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Abstract

Nonlinear dimensionality reduction aims at providing low-dimensional representions of
high-dimensional data sets. Many new methods have been recently proposed, but the
question of their assessment and comparison remains open. This paper reviews some of the
existing quality measures that are based on distance ranking and K-ary neighborhoods. In
this context, the comparison of the ranks in the high- and low-dimensional spaces leads to
the definition of the co-ranking matrix. Rank errors and concepts such as neighborhood
intrusions and extrusions can be associated with different blocks of the co-ranking matrix.
The considered quality criteria are then cast within this unifying framework and the blocks
they involve are identified. The same framework allows us to propose simpler criteria,
which quantify two aspects of the embedding, namely its overall quality and its tendency
to favor either intrusions or extrusions. Eventually, a simple experiment illustrates the
soundness of the approach.

1. Introduction

Dimensionality reduction (DR) encompasses techniques that can provide a meaningful low-
dimensional representation of high-dimensional data. Linear DR is well known, with tech-
niques such as principal component analysis (Jolliffe, 1986) and classical metric multidi-
mensional scaling (Young and Householder, 1938; Torgerson, 1952). In contrast, nonlinear
dimensionality reduction (Lee and Verleysen, 2007) (NLDR) emerged later, with nonlinear
variants of multidimensional scaling (Shepard, 1962; Kruskal, 1964), such as Sammon’s non-
linear mapping (Sammon, 1969). For the past twenty five years, this field of research has
deeply evolved and after some interest in neural approaches (Kohonen, 1982; Kramer, 1991;
Oja, 1991; Mao and Jain, 1995), the community has recently focused on spectral techniques
(Scholkopf et al., 1998; Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi,
2003; Weinberger and Saul, 2006). Modern NLDR includes the domain of manifold learn-
ing and is also closely related to graph embedding (Di Battista et al., 1999) and spectral
clustering (Bengio et al., 2003; Saerens et al., 2004; Brand and Huang, 2003).

In the most general context, dimensionality reduction transforms a set of N high-
dimensional vectors, denoted E = [§;]i<i<n, into N low-dimensional vectors, denoted
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X = [xi]i<i<n. In manifold learning, it is assumed that the vectors in E are sampled
from a smooth manifold. Under this hypothesis, the goal of NLDR is then to re-embed the
manifold in a space of lower dimensionality, without modifying its topological properties.
For this purpose, the embedding theorem (Whitney, 1936) can help deduce the lowest em-
bedding dimensionality, which is related to the manifold intrinsic dimensionality (Fukunaga,
1982).

In practice however, neither the intrinsic dimensionality nor the topological properties
can be easily identified, starting from a set of points. Therefore, the goal of NLDR is most
often to preserve simpler geometrical properties of the data set, which are indicated for
instance by some sort of neighborhood relationships (Kohonen, 1982), such as proximities
or similarities. In other words, NLDR provides some low-dimensional representation that
is meaningful in some sense, with respect to those specific relationships. As a well known
example, proximities can be obtained by measuring pairwise distances (Sammon, 1969;
Demartines and Hérault, 1997) in data set = with some metric. Sometimes the coordinates
in 2 are unknown and the collected data is already expressed as pairwise distances. If the
data set does not specify all distances, then the problem can elegantly be modeled using
a graph. In this case, edges are present for known entries of the pairwise distance matrix
and the edge weights can be binary- or real-valued, depending on the data nature. Some
NLDR techniques also involve a graph even if all pairwise distances are available. For
instance, a graph can be used to focus on small neighborhoods (Roweis and Saul, 2000) or
to approximate geodesic distances (Tenenbaum et al., 2000; Lee and Verleysen, 2004) with
weighted shortest paths. This illustrates that NLDR and graph embedding share many
similarities.

