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Abstract

This study presents an unsupervised feature selectionagpfor the discovery of significant pat-
terns in seismic wavefields. We iteratively reduce the nurobéeatures generated from seismic
time series by first considering significance of individugdtures. Significance testing is done by
assessing the randomness of the time series with the Walidwiz runs test and by comparing
observed and theoretical variability of features. In a sdcstep the in-between feature depen-
dencies are assessed based on correlation hunting indesathsets using Self-Organizing Maps
(SOMs). We show the improved discriminative power of ourgeaure compared to manually se-
lected feature subsets by cross-validation applied tcheyittseismic wavefield data. Furthermore,
we apply the method to real-world data with the aim to definéable features for earthquake
detection and seismic phase classification in seismic dauys.

1. Introduction

Our study is motivated by classification and detection problems in seismology.tdihe high
number of receiver networks monitoring earthquakes worldwide, a kangaunt of data is pro-
duced consisting of time histories of ground motion in different spatial dinestid\utomatic de-
tection and classification of earthquakes is required in order to preptadat investigation of the
subsurface earth structure and to develop automatic warning systemswaigaaos or to monitor
the compliance with the nuclear test band treaty (CTBTO) (Joswig, 199GridaviacBeth, 1995;
Ohrnberger, 2001; Riggelsen et al., 2007). For these purposdstde are generated from the raw
recordings. Since there are a lot of different, common approachesmaegy, it is not easy to
define an optimal, discriminative and significant feature set. Thus, autoreatieré selection is
mandatory. In this study we use 7 common seismic feature generation methictisanehall listed
in Table 1. All in all we have a set of 159 features. A feature is computea $bort time window of
the seismogram. We employ unsupervised learning techniques since seistsalftgn deal with
unknown, complexly composed data. As a first learning step unsupefestire selection will aid
further processing.
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Table 1: Seismic feature generation methods, features and number $eature

1 Frequency-wavenumber analysigKvaerna and Ringdahl, 1986)

Spatial coherency (3 frequency bands and 3 spatial componenegtdds

2 Spatial averaged autocorrelation methodAki, 1957)

Real and imaginary autocorrelation coefficient (3 frequency bandi8 apatial components): 18
features

3 Complex 3c-covariance matrix(Vidale, 1986; Park et al., 1987; Jurkevics, 1988)

Several degree of polarization measures, ellipticity, angle of incidenfred@ency bands): 39
features

4 Complex seismic trace analysi¢Taner et al., 1979)

Instantaneous attributes (polarization, frequency, polarization diregtbfiequency bands and
3 spatial components): 42 features

5 Spectral attributes

Normalized horizontal and vertical spectra (10 frequency bandshirdmt frequency, band-
width: 25 features

6 Spectra of polarization ellipsoid(Pinnegar, 2006)

Normalized semi-mayor and semi-minor axis of polarization ellipsoid (10 frexyueands): 20
features

7 Amplitude ratios

Real over imaginary part of complex trace, horizontal over vertical amapt (3 frequency
bands): 6 features

In general, for many applications the number of all potential featuresecaeary high. However,
the information content or relevance of individual features e.g. fotetugy or imaging of patterns
in the data may vary considerably. Furthermore, strong correlations @éetigatures will occult
important information which is encoded in less or non redundant componiethis feature vector.
Thus, the computation time may be unnecessarily increased and the qualityfiohthresults may
suffer. Moreover, the higher the dimension of the data, the more datadedéar learning, and the
less suitable is the euclidian distance as a measure of similarity, due to the tdirseiosionality
(Bellman, 1961; Bishop, 2006). Furthermore, interpretation of the resuttaich easier for low
number of features.

While a lot of approaches exist for supervised learning due to availabfligbeled training
data, for unsupervised learning feature selection is a more recent topgsaarch. Several ap-
proaches have been proposed to reduce the number of featurd3iecgpal Component Analysis
(PCA). However, for PCA it is difficult to characterize the reduced dai@ce since the (physical)
meaning of the new features generated by linear combinations is unclegpp®@ralgorithms use
a forward or backward selection procedure to search for the featilnget most relevant for clus-
tering according to a particular evaluation criterion (Dy and Brodley, P004e computational
complexity is very high for that approach, especially for high-dimensidatd sets, since cluster-
ing has to be repeated for all potential subsets. In Basak et al. (1998 feature evaluation
index for feature sets is used which does not require clustering. Eesgl@ction is done by finding
the feature subset with the smallest index. For a second method this evalod#gns minimized
using a Neural Network approach in order to find the relative importahicelividual features. For
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the first method still a search algorithm is necessary. A technique requiisgarch is suggested
by Mitra et al. (2002). This method reduces feature redundancy hypgrg features based on a
pairwise feature similarity measure called maximum information compression. Bptbaches,
Mitra et al. (2002) and Basak et al. (1998), are combined by Li et @0{Rsuggesting a two-level
filter technique. Feature selection is done by first reducing redundanttihen assessing relevance
for clustering of each feature using the fuzzy feature evaluation crmiterio

Since an exhaustive wrapper search based on repeated clusteristgoistimal for our real-
world problem with up to 159 features, a filter approach for unsupahfessture selection is more
promising. Furthermore, we also want to keep features that might shoteaoatuster tendency
but significant patterns in their time history, what is typical e.g. for eartkegial herefore, using a
similar idea as Li et al. (2007) in this study, we introduce a multi-level featlex8on procedure.
We use significance testing using the Wald-Wolfowitz runs test (Wald andowitf, 1940) as a
temporal context dependend feature relevance measure and Saffifimg Maps (SOM) (Koho-
nen, 2001) for redundancy reduction.

Self-Organizing Maps is a popular and widespread unsupervisedriganethod. Especially
for large data sets of high dimensions, SOMs allow an intuitive visualizationeoddita by vector
guantization and dimension reduction. Based on the relatively simple SOlseqation further
processing like clustering or feature grouping can be done.

In Section 2 we give a more detailed introduction into the individual methods Bection 3
presents our feature selection procedure in detail. We assess the rel@hdity approach using
synthetic and real-world data in Section 4.

2. Methods

In this section we introduce the techniques used for our feature selectioadure. We explain
the Wald-Wolfowitz significance test and the Davies-Bouldin cluster validitgxn{avies and
Bouldin, 1979). Furthermore, we introduce the SOM learning algorithm.

2.1 Wald-Wolfowitz Runs Test

The Wald-Wolfowitz runs test can be used to assess the randomnessmf/altied time series by
considering the distribution of runs. A “run” of a series is a maximal segrokatljacent equal
elements (see background coloring in Fig. 1). In general, any time sandsectransformed into a
two-valued one by considering e.g. whether a data item is smaller or largeththanedian of the
series (Fig. 1). In order to find the features that show significantrandem temporal patterns, we
evaluate the test statistic of the runs test:

= == (1)

whereR is a random variable corresponding to the number of runs of a random ¢ines svhich
has the same lengtN as the series of a particular feature under investigation. The variablbe
number of observed runs for that feature. The mean:

2NNt

B[R] = =

+1, )
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Figure 1: Demonstration of runs test for 5 time histories. Horizontal linegespand to median.
Background colorings highlight values above and below median. Wieermloring
changes with time, a new “run” is starting.

and the variance

ON-NT(@2N-N*t - N) 3
N2(N —1) ’ ®)

of R is computed given the number of data items larger and smaller than the médiaan(d

N7) considering the observed time series. Whenever the hypothesis oinaeds is not rejected

(Ziest < 1.96 for a significance level of 5%), the corresponding feature showggnifisant patterns

and therefore has no information content.

Var[R] =

2.2 Cluster Validity

In order to validate that a particular clustering fits the natural groupingeo@ittia, several quality
criteria have been proposed (Halkidi et al., 2002). In the following veeting Davies-Bouldin (DB)
index (Davies and Bouldin, 1979):

c

1 {Dk—i-Dl},

DB = — max (4)
dig

wheredy,; is the distance between cluster centroidand!/, D the average distance to the cluster
centroid within a cluster an@' the number of clusters.

2.3 Self-Organizing Maps

The SOM learning algorithm combines vector quantization (generation aftgpe vectors, black
symbols in Fig. 2a) and an ordered, topology preserving mapping intoca sppdower dimension
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b) SOM layout and hits

a) Data and Prototypes

¢) U-matrix d) CP—)%OM

Figure 2: Example for Self-Organizing Maps applied to a simple 3D-data set.

(Fig. 2b). Usually, SOMs are built on a regular, hexagonal grid. Ea@hunitn is represented
by a prototype vectori,,. For each data samplé (gray symbols in Fig. 2a and 2b) the closest
prototype vectofri. can be found, whereis called the best matching unit (BMU). At each learning
stept, the prototype vectors in the neighborhood of urdre moved towards the selected vedtar

i = 1 + () hen (£) (Ty — 1) (5)

whereh,, (t) defines the Gaussian neighborhood aroundasuitda(t) is the learning rate, both de-
creasing with time. For more details see the SOM-Toolbox implemented in MATLAB Vesanto
et al. (2000).

The SOM can be used to visualize high-dimensional data and thereforatifyidend manually
define clusters e.g. by showing the prototype distance between neigbddB®OM units (U-Matrix
in Fig. 2c, black stands for high distances). Furthermore, since eabh@@otype vector itself
can already be regarded as a cluster centroid, standard clusterinighahgocan directly be applied
on the set of all prototype vectors. In order to find the number of clystéisn the clustering
algorithm is applied for different numbers of clusters. The best clugf&iohosen according to the
lowest Davies-Bouldin index (Davies and Bouldin, 1979; Vesanto andmi, 2000).

In order to reduce redundancy in the data space (correlation hun8@yls can be used by
considering the so-called component planes (CPs, overlaying paneig. ir2d; black stands for
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high values). A CP is built on the trained SOM (units) where each unit is represented by a
particular componentof the corresponding prototype vect@r,. The components of the absolute
correlation matrixA between all CPs is defined as:

| N
Gij = N Z ([ - mng |- (6)
n=1

As proposed by Vesanto and Ahola (1999) the correlation matrix candzkassinput data for the
training of a second SOM on a rectangular grid. The data vegtisrthen defined as:

ft = a.j, (7)

wherea . ; is a column ofA. The so-called component plane SOM (CP-SOM) can be used to
visualize intuitively correlation or similarity between components on a 2D-mage(bwp of Fig.
2d).

Correlated features can be grouped e.g. by clustering the CP-SOMhisragchical clustering
based on the distance matrix of the CP-SOM prototypes (Vesanto and &W2K&2; Barreto, 2007)
(coloring of base map in Fig. 2d). Guerif et al. (2005) propose a retatgtiod, where the features
are weighted during SOM-training based on a simultaneous generate®NIP-S

3. An Unsupervised Feature Selection Procedure

In the previous section we introduced different techniques which we will combine for an un-
supervised feature selection procedure. | order to keep signifieattrés and reduce redundant
information for a feature set generated by different approacheprop®se a three-level feature se-
lection approach which iteratively reduces the number of features. rbisegsing flow is illustrated
in Fig. 3. In the first level we chose potential feature candidates bgsisgethe information con-
tent of each feature individually, while in the second and third level dégecies between features
are considered. In the next sections we discuss each level in more detail.

Level 1: Within Individual Features

In this level we first compute three criteria for each feature:

e RatioR..,/R.ps between reasonably expected raityg, of a featuref derived theoretically
from physical or data processing parameters and observed variaBility = max(f) —

min(f).
o Wald-Wolfowitz test statisti&;..; (equation 1).

e Lowest DB index (equation 4) computed from 1D-K-Means clusteringsvailp 2 to NV,
clusters (€.9N,s=5) .

The first two criteria are used to exclude features. We reject thoseadsgtmoviding no signifi-
cant discrimination between time windows due to small observed rafyes/Robs < Tiimit, €.0.
riumst = 0.1) and which show no significant temporal patter#@s.{ < Zim:). For the amplitude
features from generation methods 5, 6 and 7 no physical limits can be Jinereforey;ni: = 0
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| All Features Stage 1

v

Level 1: Significance of individual Features |
(Range-Test, Runs-Test, 1D-Clustering)
I | | |
| Feature subsets Stage 2 |

YVYY -V

Level 2: Correlation Hunting in individual
Feature Subsets (CP-SOM Clustering)
I I [ - I
| Feature subsets Stage 3 |
[ I I |

Level 3: Correlation Hunting in combined
Feature Subset (CP-SOM Clustering)

Final Feature Subset Stage 4 | | Rejected |<—

Figure 3: Three-level feature selection procedure. Stages 1-&spamd to different feature subsets
after or before particular processing steps. Feature subsets astade8 correspond to
different feature generation methods.

(accepting all features) is used. As mentioned in SectionZ;2,; = 1.96 is an appropriate thresh-
old for the runs test. However, if the duration of expected temporal pattsfonger, increasing
this value may improve the performance.

The DB index is used to assess the cluster tendency of the feature. iféi®ors used together
with Z;.s: in the next level to rank features.

For more discussion on the sensitivity of parameférs s, 7imi: and Zj;,,i;: S€€ Section 4.2,

Level 2: In-between Features of Individual Subsets

In the second level, we consider 7 feature subsets correspondingdifféhnent feature generation
methods (Table 1). Only features accepted by Level 1 are used. Wedins a SOM and afterwards
a CP-SOM for each subset and then apply the CP-SOM clustering. FrmGP-SOM cluster the
features with the lowest DB index and the highest test stati§tig are chosen as representative
features for the particular cluster. Thus, we keep features with bashchester tendency and most
significant temporal patterns. In case both features have the same BNMig @P-SOM, only the
latter one is selected.

Level 3: In-between all Remaining Features

From Level 2 we get a reduced subset for each feature generatibioandn the third level, we
learn a single SOM and CP-SOM combining all subsets together in orderdssassrrelations
between methods. Finally, we chose the features like in Level 2. The &haf eatures can then
be used for further processing i.e. to learn the final SOM and to clusteiatheset.
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Table 2: Results of our feature selection method applied on a simple data example

Feature X Y Z v w
Observed runs 70 77 78 149 154
Runs test statisti€;..; 9.37 8.56 8.44 0.23 0.35
DB Index 0.35 0.46 0.47 0.63 0.56
Selected after Level 1 yes yes yes no no
Index of CP-SOM cluster 1 2 2 - -
Selected after Level 2 yes yes no - -

Table 3: Results of feature selection based on a wrapper algorithm ifopesdata example. Best
feature subset (bold) is found when normed scatter separability crit8rimn the next
subset becomes smaller.

Nclus =10 Nclus =3
Search Step Feature Subset sign (S — Sprev) Feature Subset  sign (S — Sprev)
1 \ X
2 vV, W -1 X, Y +1
3 V, W, X -1 X, Y, Z +1
4 V, W, X, Y +1 XY, Z, W -1
5 V,W, X,Y, Z -1 XY, Z, W,V 0

Simple Example

In Table 2 we demonstrate our feature selection procedure using a simplsetiath5 features
(V. = 300). Values for features(, Y and Z, together defining three clusters, can be found in Fig.
2a. Feature¥” and Z are strongly correlated. The data for the remaining featuresmd I/ are
drawn from a Normal and from a Uniform distribution, respectively. Téraporal context of all
features is given in Fig. 1. We omit the range test in Level 1 and only usgke subset (no Level
3) because the feature have no physical background.

Featured” andWV are correctly rejected by the runs te8t(; < 1.96) because of their temporal
randomness. The result of CP-SOM clustering is shown in Fig. 2d. fesa&fuand Z belong to the
same CP-cluster. Thus, featut¥sandY’, the second one due to the higher runs test statistic
and DB index, are finally selected.

We also test a wrapper approach for feature selection using the sate feet (Table 3). The
forward search based on a normalized cluster scatter separability criteriproposed by Dy and
Brodley (2004) results in a best feature subset includi®v.;,s = 10) or X, Y andZ (N.s = 3),
respectively. Thus, only for the second run the random featuresoarectly rejected. However,
no redundancy reduction is obtained and maximum number of clusters haditited to avoid
overfitting.
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4. Experiments

We conduct experiments using both, synthetic seismic data and real edehgcordings. Syn-
thetic data is used to validate the feature selection procedure, while rddldaba is employed to
show the potentials of the method for seismic wave phase detection.

4.1 Synthetic Data

In order to assess the validity and performance of the feature selectioadure, we apply a 10-
fold cross-validation technique (Dy and Brodley, 2004) on synthetiarseiaetwork data. The
validation is based on hierarchical clusterings of SOM prototype veclbesdata set consists of 4
classes corresponding to 3 different types of seismic waves (RayleigbswLove waves, mixture
of both: class 1-3) and random noise in between (class 4). The clads &b only used for the
error computation.

Level 1 of the feature selection procedulé.{,s = 5, 71imit = 0.1, Zimie = 1.96) is applied on
the complete data set (training and test data) in order to keep the tempdeadtdonthe runs test.
After feature selection, SOM training and clustering using the training data, @uster is classified
with respect to the most frequent class label within. For the testing we corieuBMUs, and thus
the cluster-memberships, of the test data set on the training data set SQddsAor is computed
as the percentage of misclassified data compared to the total number of safplegest data
set for each fold. Finally, the (mean) cross-validated classificatiom 82\CE, Dy and Brodley
(2004)) is calculated.

In order to quantify the improvements made by our new feature selectionagpwe compute
the CVCE for several feature subsets obtained at four stages of dbedure (see Fig. 3) and
for particular feature generation methods (Table 1). It should be ntitatywe do not expect to
achieve a CVCE tending to zero, since the transition between seismic waseatygp@oise can be
continuous, although we introduced a threshold for the class labeling.

Considering the overall trend for each feature generation method in Zabite classification
errors slightly decrease with number of features and therefore with sfdgature selection. Fur-
thermore, comparing the methods, the CVCE decreases significantly wheatalle generation
methods are combined at each stage compared to the individual featasgssubocussing on in-
dividual methods, method 5 (spectral features) seems to provide thdidedinative power for
clustering. For method 7 (amplitude ratios) and method 6 (spectra of polanizltipsoid) the
CVCE increases at stage 3. The best performance (15.8%) is aciiéhembout 57 features from
all methods at stage 3. However, after assessing correlation betwéeatate generation methods
at stage 4, the CVCE is still within the range of standard deviations of staige3 for the combi-
nation of methods. Due to the relatively simple synthetic wavefield, most fasghv significant
patterns and are therefore accepted in feature selection Level 1 vElQ@sesessing the correlations
between features in Level 2 and 3, significantly reduced the set ofésdtor all feature generation
methods. The reduction in Level 2 and 3 does not worsen the classificat@rekcept for feature
generation methods 6 and 7, where probably the number of featuresnéstoo low.

From the cross-validation we conclude that it is sufficient to consider thilffinally reduced
feature subset combining features from different methods (stagehd)dimensionality, and there-
fore computation time and model complexity, is reduced considerably forefuathalysis of the
data set, without significantly losing discriminative power.
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Table 4: Results of cross-validation for a synthetic seismic wavefield. sGlgdated Classifica-
tion Error (CVCE) and Averaged number of features for differenges$eof feature selec-
tion and different feature generation methods (see Fig. 3 and Table 1).

Method 1 2 3 4 5 6 7 all
Percent CVCE

Stage 1 29.7 45.8 30.1 25.2 225 35.0 31.4 17.1
+9.4 +10.3 +11.9 +12.0 +7.7 +8.3 +11.4 +4.3

Stage 2 29.7 45.8 30.1 23.2 20.0 34.0 31.4 16.2
+9.4 +10.3 +11.9 +11.0 <75 +5.6 +11.4 +4.9

Stage 3 27.6 36.9 25.8 22.4 21.5 41.5 39.2 15.8
+7.0 +6.2 +10.2 +8.3 +7.3 +7.0 +6.4 +5.9

Stage 4 - - - - - - - 16.9
- - - - - - - +5.6
Averaged Number of Features
Stage 1 9 18 39 42 25 20 6 159
Stage 2 9 18 39 37 24 15 6 148
Stage 3 5800 6.A15 12518 14.5:2.3 10.5:1.6 6.5-1.2 2.940.5 57.9-3.9
Stage 4 - - - - - - - 22223

4.2 Real-world Data

In this section we apply our procedure to earthquake recordings im trdimd suitable features

which allow to detect the temporal onset of an event, and also to distinguisbdredifferent phases
of arriving waves. First, we use three similar events which were redatithe same receiver and
occurred at different times in the same source region. In Fig. 4 for ezt ¢he three-component
seismogram is shown. The labels and the background coloring on toptmditfarent wave phases
which can be identified using theoretical arrival times and expert kngeled seismologists. Ex-

cept of generation method 1 and 2, which require more than one reaiMeatures are computed
and the feature selection procedure is appli®d.{s = 5, 7iimit = 0.2, Zimic = 4.0).

Our feature selection procedure finds 9 features out of a set of 129:
e Normalized horizontal spectra for frequency bands 6, 8 and 9.
e Normalized vertical spectra for frequency band 2.

Planarity of polarization for frequency band 3.

Component-averaged instantaneous frequency for frequency3band

Normalized semi-minor axis of polarization ellipsoid for frequency band 13and

Difference of semi axis of polarization ellipsoid for frequency band 1.
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Table 5: Classification errors and discriminative power for real-worla daing all features and
subsets (feature generation methods), with and without applying fealectice. S is
computed with respect to complete feature selection using all feattires;(). No feature
from method 7 passed Level 1. Instead results for a random featuaeesghown within
the lower panel.

No Features Selection

All Meth.3 Meth.4 Meth.5 Meth.6 Meth.7
CE;[Z.W 0.16 0.12 0.15 0.23 0.16 0.16
CEfpal 0.19 0.15 0.19 0.25 0.11 0.21
Srsar — S 171.3 -37.7 46.8 72.7 5.1 4.9
Number of features 129 39 36 25 20 9

Features Selection

All Meth.3 Meth.4 Meth.5 Meth.6 Random
CE};W 0.06 0.22 0.13 0.06 0.15 0.18
C’Ef‘mal 0.10 0.29 0.10 0.09 0.15 0.24
Srsar — S 0.0 1.2 6.8 18.2 12.2 52.8
Number of features 9 2 2 8 8 9

Finally, a SOM is trained using the selected features each weighted with.itsvalue. For
a quantitative evaluation of our method, we compute classification errdss @asitive and false
negative) and a measure for discriminative power. For this purposeisev¢he theoretical class
labels (Pn, Pg, Sn and Sg phases, coda of event, noise). The npsrftelass label, resulting
from the projecting of the labeled data on the SOM, is assigned to each S2Munibiguous units
(same number of BMU hits for two or more classes) are counted. Firstjfidaen errorsC Fy
are computed for individual classksIn case a class is not present on the SOM after labélitig,
is set to 1. Finally, the mean over all class€)) is penalized by the rati®,,,,,;, between number
of ambiguous and all SOM units:

CEfmal :CE+(1—CE) - Romp - (8)

The discriminative power between wave phases is measured by the narated separability
criterion.S (Dy and Brodley, 2004) for the data clustering given by the BMUs anid theess labels
on the SOM (without noise). Note, thé&tis a relative measure which is computed with respect to a
second clustering.

The first column of Table 5 shows that the best discrimination of wave phiagerms ofS,
C’E;[mal (false positive) anaﬂE}Tml (false negative) is obtained after feature selection with a fea-
ture vector of significant lower dimension (9). For comparison, usingi8aaly selected features
results in clearly higher classification errors. Considering the featurerggon methods separately,
classification errors for method 5 are similar compared to feature seleciium als methods, al-
though discriminative power is worse. Thus, features representing thdréopgency content of
the wavefield seem to be most suitable. This confirms classification appsogcbeismology like
Joswig (1990) and Riggelsen et al. (2007) where spectral feattgesrgloyed a priori.
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Table 6: Sensitivity of parameters of feature selection algoriti$ivis computed with respect to
Nclus =5, Tlimit = 0.2 anleimit = 4.0.

Number of Clusters Range Limit
Neius 2 5 10 15 20 Tlimit 0.0 0.1 0.2 0.5
(JE]Tmal 0.06 0.06 010 0.8 0.8 CE};W 0.13 0.13 0.06 0.17
CE, 011010 014 010 010 CEp,, 009 009 010 0.20
Sps—S 22.6 0.0 169 7.9 79 | Sps—S 129 129 0.0 4.0
Runs Test Limit

Zlimit 196 3 4 5 6 7 8 9 10 11
CEft.ml 010 0.09 006 009 007 006 012 0.08 0.04 o0.07
CE,y 019 013 010 011 008 005 010 0.06 004 007
Sps—S 202 135 0.0 21.7 261 156 3.7 239 -1.0 5.9

Table 7: Sensitivity of time window length given by paramétef N F AC'.
WINFAC 1 2 4 6 8
CE]TMZ 0.24 0.20 0.06 0.07 0.36
CEGal 0.23 0.30 0.10 0.08 0.36

SENSITIVITY TESTS

In Table 6 we show the sensitivity of parametdig, s, 71imi: andZy;mi¢ DY changing one parameter
while keeping constant the other two. The optimal values for our probleniVar,, = 5 and
rumie = 0.2. IncreasingV..,s seems to lead to overfitting of the data. Thus, features are selected
which do not represent the actual clustering of the data. When moreslassexpected, increasing
N.us May improve results. Fary;,,,;; definition of an optimal value is not so clear. Eg,,,;; > 3
classification errors are slightly lower and quite similar. The best resultsbsaeed forZ;;,,,;; = 4
and, slightly betterZ;;,.;: = 10. Theoretical tests of the runs test show thAat,; of a non-random
time series ¥;.s: > 1.96) depends on data length and number and duration (period) of patterns.
For our problem we expect a minimum pattern length of 2 samples what pon@sto relative low
values (.96 < Z;.s+ < 5). Thus, in order to ensure that we capture all possible patterns antbalso
consider the test results, we ugg,,;; = 4 for our investigations. However, in general, when no a
priori information and is available, a value corresponding to an apptegignificance level should
be used (e.gZ;;m:+ = 1.96 for 5%). Furthermore, we test different cluster validity criteria (Halkidi
et al., 2002) instead of the DB index in feature selection Level 1. Thepeeftrmance is achieved
using the DB index. For instance for ti$g,,, index (Halkidi et al., 2002)3E;[ml = 0.16 and
CE};,q = 0.18 are obtained.

Another important parametet{(/ N F'AC) is related to feature generation. The sensitivity of
the time window length, for which a feature is computed, is investigated in Tabléntlow length
is given byWINFAC - 1/ feent, Wheref..,,; is the center frequency of the overall frequency band
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time [min]

Figure 4: Time histories of all three spatial components for an earthqeaked. On top different
wave phases are indicated. On left hand side a SOM is shown trainefcafiere selec-
tion. Background coloring of seismograms corresponds to SOM colormgivis based
on prototype vector similarity.

we consider for feature generation. Thus, to ensure that at leapeoioe of the signal is present in
a window,WIN F AC should be higher than 1. We find thHat/ N FAC' = 6 is optimal for wave
phase discrimination and feature stability.

Fig. 4 shows a SOM visualization corresponding to the final feature §&g us;,,;; = 10.
A color scale is spread out on top of the SOM based on prototype vector rifiynilahus, SOM
units of similar prototype vectors have similar colorings. Considering the colale of Fig. 4
as background color for the seismogram, the onset of the earthquakaq®vell as the different
phases are clearly highlighted as different SOM units.

CROSSVALIDATION

In a last step we investigate the generalization capability of our procediuaddrger data set of 44
different earthquakes (Table &;,.;: = 1.96). We carry out a 44-fold cross-validation by leaving
out one event at each fold. The previous definition for classificatioor éequation 8) is used.
SOM labeling is done only for three classes (P wave, S wave and noise)ware not able to
identify all weak phases for all events. We obtain similar results with a slightanepnent of 1-
3% for the cross-validated errofs’ C E;,,, compared to SOM training without feature selection.
However, number of features is reduced significantly and featureBerfeaht generation approaches
are combined. For comparison, using only features from the most comnsomo$egical approach
(method 5), yields clearly higher classification errors. Again, randaiufe sets having dimensions
similar to the best sets result in higher errors. Thus, our procedure thedbest combination of
features and significantly reduces model complexity.

5. Conclusions

In this paper, we introduced an unsupervised feature selection precéat seismic wavefield
recordings. The features are computed from different seismic fegameration methods. The
technique is based on a combination of significance testing for individatlres and correlation
analysis using Self-Organizing Maps for feature subsets.
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Table 8: Cross-validation results for data set of 44 earthquakes usatigrés selection (FS), all
feature (noFS), features from generation approach 5 and rarefioré sets.

FS noFS Method 5 Random
PercenCVCEY,,, 33.2+ 17 34.6£ 1.9 41.7£15 43.5£ 1.9
PercenCVCE;ml 33.1+1.7 36.1+ 1.2 41.3+ 1.0 45.3+ 0.9
Number of features 20: 6 136 26 20

We applied the procedure on a synthetic seismic wavefield. Cross-vali@&@iMybased clus-
terings obtained from automatically selected feature subsets showed thasthperformance, con-
sidering classification error and model complexity, can be achieved witmilg/fselected features.

Experiments on real-world data were carried out to test feature seleoti@afthquake detec-
tion and wave type discrimination. By comparing classification errors fotasi of three similar
events, we found that the final set of 9 features provided better disatimirbetween seismic wave
types than using all potential features. We showed that features mo$iasaita those representing
the time-frequency content of the seismogram. Furthermore, sensitivitg afgbrithm parameters
was tested. We found that a priori knowledge about number of classeduration of temporal
patterns can improve results. An optimal time window length for feature gémreiould be given.
Furthermore, we investigated the generalization capability of our proed¢dua larger earthquake
data set using cross-validation. A feature set of significant lower dimerfisiobtained without
increasing mean classification errors compared to the complete feature setmparison with a
classical approach in seismology, results could be improved.

We suggest our approach as a first learning step for advanced/is@gelearning techniques
which rely on large, multi-dimensional time series data sets. Features selerteskismic record-
ings including different types of earthquakes, mining events (explosams other transient phe-
nomena can be used to train e.g. context dependent learning methods imioyBayesian Net-
works (Riggelsen et al., 2007) which are able to classify event type aetéot seismic phases.
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