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Abstract
This study presents an unsupervised feature selection approach for the discovery of significant pat-
terns in seismic wavefields. We iteratively reduce the number of features generated from seismic
time series by first considering significance of individual features. Significance testing is done by
assessing the randomness of the time series with the Wald-Wolfowitz runs test and by comparing
observed and theoretical variability of features. In a second step the in-between feature depen-
dencies are assessed based on correlation hunting in feature subsets using Self-Organizing Maps
(SOMs). We show the improved discriminative power of our procedure compared to manually se-
lected feature subsets by cross-validation applied to synthetic seismic wavefield data. Furthermore,
we apply the method to real-world data with the aim to define suitable features for earthquake
detection and seismic phase classification in seismic recordings.

1. Introduction

Our study is motivated by classification and detection problems in seismology. Due to the high
number of receiver networks monitoring earthquakes worldwide, a largeamount of data is pro-
duced consisting of time histories of ground motion in different spatial directions. Automatic de-
tection and classification of earthquakes is required in order to prepare data for investigation of the
subsurface earth structure and to develop automatic warning systems e.g. at volcanos or to monitor
the compliance with the nuclear test band treaty (CTBTO) (Joswig, 1990; Dai and MacBeth, 1995;
Ohrnberger, 2001; Riggelsen et al., 2007). For these purposes, features are generated from the raw
recordings. Since there are a lot of different, common approaches in seismology, it is not easy to
define an optimal, discriminative and significant feature set. Thus, automatic feature selection is
mandatory. In this study we use 7 common seismic feature generation methods which are all listed
in Table 1. All in all we have a set of 159 features. A feature is computed for a short time window of
the seismogram. We employ unsupervised learning techniques since seismologists often deal with
unknown, complexly composed data. As a first learning step unsupervised feature selection will aid
further processing.

c©2008 Köhler et al..
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Table 1: Seismic feature generation methods, features and number features.

1 Frequency-wavenumber analysis(Kvaerna and Ringdahl, 1986)
Spatial coherency (3 frequency bands and 3 spatial components): 9 features
2 Spatial averaged autocorrelation method(Aki, 1957)
Real and imaginary autocorrelation coefficient (3 frequency bands and 3 spatial components): 18
features
3 Complex 3c-covariance matrix(Vidale, 1986; Park et al., 1987; Jurkevics, 1988)
Several degree of polarization measures, ellipticity, angle of incidence (3frequency bands): 39
features
4 Complex seismic trace analysis(Taner et al., 1979)
Instantaneous attributes (polarization, frequency, polarization directions, 3 frequency bands and
3 spatial components): 42 features
5 Spectral attributes
Normalized horizontal and vertical spectra (10 frequency bands), dominant frequency, band-
width: 25 features
6 Spectra of polarization ellipsoid(Pinnegar, 2006)
Normalized semi-mayor and semi-minor axis of polarization ellipsoid (10 frequency bands): 20
features
7 Amplitude ratios
Real over imaginary part of complex trace, horizontal over vertical component (3 frequency
bands): 6 features

In general, for many applications the number of all potential features can be very high. However,
the information content or relevance of individual features e.g. for clustering or imaging of patterns
in the data may vary considerably. Furthermore, strong correlations between features will occult
important information which is encoded in less or non redundant components of the feature vector.
Thus, the computation time may be unnecessarily increased and the quality of thefinal results may
suffer. Moreover, the higher the dimension of the data, the more data is needed for learning, and the
less suitable is the euclidian distance as a measure of similarity, due to the curse of dimensionality
(Bellman, 1961; Bishop, 2006). Furthermore, interpretation of the resultsis much easier for low
number of features.

While a lot of approaches exist for supervised learning due to availability of labeled training
data, for unsupervised learning feature selection is a more recent topic of research. Several ap-
proaches have been proposed to reduce the number of features, e.g.Principal Component Analysis
(PCA). However, for PCA it is difficult to characterize the reduced dataspace since the (physical)
meaning of the new features generated by linear combinations is unclear. Wrapper algorithms use
a forward or backward selection procedure to search for the featuresubset most relevant for clus-
tering according to a particular evaluation criterion (Dy and Brodley, 2004). The computational
complexity is very high for that approach, especially for high-dimensionaldata sets, since cluster-
ing has to be repeated for all potential subsets. In Basak et al. (1998) afuzzy feature evaluation
index for feature sets is used which does not require clustering. Feature selection is done by finding
the feature subset with the smallest index. For a second method this evaluationindex is minimized
using a Neural Network approach in order to find the relative importance of individual features. For
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the first method still a search algorithm is necessary. A technique requiringno search is suggested
by Mitra et al. (2002). This method reduces feature redundancy by grouping features based on a
pairwise feature similarity measure called maximum information compression. Both approaches,
Mitra et al. (2002) and Basak et al. (1998), are combined by Li et al. (2007) suggesting a two-level
filter technique. Feature selection is done by first reducing redundancyand then assessing relevance
for clustering of each feature using the fuzzy feature evaluation criterion.