As a matter of fact, the scientific community has been focusing on designing new NLDR
methods and the question of quality assessment remains mostly unanswered. As many
NLDR methods optimize a given objective function, a simplistic way to assess the quality is
to look at the value of the objective function after convergence. Obviously, this allows one
to compare several runs with e.g. different settings, but it makes the comparison of different
methods unfair. Another obvious criterion is the reconstruction error. If a NLDR technique
provides us with a mapping M such that x = M (), then the reconstruction error can be
evaluated as the expectation Fre. = E{(& — M™1(M(€)))?}. The reconstruction error is a
universal quality criterion, but it requires the availability of both M and M~! in closed
form, whereas most NLDR methods are nonparametric (they merely provide values of M
for the known vectors £;). The minimization of the reconstruction error is the approach
that is followed by parametric methods, such as PCA and nonlinear auto-encoders (Kramer,
1991; Oja, 1991). Still another approach mentioned in the literature consists in using an
indirect performance index. In the case of labeled data, the classification error is a typical
choice; see for instance (Saul and Roweis, 2003) and other references in (Venna, 2007).
Eventually, a last possibility consists in sticking to the intrinsic goal of NLDR and we can
try to assess the preservation of the data set geometrical properties. Quality assessment
then relies on the same principles as those that guide the design of an objective function.
However, as the objective function needs to be optimized, it must fulfill some requirements,
such as being continuous and differentiable. In contrast, these constraints can be relaxed in
the definition of a quality criterion, as it just needs to be evaluated. This opens an avenue
to potentially more complex quality criteria that more faithfully assess the preservation of
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the data set properties. First attempts in this direction can be found in the particular case
of self-organizing maps (Kohonen, 1982); see for instance the topographic product (Bauer
and Pawelzik, 1992) and the topographic function (Villmann et al., 1997). More recently,
new criteria for quality assessment have been proposed, with a broader applicability, such as
the trustworthiness and continuity measures (Venna and Kaski, 2001), the local continuity
meta-criterion (Chen and Buja, 2006), and the mean relative rank errors (Lee and Verleysen,
2007). All these criteria analyze what happens in K-ary neighborhoods, for a varying size
K. In practice, these neighborhoods result from the ranking of distance measures. This
is a fundamental difference, compared to older quality criteria that typically quantify the
preservation of pairwise distances, by means of a “stress” function (Kruskal, 1964; Sammon,
1969).

The first aim of this paper is to review some of the recently proposed criteria that
rely on ranks and K-ary neighborhoods. Next, the definition of a co-ranking matrix (Lee
and Verleysen, 2008) allows us to compare them and to establish a unifying framework.
Eventually, this framework also provides us with arguments for proposing new criteria that
combine both simplicity and efficiency.

This paper is organized as follows. Section 2 introduces the notations for distances,
ranks, and neighborhoods. Section 3 reviews several rank-based criteria found in the liter-
ature. Section 4 unifies the different approaches and proposes new criteria. Section 5 gives
a few experimental results. Finally, Section 6 draws the conclusions.

2. Distances, ranks, and neighborhoods

Most NLDR techniques involve distances in some way or another. The symbol d;; denotes
the distance from &; to §; in the high-dimensional space. Similarly, d;; is the distance from
x; to x; in the low-dimensional space. Notice that we assume that ;; = 0;; and d;; = dj;,
although this hypothesis is not always required. For instance, it does not hold true if J;;
and ¢;; stem from distinct experimental measurements. Starting from distances, we can
compute ranks.

The rank of §; with respect to §; in the high-dimensional space is written as p;; = [{k :
di < 0j5 or (0jr, = 6;5 and 1 < k < j < N)}|. Similarly, the rank of x; with respect to x;
in the low-dimensional space is rj; = [{k : di, < djj or (dj, = dijj and 1 < k < j < N)}.
Hence, reflexive ranks are set to zero (p;; = r;; = 0) and ranks are unique, i.e. there are no
ex aequo ranks: p;; # pii, for k # j, even if 6;; = d;,. This means that nonreflexive ranks
belong to {1,..., N — 1}. The nonreflexive K-ary neighborhoods of &, and x; are denoted
by v ={j : 1 <p;; <K} and nf* = {j : 1 <r;; < K}, respectively.

