe, distribution of impurity reduction over splits has to be taken
into account. Prior knowledge about a distribution function for each variable can be used to
improve generalization error. Finally, the algorithm can be generalized to handle variable
interactions so that sampling weights depend on the split one level up the tree.

References

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances in
Neural Information Processing Systems 19 (NIPS 06). Mit Press, 2006.

145



ERUHIMOV, MARTYANOV AND POLOVINKIN

\ -- GBT \ -- GBT
' — PFs ' — PFs

0.5

0.4
0.3
|

0.3
|
0.2

Test error
Test error

0.2
|

0.1

-——-- .

0.1

0.0
|
0.0

100 200 300 400 500 10 20 30 40 50

Number of train samples Number of train samples

(a) (b)
Figure 9: The dependence of test error on the training set size for UCR datasets: (a)
FaceAll, (b) GunPoint
J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task

sampling. Machine Learning, 28:739, 2007.

A. Borisov, V. Eruhimov, and E. Tuv. Dynamic soft feature selection for tree-based en-
sembles. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction,
Foundations and Applications. Springer, New York, 2006.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, Belmont, MA, 1984.

Rich Caruana. Multitask learning.  Machine Learning, 28(1):41-75, 1997. URL
citeseer.ist.psu.edu/caruana97multitask.html.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. In  FEuropean Con-
ference on Computational Learning Theory, pages 23-37, 1995. URL

citeseer.ist.psu.edu/article/freund95decisiontheoretic.html.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. Technical
report, Dept. of Statistics, Stanford University, 1999a.

146



TRANSFERRING KNOWLEDGE BY PRIOR FEATURE SAMPLING

J.H. Friedman. Stochastic gradient boosting. Technical report, Dept. of Statistics, Stanford
University, 1999b.

P. Geurts. Pattern extraction for time series classification. In In proceedings of the 5th
FEuropean Conference on Principles of Data Mining and Knowledge Discovery, pages 115—
127, Freiburg, Germany, Sep 3-7 2001.

Y. Huang and P. S. Yu. Adaptive query processing for time-series data. In In proceedings of
the 5th Int’l Conference on Knowledge Discovery and Data Mining, pages 282-286, San
Diego, CA, Aug 15-18 1999.

E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The ucr time series classifica-
tion/clustering homepage, 2006. URL www.cs.ucr.edu/ eamonn/time_series_data/.

Eamonn Keogh. Data mining and machine learning in time series databases, 2004. URL
http://www.cs.ucr.edu/ eamonn/tutorials.html.

Yann LeCun and Corinna Cortes. The mnist dataset of handwritten digits. URL
http://yann.lecun.com/exdb/mnist/.

Rajat Raina, Andrew Y. Ng, and Daphne Koller. Constructing informative priors using
transfer learning. pages 713 — 720, 2006.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the mar-
gin: a new explanation for the effectiveness of voting methods. In Proc. 14th Interna-
tional Conference on Machine Learning, pages 322-330. Morgan Kaufmann, 1997. URL
citeseer.ist.psu.edu/schapire97boosting.html.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In David S.
Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, pages 640-646. The MIT Press, 1996. URL
citeseer.ist.psu.edu/thrun96is.html.

Sebastian Thrun and Tom M. Mitchell. Learning one more thing. In IJCAI pages 1217—
1225, 1995. URL citeseer.ist.psu.edu/thrun95learning.html.

V.Eruhimov, V.Martyanov, and E.Tuv. Constructing high dimensional feature space for
time series classification. In In Proceedings of Knowledge Discovery in Databases: PKDD
2007, pages 414-421, 2007.

Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann Ratanama-
hatana. Fast time series classification using numerosity reduction. In International Con-
ference on Machine Learning, 2006.

147