Since an exhaustive wrapper search based on repeated clustering is not optimal for our real-
world problem with up to 159 features, a filter approach for unsupervised feature selection is more
promising. Furthermore, we also want to keep features that might show no clear cluster tendency
but significant patterns in their time history, what is typical e.g. for earthquakes. Therefore, using a
similar idea as Li et al. (2007) in this study, we introduce a multi-level feature selection procedure.
We use significance testing using the Wald-Wolfowitz runs test (Wald and Wolfowitz, 1940) as a
temporal context dependend feature relevance measure and Self-Organizing Maps (SOM) (Koho-
nen, 2001) for redundancy reduction.

Self-Organizing Maps is a popular and widespread unsupervised learning method. Especially
for large data sets of high dimensions, SOMs allow an intuitive visualization of the data by vector
quantization and dimension reduction. Based on the relatively simple SOM representation further
processing like clustering or feature grouping can be done.

In Section 2 we give a more detailed introduction into the individual methods used. Section 3
presents our feature selection procedure in detail. We assess the reliabilityof our approach using
synthetic and real-world data in Section 4.

2. Methods

In this section we introduce the techniques used for our feature selection procedure. We explain
the Wald-Wolfowitz significance test and the Davies-Bouldin cluster validity index (Davies and
Bouldin, 1979). Furthermore, we introduce the SOM learning algorithm.

2.1 Wald-Wolfowitz Runs Test

The Wald-Wolfowitz runs test can be used to assess the randomness of a two-valued time series by
considering the distribution of runs. A “run” of a series is a maximal segmentof adjacent equal
elements (see background coloring in Fig. 1). In general, any time series can be transformed into a
two-valued one by considering e.g. whether a data item is smaller or larger than the median of the
series (Fig. 1). In order to find the features that show significant, non-random temporal patterns, we
evaluate the test statistic of the runs test:

Ztest =
r − E[R]
√

Var[R]
, (1)

whereR is a random variable corresponding to the number of runs of a random time series which
has the same lengthN as the series of a particular feature under investigation. The variabler is the
number of observed runs for that feature. The mean:

E[R] =
2N−N+

N
+ 1 , (2)
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Figure 1: Demonstration of runs test for 5 time histories. Horizontal lines correspond to median.
Background colorings highlight values above and below median. Whenever coloring
changes with time, a new “run” is starting.

and the variance

Var[R] =
2N−N+(2N−N+ − N)

N2(N − 1)
, (3)

of R is computed given the number of data items larger and smaller than the median (N+ and
N−) considering the observed time series. Whenever the hypothesis of randomness is not rejected
(Ztest < 1.96 for a significance level of 5%), the corresponding feature shows no significant patterns
and therefore has no information content.

2.2 Cluster Validity

In order to validate that a particular clustering fits the natural grouping of the data, several quality
criteria have been proposed (Halkidi et al., 2002). In the following we use the Davies-Bouldin (DB)
index (Davies and Bouldin, 1979):

DB =
1

C

C
∑

k=1

max
l 6=k

{Dk + Dl

dkl

}

, (4)

wheredkl is the distance between cluster centroidsk and l, D the average distance to the cluster
centroid within a cluster andC the number of clusters.

2.3 Self-Organizing Maps

The SOM learning algorithm combines vector quantization (generation of prototype vectors, black
symbols in Fig. 2a) and an ordered, topology preserving mapping into a space of lower dimension
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Figure 2: Example for Self-Organizing Maps applied to a simple 3D-data set.

(Fig. 2b). Usually, SOMs are built on a regular, hexagonal grid. Eachgrid unit n is represented
by a prototype vector~mn. For each data sample~xt (gray symbols in Fig. 2a and 2b) the closest
prototype vector~mc can be found, wherec is called the best matching unit (BMU). At each learning
stept, the prototype vectors in the neighborhood of unitc are moved towards the selected vector~xt:

~mn = ~mn + α(t)hcn(t)(~xt − ~mn) , (5)

wherehcn(t) defines the Gaussian neighborhood around unitc andα(t) is the learning rate, both de-
creasing with time. For more details see the SOM-Toolbox implemented in MATLABR© by Vesanto
et al. (2000).

The SOM can be used to visualize high-dimensional data and therefore to identify and manually
define clusters e.g. by showing the prototype distance between neighborhood SOM units (U-Matrix
in Fig. 2c, black stands for high distances). Furthermore, since each SOM prototype vector itself
can already be regarded as a cluster centroid, standard clustering algorithms can directly be applied
on the set of all prototype vectors. In order to find the number of clusters, often the clustering
algorithm is applied for different numbers of clusters. The best clustering is chosen according to the
lowest Davies-Bouldin index (Davies and Bouldin, 1979; Vesanto and Alhoniemi, 2000).

In order to reduce redundancy in the data space (correlation hunting),SOMs can be used by
considering the so-called component planes (CPs, overlaying panels in Fig. 2d, black stands for
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high values). A CP is built on the trained SOM (N units) where each unitn is represented by a
particular componenti of the corresponding prototype vector~mn. The components of the absolute
correlation matrixA between all CPs is defined as:

aij =
1

N

N
∑

n=1

‖mni · mnj‖. (6)

As proposed by Vesanto and Ahola (1999) the correlation matrix can be used as input data for the
training of a second SOM on a rectangular grid. The data vector~xt is then defined as:

~xt
def
= a · j , (7)

wherea · j is a column ofA. The so-called component plane SOM (CP-SOM) can be used to
visualize intuitively correlation or similarity between components on a 2D-map (base map of Fig.
2d).

Correlated features can be grouped e.g. by clustering the CP-SOM usinghierarchical clustering
based on the distance matrix of the CP-SOM prototypes (Vesanto and Sulkava, 2002; Barreto, 2007)
(coloring of base map in Fig. 2d). Guerif et al. (2005) propose a relatedmethod, where the features
are weighted during SOM-training based on a simultaneous generated CP-SOM.

3. An Unsupervised Feature Selection Procedure

In the previous section we introduced different techniques which we will now combine for an un-
supervised feature selection procedure. I order to keep significant features and reduce redundant
information for a feature set generated by different approaches, wepropose a three-level feature se-
lection approach which iteratively reduces the number of features. The processing flow is illustrated
in Fig. 3. In the first level we chose potential feature candidates by assessing the information con-
tent of each feature individually, while in the second and third level dependencies between features
are considered. In the next sections we discuss each level in more detail.

Level 1: Within Individual Features

In this level we first compute three criteria for each feature:

• RatioRexp/Robs between reasonably expected rangeRexp of a featuref derived theoretically
from physical or data processing parameters and observed variabilityRobs = max(f) −
min(f).

• Wald-Wolfowitz test statisticZtest (equation 1).

• Lowest DB index (equation 4) computed from 1D-K-Means clusterings allowing 2 toNclus

clusters (e.g.Nclus=5) .

The first two criteria are used to exclude features. We reject those features providing no signifi-
cant discrimination between time windows due to small observed ranges (Rexp/Robs < rlimit, e.g.
rlimit = 0.1) and which show no significant temporal patterns (Ztest < Zlimit). For the amplitude
features from generation methods 5, 6 and 7 no physical limits can be given. Therefore,rlimit = 0
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Figure 3: Three-level feature selection procedure. Stages 1-4 correspond to different feature subsets
after or before particular processing steps. Feature subsets at stage2 and 3 correspond to
different feature generation methods.

(accepting all features) is used. As mentioned in Section 2.2,Zlimit = 1.96 is an appropriate thresh-
old for the runs test. However, if the duration of expected temporal patterns is longer, increasing
this value may improve the performance.

The DB index is used to assess the cluster tendency of the feature. This criterion is used together
with Ztest in the next level to rank features.

For more discussion on the sensitivity of parametersNclus, rlimit andZlimit see Section 4.2.

Level 2: In-between Features of Individual Subsets

In the second level, we consider 7 feature subsets corresponding to thedifferent feature generation
methods (Table 1). Only features accepted by Level 1 are used. We first learn a SOM and afterwards
a CP-SOM for each subset and then apply the CP-SOM clustering. From each CP-SOM cluster the
features with the lowest DB index and the highest test statisticZtest are chosen as representative
features for the particular cluster. Thus, we keep features with both, best cluster tendency and most
significant temporal patterns. In case both features have the same BMU onthe CP-SOM, only the
latter one is selected.

Level 3: In-between all Remaining Features

From Level 2 we get a reduced subset for each feature generation method. In the third level, we
learn a single SOM and CP-SOM combining all subsets together in order to assess correlations
between methods. Finally, we chose the features like in Level 2. The final set of features can then
be used for further processing i.e. to learn the final SOM and to cluster thedata set.
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Table 2: Results of our feature selection method applied on a simple data example.

Feature X Y Z V W

Observed runsr 70 77 78 149 154
Runs test statisticZtest 9.37 8.56 8.44 0.23 0.35
DB Index 0.35 0.46 0.47 0.63 0.56
Selected after Level 1 yes yes yes no no
Index of CP-SOM cluster 1 2 2 - -
Selected after Level 2 yes yes no - -

Table 3: Results of feature selection based on a wrapper algorithm for a simple data example. Best
feature subset (bold) is found when normed scatter separability criterionS for the next
subset becomes smaller.

Nclus = 10 Nclus = 3

Search Step Feature Subset sign (S − Sprev) Feature Subset sign (S − Sprev)

1 V X
2 V, W -1 X, Y +1
3 V, W, X -1 X, Y, Z +1
4 V, W, X, Y +1 X, Y, Z, W -1
5 V, W, X, Y, Z -1 X, Y, Z, W, V 0

Simple Example

In Table 2 we demonstrate our feature selection procedure using a simple dataset of 5 features
(N = 300). Values for featuresX, Y andZ, together defining three clusters, can be found in Fig.
2a. FeaturesY andZ are strongly correlated. The data for the remaining featuresV andW are
drawn from a Normal and from a Uniform distribution, respectively. Thetemporal context of all
features is given in Fig. 1. We omit the range test in Level 1 and only use a single subset (no Level
3) because the feature have no physical background.

FeaturesV andW are correctly rejected by the runs test (Ztest < 1.96) because of their temporal
randomness. The result of CP-SOM clustering is shown in Fig. 2d. FeaturesY andZ belong to the
same CP-cluster. Thus, featuresX andY , the second one due to the higher runs test statisticZtest

and DB index, are finally selected.
We also test a wrapper approach for feature selection using the same feature set (Table 3). The

forward search based on a normalized cluster scatter separability criterion as proposed by Dy and
Brodley (2004) results in a best feature subset includingV (Nclus = 10) orX, Y andZ (Nclus = 3),
respectively. Thus, only for the second run the random features arecorrectly rejected. However,
no redundancy reduction is obtained and maximum number of clusters has to be limited to avoid
overfitting.
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4. Experiments

We conduct experiments using both, synthetic seismic data and real earthquake recordings. Syn-
thetic data is used to validate the feature selection procedure, while real-world data is employed to
show the potentials of the method for seismic wave phase detection.

4.1 Synthetic Data

In order to assess the validity and performance of the feature selection procedure, we apply a 10-
fold cross-validation technique (Dy and Brodley, 2004) on synthetic seismic network data. The
validation is based on hierarchical clusterings of SOM prototype vectors.The data set consists of 4
classes corresponding to 3 different types of seismic waves (Rayleigh waves, Love waves, mixture
of both: class 1–3) and random noise in between (class 4). The class labels are only used for the
error computation.

Level 1 of the feature selection procedure (Nclus = 5, rlimit = 0.1, Zlimit = 1.96) is applied on
the complete data set (training and test data) in order to keep the temporal context for the runs test.
After feature selection, SOM training and clustering using the training data, each cluster is classified
with respect to the most frequent class label within. For the testing we computethe BMUs, and thus
the cluster-memberships, of the test data set on the training data set SOM. A class error is computed
as the percentage of misclassified data compared to the total number of samplesof the test data
set for each fold. Finally, the (mean) cross-validated classification error (CVCE, Dy and Brodley
(2004)) is calculated.

In order to quantify the improvements made by our new feature selection approach, we compute
the CVCE for several feature subsets obtained at four stages of the procedure (see Fig. 3) and
for particular feature generation methods (Table 1). It should be noted,that we do not expect to
achieve a CVCE tending to zero, since the transition between seismic wave types and noise can be
continuous, although we introduced a threshold for the class labeling.

Considering the overall trend for each feature generation method in Table4, the classification
errors slightly decrease with number of features and therefore with stageof feature selection. Fur-
thermore, comparing the methods, the CVCE decreases significantly when allfeature generation
methods are combined at each stage compared to the individual feature subsets. Focussing on in-
dividual methods, method 5 (spectral features) seems to provide the bestdiscriminative power for
clustering. For method 7 (amplitude ratios) and method 6 (spectra of polarization ellipsoid) the
CVCE increases at stage 3. The best performance (15.8%) is achievedwith about 57 features from
all methods at stage 3. However, after assessing correlation between allfeature generation methods
at stage 4, the CVCE is still within the range of standard deviations of stages 1to 3 for the combi-
nation of methods. Due to the relatively simple synthetic wavefield, most features show significant
patterns and are therefore accepted in feature selection Level 1. However, assessing the correlations
between features in Level 2 and 3, significantly reduced the set of features for all feature generation
methods. The reduction in Level 2 and 3 does not worsen the classification rate, except for feature
generation methods 6 and 7, where probably the number of features becomes too low.

From the cross-validation we conclude that it is sufficient to consider onlythe finally reduced
feature subset combining features from different methods (stage 4). The dimensionality, and there-
fore computation time and model complexity, is reduced considerably for further analysis of the
data set, without significantly losing discriminative power.
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Table 4: Results of cross-validation for a synthetic seismic wavefield. Cross-validated Classifica-
tion Error (CVCE) and Averaged number of features for different stages of feature selec-
tion and different feature generation methods (see Fig. 3 and Table 1).

Method 1 2 3 4 5 6 7 all
Percent CVCE

Stage 1 29.7 45.8 30.1 25.2 22.5 35.0 31.4 17.1
±9.4 ±10.3 ±11.9 ±12.0 ±7.7 ±8.3 ±11.4 ±4.3

Stage 2 29.7 45.8 30.1 23.2 20.0 34.0 31.4 16.2
±9.4 ±10.3 ±11.9 ±11.0 ±7.5 ±5.6 ±11.4 ±4.9

Stage 3 27.6 36.9 25.8 22.4 21.5 41.5 39.2 15.8
±7.0 ±6.2 ±10.2 ±8.3 ±7.3 ±7.0 ±6.4 ±5.9

Stage 4 - - - - - - - 16.9
- - - - - - - ±5.6

Averaged Number of Features
Stage 1 9 18 39 42 25 20 6 159
Stage 2 9 18 39 37 24 15 6 148
Stage 3 5.0±0.0 6.7±1.5 12.5±1.8 14.5±2.3 10.5±1.6 6.5±1.2 2.9±0.5 57.9±3.9
Stage 4 - - - - - - - 22.2±2.3

4.2 Real-world Data

In this section we apply our procedure to earthquake recordings in order to find suitable features
which allow to detect the temporal onset of an event, and also to distinguish between different phases
of arriving waves. First, we use three similar events which were recorded at the same receiver and
occurred at different times in the same source region. In Fig. 4 for one event the three-component
seismogram is shown. The labels and the background coloring on top indicate different wave phases
which can be identified using theoretical arrival times and expert knowledge of seismologists. Ex-
cept of generation method 1 and 2, which require more than one receiver, all features are computed
and the feature selection procedure is applied (Nclus = 5, rlimit = 0.2, Zlimit = 4.0).

Our feature selection procedure finds 9 features out of a set of 129:

• Normalized horizontal spectra for frequency bands 6, 8 and 9.

• Normalized vertical spectra for frequency band 2.

• Planarity of polarization for frequency band 3.

• Component-averaged instantaneous frequency for frequency band3.

• Normalized semi-minor axis of polarization ellipsoid for frequency band 1 and3.

• Difference of semi axis of polarization ellipsoid for frequency band 1.
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Table 5: Classification errors and discriminative power for real-world data using all features and
subsets (feature generation methods), with and without applying feature selection. S is
computed with respect to complete feature selection using all features (SFSall). No feature
from method 7 passed Level 1. Instead results for a random feature set are shown within
the lower panel.

No Features Selection
All Meth. 3 Meth. 4 Meth. 5 Meth. 6 Meth. 7

CE+

final 0.16 0.12 0.15 0.23 0.16 0.16
CE−

final 0.19 0.15 0.19 0.25 0.11 0.21
SFSall − S 171.3 -37.7 46.8 72.7 5.1 4.9
Number of features 129 39 36 25 20 9

Features Selection
All Meth. 3 Meth. 4 Meth. 5 Meth. 6 Random

CE+

final 0.06 0.22 0.13 0.06 0.15 0.18
CE−

final 0.10 0.29 0.10 0.09 0.15 0.24
SFSall − S 0.0 1.2 6.8 18.2 12.2 52.8
Number of features 9 2 2 8 8 9

Finally, a SOM is trained using the selected features each weighted with itsZtest value. For
a quantitative evaluation of our method, we compute classification errors (false positive and false
negative) and a measure for discriminative power. For this purpose, weuse the theoretical class
labels (Pn, Pg, Sn and Sg phases, coda of event, noise). The most frequent class label, resulting
from the projecting of the labeled data on the SOM, is assigned to each SOM unit. Ambiguous units
(same number of BMU hits for two or more classes) are counted. First, classification errorsCEk

are computed for individual classesk. In case a class is not present on the SOM after labeling,CEk

is set to 1. Finally, the mean over all classes (CE) is penalized by the ratioRamb between number
of ambiguous and all SOM units:

CEfinal = CE + (1 − CE) · Ramb . (8)

The discriminative power between wave phases is measured by the normed scatter separability
criterionS (Dy and Brodley, 2004) for the data clustering given by the BMUs and their class labels
on the SOM (without noise). Note, thatS is a relative measure which is computed with respect to a
second clustering.

The first column of Table 5 shows that the best discrimination of wave phases in terms ofS,
CE+

final (false positive) andCE−
final (false negative) is obtained after feature selection with a fea-

ture vector of significant lower dimension (9). For comparison, using 9 randomly selected features
results in clearly higher classification errors. Considering the feature generation methods separately,
classification errors for method 5 are similar compared to feature selection using all methods, al-
though discriminative power is worse. Thus, features representing the time-frequency content of
the wavefield seem to be most suitable. This confirms classification approaches in seismology like
Joswig (1990) and Riggelsen et al. (2007) where spectral features are employed a priori.
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Table 6: Sensitivity of parameters of feature selection algorithm.S is computed with respect to
Nclus = 5, rlimit = 0.2 andZlimit = 4.0.

Number of Clusters Range Limit
Nclus 2 5 10 15 20 rlimit 0.0 0.1 0.2 0.5
CE+

final 0.06 0.06 0.10 0.8 0.8 CE+

final 0.13 0.13 0.06 0.17
CE−

final 0.11 0.10 0.14 0.10 0.10 CE−
final 0.09 0.09 0.10 0.20

SFS − S 22.6 0.0 16.9 7.9 7.9 SFS − S 12.9 12.9 0.0 4.0

Runs Test Limit
Zlimit 1.96 3 4 5 6 7 8 9 10 11
CE+

final 0.10 0.09 0.06 0.09 0.07 0.06 0.12 0.08 0.04 0.07
CE−

final 0.19 0.13 0.10 0.11 0.08 0.05 0.10 0.06 0.04 0.07
SFS − S 20.2 13.5 0.0 21.7 26.1 15.6 3.7 23.9 -1.0 5.9

Table 7: Sensitivity of time window length given by parameterWINFAC.

WINFAC 1 2 4 6 8
CE+

final 0.24 0.20 0.06 0.07 0.36
CE−

final 0.23 0.30 0.10 0.08 0.36

SENSITIVITY TESTS

In Table 6 we show the sensitivity of parametersNclus, rlimit andZlimit by changing one parameter
while keeping constant the other two. The optimal values for our problem are Nclus = 5 and
rlimit = 0.2. IncreasingNclus seems to lead to overfitting of the data. Thus, features are selected
which do not represent the actual clustering of the data. When more classes are expected, increasing
Nclus may improve results. ForZlimit definition of an optimal value is not so clear. ForZlimit > 3
classification errors are slightly lower and quite similar. The best results areobtained forZlimit = 4
and, slightly better,Zlimit = 10. Theoretical tests of the runs test show thatZtest of a non-random
time series (Ztest > 1.96) depends on data length and number and duration (period) of patterns.
For our problem we expect a minimum pattern length of 2 samples what corresponds to relative low
values (1.96 < Ztest < 5). Thus, in order to ensure that we capture all possible patterns and alsoto
consider the test results, we useZlimit = 4 for our investigations. However, in general, when no a
priori information and is available, a value corresponding to an appropriate significance level should
be used (e.g.Zlimit = 1.96 for 5%). Furthermore, we test different cluster validity criteria (Halkidi
et al., 2002) instead of the DB index in feature selection Level 1. The bestperformance is achieved
using the DB index. For instance for theSDbw index (Halkidi et al., 2002)CE+

final = 0.16 and

CE−
final = 0.18 are obtained.
Another important parameter (WINFAC) is related to feature generation. The sensitivity of

the time window length, for which a feature is computed, is investigated in Table 7.Window length
is given byWINFAC · 1/fcent, wherefcent is the center frequency of the overall frequency band
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Figure 4: Time histories of all three spatial components for an earthquake record. On top different
wave phases are indicated. On left hand side a SOM is shown trained afterfeature selec-
tion. Background coloring of seismograms corresponds to SOM coloring which is based
on prototype vector similarity.

we consider for feature generation. Thus, to ensure that at least oneperiod of the signal is present in
a window,WINFAC should be higher than 1. We find thatWINFAC = 6 is optimal for wave
phase discrimination and feature stability.

Fig. 4 shows a SOM visualization corresponding to the final feature set using Zlimit = 10.
A color scale is spread out on top of the SOM based on prototype vector similarity. Thus, SOM
units of similar prototype vectors have similar colorings. Considering the colorscale of Fig. 4
as background color for the seismogram, the onset of the earthquake (Pn) as well as the different
phases are clearly highlighted as different SOM units.

CROSS-VALIDATION

In a last step we investigate the generalization capability of our procedure for a larger data set of 44
different earthquakes (Table 8,Zlimit = 1.96). We carry out a 44-fold cross-validation by leaving
out one event at each fold. The previous definition for classification error (equation 8) is used.
SOM labeling is done only for three classes (P wave, S wave and noise) since we are not able to
identify all weak phases for all events. We obtain similar results with a slight improvement of 1-
3% for the cross-validated errorsCV CEfinal compared to SOM training without feature selection.
However, number of features is reduced significantly and features of different generation approaches
are combined. For comparison, using only features from the most common seismological approach
(method 5), yields clearly higher classification errors. Again, random feature sets having dimensions
similar to the best sets result in higher errors. Thus, our procedure finds the best combination of
features and significantly reduces model complexity.

5. Conclusions

In this paper, we introduced an unsupervised feature selection procedure for seismic wavefield
recordings. The features are computed from different seismic featuregeneration methods. The
technique is based on a combination of significance testing for individual features and correlation
analysis using Self-Organizing Maps for feature subsets.
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Table 8: Cross-validation results for data set of 44 earthquakes using features selection (FS), all
feature (noFS), features from generation approach 5 and random feature sets.

FS noFS Method 5 Random
PercentCV CE+

final 33.2± 1.7 34.6± 1.9 41.7± 1.5 43.5± 1.9
PercentCV CE−

final 33.1± 1.7 36.1± 1.2 41.3± 1.0 45.3± 0.9
Number of features 20± 6 136 26 20

We applied the procedure on a synthetic seismic wavefield. Cross-validatingSOM-based clus-
terings obtained from automatically selected feature subsets showed that thebest performance, con-
sidering classification error and model complexity, can be achieved with the finally selected features.

Experiments on real-world data were carried out to test feature selection for earthquake detec-
tion and wave type discrimination. By comparing classification errors for a data set of three similar
events, we found that the final set of 9 features provided better discrimination between seismic wave
types than using all potential features. We showed that features most suitable are those representing
the time-frequency content of the seismogram. Furthermore, sensitivity of the algorithm parameters
was tested. We found that a priori knowledge about number of classes and duration of temporal
patterns can improve results. An optimal time window length for feature generation could be given.
Furthermore, we investigated the generalization capability of our procedure for a larger earthquake
data set using cross-validation. A feature set of significant lower dimension is obtained without
increasing mean classification errors compared to the complete feature set. In comparison with a
classical approach in seismology, results could be improved.

We suggest our approach as a first learning step for advanced supervised learning techniques
which rely on large, multi-dimensional time series data sets. Features selected from seismic record-
ings including different types of earthquakes, mining events (explosions) and other transient phe-
nomena can be used to train e.g. context dependent learning methods like Dynamic Bayesian Net-
works (Riggelsen et al., 2007) which are able to classify event type and todetect seismic phases.
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