The co-ranking matriz (Lee and Verleysen, 2008) can then be defined as

Q = [grili<ki<n—1  with g = [{(i,7) : pij = k and ry; = 1}] . (1)

The co-ranking matrix is the joint histogram of the ranks and is actually a sum of N
permutation matrices of size N — 1. With an appropriate gray scale, the co-ranking matrix
can also be displayed and interpreted in a similar way as a Shepard diagram (Shepard,
1962). Historically, this scatterplot has often been used to assess results of multidimensional
scaling and related methods (Demartines and Hérault, 1997); it shows the distances 6;; with
respect to the corresponding distances d;j, for all pairs (7, j), with ¢ # j. The analogy with
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a Shepard diagram suggests that meaningful criteria should focus on the upper and lower
triangle of the co-ranking matrix Q. Following this line, we define the rank error to be the
difference p;; — 73;. We call an intrusion the event of a positive rank error for some pair
(7,7). In other words, for values of K such that r;; < K < p;j, the jth vector is an intruder
in the K-ary neighborhood nzK , with respect to the genuine neighborhood I/Z-K . Similarly,
an extrusion denotes the event of a negative rank error. The amplitude of an intrusion or
extrusion is the absolute value of the corresponding rank error.

In order to focus on K-ary neighborhoods, we also define a K-intrusion (resp. K-
extrusion) to be the conjunction of an intrusion (resp. extrusion) for some pair (i, ) with
the event r;; < K (resp. pjj < K). We can further distinguish mild and hard K-intrusions.
The former correspond to the event 7;; < p;; < K, whereas the latter is associated with
the event 7;; < K < p;j. Similar definitions for mild and hard K-extrusions can be de-
duced. Intuitively, mild K-intrusions and mild K-extrusions correspond to vectors that are
respectively “promoted” and “downgraded”, but still remain in both VZ»K and nZK .

The various types of intrusions and extrusions can be associated with different blocks
of the co-ranking matrix, as illustrated in Fig. 1. The idea is to concentrate on K-ary
neighborhoods and thus on the four blocks that separate the first K rows and columns.
Therefore, if we define Fx = {1,..., K} and Lg = {K + 1,..., N — 1}, the index sets of
the upper-left, upper-right, lower-left, and lower-right blocks are given by UL g = Fg x Fg,
URg =Fg x Lg, LLg = Lg X Fg, and LR = L x Lg. Similarly, the block covered by
ULk can be split into its main diagonal D = {(i,7) : 1 < i < K} and lower and upper
triangles LTx = {(i,j) : 1 <i < K and j < i} and UTg = {(¢,7) : 1 <i < K and j > i}.
According to this division, K-intrusions and K-extrusions are located in the lower and
upper trapezes, respectively (i.e. LTx ULLg and UTx U URg). Hard K-intrusions and
K-extrusions are found in the blocks LLx and URf, respectively. In a similar way, mild
K-intrusions and K-extrusions are counted in the triangles LTy and UTg, respectively.

Mild K-extrusions Hard K-intrusions

1 K N-1- T
1 ‘0’
‘.. v v
Mild K-intrusions o &
K : “0

Hard K-intrusions _I_+
N-1

h I
pi Positiverank error B&™ p;—1; =0

Figure 1: Block division of the co-ranking matrix, showing the different types of intrusions
and extrusions, and their relationship with the rank error.

e

|
I .| Negative rank error
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3. Review of existing quality criteria

This section reviews some recently published criteria that rely on ranks and K-ary neigh-
borhoods. Beside the definition found in the literature, we give an equivalent expression in
terms of the co-ranking matrix.

The trustworthiness and continuity (T&C) measures (Venna and Kaski, 2001, 2006) are
defined as:

N
2 2
Mp(K)=1—--Y" > (pj-K)=1—— Y  (k—K)qu , (2)
i=1 jenf\vK K (kieLLy
2 2
Mo(K)=1-=—-Y Y (rg—K)=1-— Y  (I-K)qu , (3)
i=1 jerK\nk K (k1) eUR
where the normalizing factor
G _ | NK@N-3K-1) if K < N/2 @
K N(N-K)(N—-K—-1) if K>N/2

considers the worst case (Venna, 2007), i.e. ranks are reversed in the low-dimensional space
and the co-ranking matrix is anti-diagonal. Both T&C can theoretically vary between 0 and
1, although the worst case is seldom encountered in practice. Notice that the embedding
quality is described by two criteria, which distinguish two types of errors. Faraway vectors
that become neighbors decrease the trustworthiness, whereas neighbors that are embedded
faraway from each other decrease the continuity. Eventually, the reformulation in terms of
the co-ranking matrix shows that the trustworthiness is related to the hard K-intrusions,
whereas the continuity involves the hard K-extrusions, with some weighting.

The mean relative rank errors (Lee and Verleysen, 2007) (MRRESs) rely on the same
principle as the trustworthiness and continuity. They are defined as

N
W (K) = 1 ZZ lpij —rij| 1 Z |k —1 (5)
n = H - - H I gkl
K - Pij K
=1 ]En,{( (k,l)GULKU]L]LK

1 & i — il 1 Ik —1|

Tij H
i=1 jeyk i K (k) eUL g UUR

where the normalizing factor Hx = N Zszl |N — 2k|/k considers the worst case, like that
of T&C. The differences between the MRREs and the T&C hold in the weighting of the
elements qx; and the blocks of Q that are covered. The MRREs involve the first K rows
and colums of Q. Hence, the first error involves all K-intrusions (hard and mild), along
with the mild K-extrusions. The second error takes into account all K-extrusions and the
mild K-intrusions.

The local continuity meta-criterion (Chen and Buja, 2006) (LCMC) is defined as

VoK) — - al K (K K? K, 1 -
Le NEK Zi_l MUIT N 1) T1-N T NKE (mz)em -
- ’ K
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where the subtracted term is a “baseline” that corresponds to the expected overlap between
two subsets of K elements out of N — 1. In contrast to the MRREs and T&C, the LCMC
yields a single quantity that is computed over the block ULk of Q. Notice also that the
elements qi; in the block ULgx are not weighted in the sum and that the normalization is
trivial.

From an intuitive point of view, T&C and MRRESs try to detect what goes wrong in a
given embedding, whereas the LCMC accounts for things that work well. The prominent
strength of T&C and MRRES is their ability to distinguish two sorts of undesired events.
But, in contrast to the LCMC, they cannot directly express the overall performance of an
NLDR method by means of a single scalar.

4. Unifying framework

The error and quality measures described in the previous section can be related to the
concepts of precision and recall (P&R) in the domain of information retrieval (Venna and
Kaski, 2007). The precision is the proportion of relevant items among the retrieved ones,
whereas the recall is the proportion of retrieved items among the relevant ones. For rank-
based criteria, relevant items are the indices that belong to l/Z-K , whereas nZK contains the
retrieved indices. The P&R are themselves related to the concepts of false positive and false
negative in classification. False positives decrease the precision and false negatives decrease
the recall. If we compare the retrieved neighborhoods to the relevant ones, the blocks of
Q covered by ULk, LLg, URg, and LRy contain the true positives, the false positives,
the false negatives, and the true negatives, respectively. Hence, the LCMC quantifies the
true positives, the T&C focus on the false positives and false negatives, and the MRRESs
encompass the positives (true and false) and negatives (true and false). Obviously, as nf
and I/Z»K have the same size, the numbers of false positives and false negatives are the same.
Each element of v/ that is missed in n (a false negative) is replaced with an incorrect
neighbor (a false positive). Formally, as Q is a sum of N permutation matrices, we can see
that Zl]\i Il g = N and Zg;ll g = N. As we compute ranks starting from N reference
points, we have always N kth neighbors. Therefore, we have

>, = >, au=KNand Y aqu= Y,k au- (8)

(k},l)EU]LKU]L]LK (k,l)eULKUURK (k,l)e]L]LK (k‘,l)EURK

This shows that the numbers of hard K-intrusions and hard K-extrusions are equal. As
a corollary, without an appropriate weighting of the elements ¢x;, we would end up with
the equalities M1 (K) = Mc(K) and W, (K) = Wy, (K). On the other hand, the absence of
weighting in the LCMC is obviously not critical.

At this point, we see that the analogy between T&C on one side, and false positives
and negatives on the other side, must be interpreted with caution. Hence, T&C do not aim
at counting the fraction of false positives/negatives in K-ary neighborhoods. Instead, their
goal rather consists in estimating how bad data vectors are misranked, by means of some
weighting. This suggests that meaningful criteria should be computed on both sides of the
diagonal of the co-ranking matrix Q, in order to optimally reveal the dominance of either
intrusions or extrusions. Keeping the principle of weighted fractions, we can account for all
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K-intrusions and K-extrusions by defining

. 1 k— 1)
Wy (K) = — Z ( kw) Tl 9)
K (k)eLTxULLy

Z C ;wk)v akl (10)

(k,1)eUT g UUR

1

v, W _
W) = 5
where Cx = NZ,Ile max{0, N — 2k} /k" normalizes with respect to the worst case. The
exponents v and w can be adjusted in order to emphasize large rank differences, relatively
to the reference rank. Choosing v = 1 and w = 1 gives the same weighting as in MRREs,
whereas the combination v = 1 and w = 0 leads to a similar weighting as that of T&C.
Looking at the blocks they are covering, the two proposed criteria occupy an intermediate
position between T&C and MRREs: they involve more elements than the former, but fewer
than the latter.

As a matter of fact, quantities such as W™ (K) and Wy (K) rely on a more or less
arbitrary weighting. On the other hand, based on the observation that the numbers of hard
K-intrusions and hard K-extrusions are equal, unweighted fractions seem to be useless at
first sight. However, if we follow the same idea as that behind the LCMC, we can focus on
what happens inside K-ary neighborhoods and write (Lee and Verleysen, 2008)

1 1
UN(K):W Z qrl UX(K) = ﬁ Z qkl (11)
(k,1)EUT (k,1)ELT ¢
and 1
Up(K) = "N Z Qkl - (12)
(k,l)eDg

The first two quantities correspond to the fractions of mild K-intrusions and mild K-
extrusions, respectively. The quantity Up(K) indicates the fraction of vectors that keep the
same rank in both VZ-K and nZK . The sum of these three fractions is closely related to the
LCMC (up to the baseline term); it can be written as

K
Qnx(K) = Up(K) + Ux(K) + Ux(K) :ULC(K)‘f‘m (13)
and quantifies the overall quality of an embedding. On the other hand, the difference of the
two fractions Un(K) and Ux(K') can be denoted by

Byxx(K) = Un(K) — Ux(K) . (14)

This quantity indicates the “behavior” of an NLDR method, that is, whether it tends to
produce an “intrusive” (Byx(K) > 0) or “extrusive” (Bnx(K) < 0) embedding. Notice
that (8) guarantees that Byx(K) is equal to the difference between the fractions of all K-
intrusions and all K-extrusions (both mild and hard ones). This can be formally written as
Brx(K) = Wy’ — wy?.

In the same spirit as Qnx(K) and Byx(K), the distinction between overall quality and
behavior can be extended to the other criteria. For this purpose, one can consider the
following quantities:
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o Qro(K) = Mp(K) + Mo(K) and Bro(K) = Mo(K) — My (K) for T&C,
o Qn(K)=2-W,(K)—-W,(K) and By, (K) = W,(K)—W,(K) for the MRRESs, and
o Qunx(K) =2 - WY"(K) - Wy (K) and Biyx(K) = W™ (K) = W™ (K) for the

weighted fractions of intrusions and extrusions.

Curves with respect to the neighborhood size K can be drawn in simple diagrams, as shown
in the next section.

5. Experiment: the hollow sphere

In order to illustrate the different quality criteria, thousand points are randomly drawn
from a simple manifold, namely a hollow sphere whose radius is equal to one. A first
data set includes the noisefree points, whereas the second is formed by adding Gaussian
noise with standard deviation equal to 0.05 to the same points. Next, the manifold has
been embedded in a two-dimensional space with Sammon’s nonlinear mapping (Sammon,
1969) (NLM) and curvilinear component analysis (Demartines and Hérault, 1997) (CCA).
Notice that we have implemented the version of CCA described in (Hérault et al., 1999),
which proves to be more robust against noise. The literature indicates (Lee and Verleysen,
2007; Venna and Kaski, 2006) that NLM is known to “crush” the manifold (faraway points
can become neighbors), whereas CCA can “tear” the manifold (some close neighbors can
be embedded faraway from each other). In other words, this means that NLM tends to
produce “intrusive” embeddings whereas CCA rather works in an “extrusive” way.

In order to present results that can be easily compared, the following quantities are
displayed:

e Qny(K) and B, (K) in Fig. 2,

o Qlnx(K) and Blyx(K) in Fig. 3,
e Qrc(K) and BTC(K) in Fig. 4,

o QWNX( ) and B Nx

e Onx(K) and Byx(K) in Fig. 6.

In this way, each pair of curves includes an overall quality criterion and a behavior indicator.
All figures contain as many pairs of curves as there are methods or data sets to compare. The
left diagram of each figure shows the whole curves, for 1 < K < N — 1; the second diagram
in the upper right corner focuses on the quality criterion for small values of K, whereas
the third diagram in the lower right corner does the same for the behavior indicator. In
Fig. 6, the dotted ascending line represents the LCMC baseline and highlights the connection
between Urc(K) and Qnx(K).

As can be seen, all five pairs of curves show that (i) CCA outperforms NLM and (ii)
these two methods have antagonist behaviors, as previously mentioned. Looking specif-
ically at quantities that involve a weighting of the co-ranking matrix elements, we can
confirm that for small values of K similarities exist between pairs {Qn,(K), B (K)}
and {QWNX( ) B&&X(K)} on the one hand, and between pairs {Qrc(K), Brc(K)} and

K) in Fig. 5, and
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Figure 2: Quality assessment of the hollow sphere embedding: Q}“}(K ) and By (K) for
NLM and CCA, for noisefree as well as noisy data.

{Q}N’?\IX(K ), Bvlv’gx(K )} on the other hand. For larger values, we can see that the common
weighting shared by {Qn,(K), By, (K)} and {Qvlv’ll\IX(K), B‘}V;IX(K)} gives a higher impor-
tance to local errors; as a consequence, the curves essentially remain flat when K grows. In
contrast, the similar weightings of {Qrc(K), Brc(K)} and {inﬁ?lx(K ) B‘}V’gx(K )} put all
ranks errors on the same footing. This explains why for these criteria the curves of NLM
and CCA rejoin or cross each other as K grows. It is noteworthy that the curves associated
with T&C drop because the considered blocks start shrinking as soon as K > N/2, whereas
the triangles involved in {in’%x(K )7BV1V’1(\)IX(K )} keep growing. As to noise, its absence
or presence has little influence on the four pairs of weighted fractions, although a slight
difference can be observed in favor of the noisefree data set.

At this point, an important result is the ability of Qnx(K) and Byx(K) to distinguish
the antagonist behaviors of NLM and CCA without any (arbitrary) weighting of the co-
ranking matrix elements. For instance, Qnx(K) shows that if CCA succeeds in preserving
local neighborhoods better than NLM, this is at the expense of sacrifying the preservation
of the global manifold shape. This is illustrated by the crossing of CCA and NLM curves for
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Figure 3: Quality assessment of the hollow sphere embedding;: Qxl)v:ll\TX (K) and Bvlvﬁlx(K ) for
NLM and CCA, for noisefree as well as noisy data.

K =~ 500 in Fig. 6. Unweighted fractions also clearly identify the effect of noise. For NLM
as well as CCA and for small values of K, a marked gap separates the curves associated
with the noisy and noisefree data sets. This gap then vanishes as K grows. This is expected
and corresponds to noise flattening on small scales. In particular, the evolution of Byx (K)
for the noisy data set embedded with CCA conveys interesting information. This method
is known to be “extrusive” and it indeed tears the sphere. Locally however, noise must be
flattened, what corresponds to an intrusive behavior. Such a behavior reversion is nicely
rendered by Bnx(K), not by the other criteria. The explanation resides in the fact that
noise flattening generates many small-amplitude intrusions, whereas tearing a manifold
generally causes a few large-amplitude extrusions. Hence, depending on the weighting of the
rank errors, the contributions of either intrusions or extrusions can dominate. Obviously,
weighted fractions give too much importance to intrusions or extrusions associated with
large rank errors.
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Figure 4: Quality assessment of the hollow sphere embedding: Qrc(K) and Bro(K) for
NLM and CCA, for noisefree as well as noisy data.

6. Conclusions

This paper has reviewed several quality criteria for the assessment of nonlinear dimen-
sionality reduction. All of them rely on the comparison of distance rankings and K-ary
neighborhoods that are computed in both the high- and low-dimensional spaces. The def-
inition of the co-ranking matrix allows us to cast them all within a unifying framework.
It is noteworthy that the literature emphasizes the connection of these rank-based criteria
with fundamental concepts taken from information retrieval (precision and recall) or classi-
fication (false positives and false negatives). However, properties of the co-ranking matrix
conduce to consider these analogies with caution. In constrast, we show that the co-ranking
matrix can instead be usefully interpreted in a similar way as a Shepard diagram. