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Abstract

Whereas the variable selection has been extensively studied in the context of supervised
learning, the unsupervised variable selection has attracted attention of researchers more
recently as the available amount of unlabeled data has exploded. Many unsupervised vari-
able ranking criteria were proposed and their relevance is usually demonstrated using either
external cluster validity indexes or the accuracy of a classifier which are both supervised
criteria. Actually, the major issue of the variable subset selection according to a ranking
measure has been adressed only by few authors in the unsupervised learning context. In
this paper, we propose to combine multiple ranking to go ahead toward a stable consensus
variable subset in a totally unsupervised fashion.

1. Introduction

The amount of available data has exploded as the storage technologies were improved.
The companies databases gathered a lot of information which are not all relevant for their
exploitation by computational methods. It has been proved that dimension reduction of
the data generally leads to performance improvement: this process can be applied either
to the sample size, to their description or even to both dimensions. In this paper, we are
interested in the reduction of the description space dimension. Two kinds of approaches
can be considered to reduce the dimension of the sample points description, namely, feature
extraction and feature selection. The former consists in combining the original variables to
construct new features while the latter reduces the dimension of the input space by dropping
some irrelevant or weakly relevant variables.

The most widely used feature extraction technique is probably the Principal Component
Analysis (PCA) (Duda et al., 2001) which builds new uncorrelated dimensions, called fac-
tors, by maximising the variance. Another linear technique is the Multidimensional Scaling
(MDS) (Duda et al., 2001) which starts with a dissimilarity matrix and builds a representa-
tion in an Euclidian space by maximising the preservation of the distances between sample
points. Some non linear methods have also been proposed such as the Isometric Mapping
(Isomap) (Tanenbaum et al., 2000) or the Locally Linear Embedded (LLE) (Roweis and
Saul, 2000). The efficiency of these methods have been demonstrated on a large range of
application domains, but the interpretation of the new features is not obvious and an im-
portant effort is required from the user. This paper deals with feature selection which has
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the advantage of keeping the sample points in a subspace of the original space. Hence, the
reduced description is directly understandable and does not require any additional inter-
pretation work.

Although feature selection has been extensively studied in the context of supervised
learning, this field is relatively new in the unsupervised learning. Several evaluation mea-
sures have been proposed but the authors rarely present a full selection procedure; actually,
the definition of a stopping criterion is not often considered. In this paper, a general
methodology is proposed for variables ranking based feature selection. The approach pro-
posed eliminates the irrelevant features but does not remove the redundant features whereas
they are only weakly relevant.

The rest of the paper is organised as follows. Section 2 gives a brief overview of related
works. Section 3 presents the approach proposed. Section 4 reports our experimental
results. Finally, section 5 concludes.

2. Related work

Feature selection consists in choosing one feature subset among all the possible ones and a
feature selection procedure is composed from essentially three elements: an evaluation mea-
sure, a subset generator and a stopping criterion (Blum and Langley, 1997; Dash and Liu,
1997; Guyon and Eliseeff, 2003). Three categories of methods are generally distinguished:
the filter, the wrapper and the embedded approaches (Kohavi and John, 1997). The filter
approaches only take into account the properties of the data-set independently of the future
use of the data. On the contrary, in the wrapper approaches, the performance of the algo-
rithm which uses the data are considered either to define the evaluation measure, to guide
the search procedure or to define a stopping criterion. In the last kind of techniques, the
procedure is embedded in the algorithm used to build the model. A deeper introduction to
the feature and variable selection can be found in Blum and Langley (1997), Dash and Liu
(1997) or Guyon and Eliseeff (2003). The feature selection problem has been extensively
studied in the context of supervised learning but relatively few works have been published
in the unsupervised context. A brief overview of the domain is given by classifying the
approaches according to the following taxonomy: redundancy based, entropy based, auto-
associative model based and clustering based. The reader interested in unsupervised feature
selection for text data should refer to Liu et al. (2005) and Wiratunga et al. (2006).

Redundancy based approaches

A broad part of the methods which proposed to achieve feature selection in the unsupervised
context try to eliminate the redundancy among a feature subset and thus they rely either
on correlation or an estimation mutual information (Guérif et al., 2005; Mitra et al., 2002;
Vesanto and Ahola, 1999). Actually, P. Mitra et al. (2002) used a similarity measure that
corresponds to the lowest eigenvalue of correlation matrix between two features, Vesanto
and Ahola (1999) proposed to visually detect correlation using a SOM-based approach and
Guérif et al. (2005) used a similar idea and integrated a weighting mechanism in the SOM
training algorithm to reduce the redundancy side effects.
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Auto-associative model based approaches

Some authors reduce the unsupervised case issue to the supervised one by using auto-
associative models: supervised selection approaches can be applied with regression tech-
niques and furnish us with an unsupervised method. For instance, the auto-associative
regression trees (ART) have been used in Questier et al. (2005).

Entropy based approaches

Assuming that the relevant features are those which lead to clusters in a data-set, an entropy
like criterion can be used as evaluation measure: a uniformly distributed feature does not
provide any useful information for clustering and on the contrary, features that gather the
sample points in small groups are relevant. Actually, assuming that s(z,y) is the similarity
between two sample points x and y, an entropy measure can be defined as (Dash et al.,
1997; Dash and Liu, 2000):

H= Y (s(z,y)logs(x,y)) + (1 - s(x,y)) log(1 — s(z,y)) (1)
(z,y)EX?

where X is the data-set. This measure is used in combination with a sequential backward
elimination procedure in Dash et al. (1997) or with a sequential forward selection procedure
in Dash and Liu (2000). It has also been exploited by the neuro-fuzzy approach proposed
in Basak et al. (1998).

Clustering based approaches

Clustering quality assessment can be used either as a subset evaluation measure (Guérif
and Bennani, 2006) or as a stopping criterion (Dash and Liu, 2000; Dy and Brodley, 2000,
2004). Actually, a Davies-Bouldin index based evaluation measure was proposed in Guérif
and Bennani (2006) and assuming that the features are normally distributed, the authors
used the A Wilks statistic to stop their backward elimination procedure since the sepa-
rability of the clusters decreases significantly. In Dash and Liu (2000), Dy and Brodley
(2000) and Dy and Brodley (2004), the scatter matrices and separability criteria used in
multiple discriminant analysis were used by the authors to stop their feature selection pro-
cess. Model-based clustering usually estimates the probability distribution of the data; this
gives an additional insight of the data. In other respects, the maximum likelihood criterion
measures how likely a model fits the data. Hence, select a feature subset amounts to select
a model (Dy and Brodley, 2000, 2004; Law et al., 2004; Raftery and Dean, 2006). Dy and
Brodley (2000, 2004) pointed out that both the scatter separability and the maximum like-
lihood criteria are biased with the respect of the number of features and they provided a
normalisation term to correct this bias. The subspace clustering can be viewed as a related
issue and Parsons et al. (2004) provides an overview of this topic.

3. Proposed approach

The approach proposed relies on two reasonable assumptions. On the one hand, since a
scoring function is consistent with the addressed problem, the irrelevant features are ranked
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at the end. On the other hand, we assume the existence of a partition such that the
features are gathered in equivalence classes in respect with an evaluation measure; actually,
the ordering defined on each of the equivalence classes by the scoring function considered is
nothing more than an artefact. Hence, we are interested in detecting only the equivalence
class which gathers the irrelevant features. This can be achieved by identifying the rank
from which the variables are randomly ranked. According to the definition of the equivalence
classes, while a set of features gathers variables from more than one class, it can be (at least
partially) ordered. Now, rank the features according to their decreasing relevance, as soon
as the set of the last features can not be properly ordered, it gathers only features from the
same equivalence class: the irrelevant features one.

We propose to compute multiple ranking of a variable set using resampling technique and
to identify a subset of the best features with respect to the different rankings; a user defined
parameter controls the minimal agreement. Actually, we assume that the irrelevant features
equivalence class can not be properly ordered. Thus, when the irrelevant feature equivalence
class begins at rank k, there is no reason for one irrelevant feature to be preferably ranked
at any of the last ranks. This leads to assume that the distribution of the features at each
of the remaining the k** rank is uniform. Hence, our null hypothesis Hy can be formulated
as follows: ”at the k' rank the variables are uniformly distributed”. Thus, a x? test can
be used to test the agreement between the empirical distribution of the variables at the k"
rank and the theoretical distribution under a uniform random distribution.

3.1 Notations

Let FF = {1,...,n} be a set of variables and S = {s; : ¢ = 1,...,p} be a set of p
scoring functions s; : F — R. The scoring function s; on F' defines a total order on F
and the corresponding permutation is noted by o;. The set of the permutations induced
by S is denoted by R = {o; : i = 1,...,p}. Let oi|1x and Rl = {oil1kx : @ =
1,...,p} be respectively the k first values of the permutation o; and the set of the restricted
permutations. Let ¢;|, denotes the number of permutations o; € R such that the variable
j appears at the k' rank and let c;|; be its expectation when only the (k — 1) first values
of each permutation are known.

3.2 Theoretical distribution

Assuming that only the (k — 1) first values of each permutation are known, and that the
(n — k 4+ 1) last values are obtained independently at random, c¢;|; follows a Bernoulli
distribution and can be easily computed as:

cilk =) <p?j> 1 (gr)' x (1= g)Ps™! (2)

=1

where pi and ¢ are defined as:

p k-1
Pri = P— > &l (3)
i=1 =1
1
- - 4
I n—k+1 )
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and refer to the number of permutations for which j does not appear before the k" rank
and the probability such j appears at the k** rank (if has not appeared before) respectively.

3.3 y’-test

The deviation of the empirical values from the theoretical distribution is measured using
the x? statistic defined as:

> _ N Gle—glr)?
Xn—1 Z (5)

= <l
Under the null hypothesis Hg, the following expression follows a Laplace-Gauss distribution

LG(0,1) : 1
Xn1\? 2 9(n—1)
<n—11> +9(n—1)_1 2 ©)

since (n — 1) > 100. Thus, the x? test amounts to test whether the expression (6) exceeds
the critical value of the unilateral test for a Laplace-Gauss distribution. Assuming that
a false negative rate of 5% (probability of a Type II error) is acceptable, the threshold
§ = 1.65 would be used for the expression (6).

3.4 Subset selection

Let & be the last rank for which the expression (6) is lower than the threshold 6. The subset
selected by the method proposed is defined as follows:

F
Fo={j€F : ap<) ¢l (7)
k=1

where the a € [0,1] parameter controls the required degree of agreement between the
different rankings.

3.5 Algorithm and complexity
The following high level algorithm summarised the different steps of the method proposed:

1. Compute the set of scoring functions S using p independent sub-samples of the data-
set: 6(p.m)

2. Build the set of rankings R induced by S: 0(p.n.log,n)

3. For each variable j and each rank k, compute ¢;|; the number of permutations such
that j appears at the k' rank: 6(p.n)

4. Compute the binomial coefficients: 6(p?)
5. Compute c;l the expected values of é;| under the null hypothesis: 6(p.n?)

6. Compute the x? statistics: 6(n?)
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Table 1: Data-sets used in our experiments: N is the sample size, n is the number of
features, nprope (resp. Yoprove) is the number (resp. rate) of probes and C' is the
number of classes.

Data-set  Domain N N Nprobe  Joprobe C
Arcene Mass spectrometry 200 10000 3000 30.0 % 2
Gisette Digit recognition 7000 5000 2500 50.0 % 2
Madelon  Artificial 2600 500 480 96.0 % 2
Waveform Artificial 5000 40 19 475% 3

The time complexity of each step is indicated above and the overall time complexity of the
method proposed is (p(n2 +m)+ p2) where m, n and p are respectively the complexity of
the scoring function evaluation, the number of variables and the number of scoring function
evaluations.

4. Experimental results

4.1 Data-sets

Two assumptions are made by the method proposed: (i) the irrelevant features are ranked at
the end by the scoring function, and (ii) the features can be gathered in equivalence classes
such that no ordering can be properly defined on each of the equivalence classes by the
scoring function. Here, we show the validity of these assumptions using two toys data-sets:
Art-1 and Art-2. The Art-1 data-set is composed of 500 sample points gathered in 5 clusters
which are normally distributed. They have the same size, the same covariance matrix, and
their respective means are the following: (0,0), (1, 1),(1,—1), (—1,—1) and (—1,1). Then,
8 normally distributed noisy dimensions have been added. The Art-2 data-set is build by
replacing 2 of the noisy dimensions by noisy copies of the original variables.

Then, we demonstrate the effectiveness of the stopping criterion presented above on four
data-sets, namely, Arcene, Gisette, Madelon and Waveform. They are all available at the
UCI Machine Learning Repository (D.J. Newman and Merz, 1998). The Arcene, Gisette
and Madelon data-sets were originally proposed during the Feature Selection Challenge
organised during NIPS 2003 (Guyon et al., 2004) and they point out different difficulties.
Actually, Arcene data-set illustrates the case where the number of available sample points is
small with respect to the data dimension; this problem arises frequently in real application
such as text mining, mass spectrometry or bioinformatic. Madelon data-set was artificially
constructed to emphasise the difficulty of the feature selection when no feature is informative
by itself. Waveform data-set illustrates the case where the different classes largely overlap.
Table 1 gathers some the information about these data-sets. The probes are artificial features
which were added to facilitate the assessment of the feature selection methods; they were
drawn at random from a distribution resembling that of the real features except for the
waveform data-set were they are normally distributed.
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4.2 Laplacian Score

In our experiments, the Laplacian Score (He et al., 2006) was retained as pertinence crite-
rion; it measures the locality preserving power of the features. The steps of the algorithm
given by He et al. (2006) are the following:

1. Construct the k nearest neighbours graph G: §(n.N?).

2. If nodes 7 and j are connected in G, put S;; = e~ (/D% where d;; is the distance
between sample points 7 and j, and ¢ is a suitable constant. Otherwise, put S;; = 0:
O(k.N).

3. Let f; be the column vector of the i*" feature values and L = D — S be the Laplacian
of the graph G where D = diag(S’.T). Compute the Laplacian Score L; of the i**

feature as
o
Trf,
L - }}T D‘]}. (8)
. DT
where fl == fz_iiTi_,T (9)
1" D1

This step requires #(n.N?) operations.

The time complexity of each step is indicated above and the overall time complexity of the
method proposed is #(n.N?) where n and N are respectively the number of variables and
the number of sample points. In our experiments, the number of neighbours k£ was set to
5 and the constant ¢ was chosen as the maximum distance between two connected sample
points.

4.3 Validity of the underlying assumptions

Here, we validate the two underlying assumptions of the method proposed: (i) the scoring
function ranks the irrelevant features at the end, and (ii) the scoring function does not
distinguish between irrelevant features. Figures 1 and 2 shows the repartition of the variables
at each rank for the Art-1 and Art-2 data-sets, respectively. Variable; refers to the original
variables, Noise; denotes the noisy dimensions and Copy; stands for the noisy copy of the
Variable;. In both figures (fig. 1 and 2), the irrelevant variables appears significantly at
the end of the ranking; this accounts for the first assumption validity. Then, it seems that
variables with the same level of relevancy are not properly distinguished; this is more clear
in figure 2 where the noisy dimensions appear globally with the same frequencies at ranks
from 5 to 10. This accounts for our second assumption.

4.4 Evaluation methodology

The labels of the sample points from the data-sets used in our experiments were available
and the scoring function chosen aims to preserve the local topology of the data space; thus
the accuracy of the k-nearest neighbours classifiers was used as performance measure of
the method proposed. The stability of the subset selected is measured using the Jaccard
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Repartition of the variables at each rank (Art-1, N=100)
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Figure 1: Repartition of the variables at each rank for the Art-1 data-set: each of the 100
scoring function evaluations was performed using sub-samples of N = 100 sample
points from the Art-1 data-set. Variable; refers to the original variables and
Noise; denotes the noisy dimensions. It clearly appears that the most represented
variables at the first rank are the relevant one. Then, the repartition of the noisy
dimensions is more or less uniform from the third or the fourth rank to the end.

and the Rand statistics averaged on the subset selected pairs set. A 10-fold cross-validation
approach was used to evaluate the accuracy of a k-nearest neighbours classifier. The original
sample was randomly partitioned into 10 sub-samples. Of the 10 sub-samples, a single sub-
sample is retained as the validation data for evaluating the performance of the system, and
the remaining 9 sub-samples are used as training data. The cross-validation process is then
repeated 10 times, with each of the 10 sub-samples used exactly once as the validation data.
The 10 results from the folds then are averaged.

In our experiments, we estimated the scoring function on p = 100 independent random
sub-samples of the training subset with replacement. The « control parameter was set
to 0.5. The scoring function was computed using only sub-samples of the training set
and r denotes the ratio between the number of features over the sub-sample size in the
following. To evaluate the robustness of our method to the small sample size issue, we
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Repartition of the variables at each rank (Art-2, N=100)
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Figure 2: Repartition of the variables at each rank for the Art-2 data-set: each of the
100 scoring function evaluations was performed using sub-samples of N = 100
sample points from the Art-2 data-set. Variable; refers to the original variables,
Noise; denotes the noisy dimensions and Copy; stands for the noisy copy of the
Variable;. The detection of the irrelevant variables is quite perfect here; the
original variables and their noisy copies are always ranked between the first and
the fourth positions. The irrelevant variables come next without any preference
between them.

use two different values of the r parameter. For a given data-set, the lower is r, the more
difficult is the relevance estimation.

The results achieved by the unsupervised method proposed are then compared with those
of the best k-nearest neighbours classifiers that can be obtained given the set of rankings R
and the value of the a parameter (see equation 7); they are referred as ” supervised (k-NN)”.

4.5 Results and discussion

Figure 3 compares the size of the original feature subset (before adding probes), the size of
the feature subset selected by the method presented above and the size of the best subsets
according to the performance of the 1-NN, 3-NN and 5-NN classifiers. In addition, table
2 indicates the averaged agreement between the subset selected and the collection of the
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Size of the feature subset selected
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Figure 3: Size of the feature subset selected: index 100 corresponds to the whole set of
features (original features + probes), r is the ratio between the number of sample
points and the number of features, the values indicated are averaged over the
10 folds and the standard deviation are given between brackets. The supervised
method refers to the choice of the classifier with the lowest error rate.

top-k feature subsets. Figure 4 summarises the error rate of the 1-NN classifiers using the
whole set of features, the subset selected by the method presented above and the subset
that leads to the best classifier; the performance of the 3-NN and 5-NN classifiers are very
similar and have been disguarded due to space limitation.  As shown by the figure 4,
a small increasing of the 1-NN classifier error rate is observed with the Madelon data-set
when there are too few sample points to estimate the scoring function. Actually, few highly
redundant features were identified as relevant by the Laplacian Scores; hence, an important
part of the relevant information is lost (see fig. 3). On the contrary, the selection does not
operate on the Gisette data-set when too few sample points are available to compute the
scoring function.

The proposed method does not perform as well as the supervised criteria with the Arcene
and the Waveform data-sets whereas most of the noisy dimensions are removed. Although
no significant improvements in respect with the baseline (no feature selection) are observed
with the Arcene data-set, all the probes are eliminated. With the Gisette and the Madelon

172



UNSUPERVISED VARIABLE SELECTION

Error rates of the 1-NN classifier
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Figure 4: Error rates of the 1-NN classifiers: r refer to the ratio between the number of
sample points and the number of features, the values indicated are averaged over
the 10 folds. The supervised method refers to the choice of the classifier with the
lowest error rate.

data-sets, since the sample size is sufficient to estimate the scoring function, the accuracy
of the 1-NN using the unsupervised method proposed are comparable with those obtained
by the supervised criteria.

Anyway, the stability of the subset selected by the method proposed is emphasised by
the table 2: the subset selected by the supervised method vary a lot among the different
folds. The resampling causes fluctuations of the laplacian scores which might account for
the greater stability of the method proposed against the supervised approach. On the one
hand, the supervised method operates separately for each scoring function evaluation. On
the other hand, the approach proposed operates globally which improves its robustness.
Then, the lowest values of the Jaccard and Rand indexes are observed with the Waveform
data-sets where the results can be much improved; this leads us to assume that the stability
of the subset selected can be thought as a potential indication to predict whether the feature
selection correctly operates or not. Obviously, this point should be further investigated
before to conclude.
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Table 2: Stability of the subset selected: r is the ratio between the number of sample points
and the number of features, the values indicated are averaged over the 10 folds
and the standard deviation are given between brackets.

Data-set  Method Proposed 1-NN 3-NN 5-NN
Arcene Jaccard  0.957 [0.008] 0.743 [0.180] 0.684 [0.192] 0.671 [0.181]
(r =0.018) Rand 0.958 [0.005] 0.758 [0.176] 0.708 [0.180] 0.696 [0.174]
Arcene Jaccard 0.894 [0.012] 0.645 [0.167] 0.638 [0.160] 0.659 [0.190]
(r=0.01) Rand 0.936 [0.008] 0.687 [0.155] 0.987 [0.148] 0.684 [0.181]
Gisette Jaccard 0.911 [0.018] 0.787 [0.115] 0.806 [0.124] 0.782 [0.137]
(r=0.1) Rand 0.949 [0.011] 0.853 [0.101] 0.878 [0.087] 0.858 [0.100]
Gisette Jaccard 0.976 [0.014] 0.709 [0.124] 0.650 [0.144] 0.609 [0.133]
(r=0.01) Rand 0.977 [0.013] 0.789 [0.096] 0.705 [0.135] 0.697 [0.137]
Madelon  Jaccard 0.999 [0.002] 0.991 [0.010] 0.986 [0.015] 0.996 [0.003]
(r=1) Rand 0.999 [0.002] 0.991 [0.010] 0.987 [0.014] 0.996 [0.003]
Madelon  Jaccard 0.986 [0.007] 0.969 [0.011] 0.967 [0.011] 0.966 [0.013]
(r=0.1) Rand 0.986 [0.007] 0.970 [0.010] 0.968 [0.011] 0.967 [0.013]
Waveform  Jaccard 0.617 [0.104] 0.779 [0.125] 0.784 [0.123] 0.811 [0.113]
(r=10) Rand 0.699 [0.105] 0.861 [0.086] 0.870 [0.080] 0.887 [0.073]
Waveform Jaccard 0.638 [0.142]  0.728 [0.110] 0.681 [0.152] 0.752 [0.117]
(r=1) Rand 0.765 [0.109] 0.834 [0.082] 0.798 [0.112] 0.855 [0.077]

The approach proposed relies on resampling and the detection of randomness. It should
be noticed that the use of subsampling methods involves a high computational overload.
The running times observed during our experiments are gathered in table 3. It appears that
most of the running time is spent to evaluate the scoring function over each sub-samples
since their size is large enough. The computation time of the stopping criterion proposed
does not depend the sub-samples size but only on the number of variables (and the number
of sub-samples). Anyway, the running times observed seem to us rather reasonable in the
context of exploratory analysis. Moreover, the computation needed by our approach can be
easily distributed to improve its scalability: (i) the different scoring function evaluations are
independent from each other, (ii) the expected number of permutations such the variable j
appears at the k" does not depends on any other variable and (iii) the x? statistics can be
computed separately for each rank k.

5. Conclusion and perspectives
In this paper, we propose a general method to address the subset selection issue when

only a scoring function ranks the features according to their relevancy is available. The
approach proposed relies on resampling and the detection of randomness. It should be
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Table 3: Running times: r is the ratio between the number of sample points N and the
number of features n. The running times shown respectively refer to the Laplacian
Scores computation, the time required to compute our stopping criterion and the
sum of both. The values indicated are averaged over the 10 folds. These running
times have been measured using Matlab 2006a running on a Dell Precision 670
Workstation (single Intel Xeon 2.8 GHz processor) under the GNU Linux 32 bits
operating system.

Data-set N n LS Criterion Overall

Arcene (r=0.018) 180 10000  650.0 s 983.7s 1633.7 s
(r=0.01) 100 10000 527.2s 981.9 s 1508.7 s
Gisette (r=0.1) 500 5000 12139 s 400.5 s 1614.4 s
(r=0.01) 50 5000  230.5 s 381.3s 611.8s
Madelon  (r = 1) 500 500 146.0s  21.7s 167.7s
(r=0.1) 50 500 244 s 22.5's 46.9 s
Waveform (r = 10) 400 40 15.8 s 05s 1645
(r=1) 40 40 27s 08s  35s

noticed that the use of subsampling methods involves a high computational overload, but
the computation needed by our method can be easily distributed to overcome this problem.

The effectiveness of the method and the stability of the subset selected have been demon-
strated on 4 data-sets which span at least three major issues of feature selection: small
sample size with respect to the data dimension, lack of feature informative by itself and
classes overlapping. The experiments presented above were done in the unsupervised learn-
ing context but obviously they apply in the semi-supervised or supervised context as soon
as the additional information available is included in the scoring function; we suppose that
this can lead to robustness and stability improvements. The results presented point out
that the method proposed does not perform well when the sub-sample size used to compute
the scores is too small, namely lower than 100. We feel that this problem might be corrected
by increasing the number of scores computed.

Future work includes a rigourous study of the relationships between the data dimension
n, the number of sub-samples used p and the size of the sample used to estimate the
relevance of the features; anyway, we feel that these relationships depend on the scoring
function selected and we plan to repeat the experiments presented using the weighting
coefficients computed by the AVW-k-means algorithm (Huang et al., 2005) and by the
w-SOM algorithms (Guérif and Bennani, 2007).
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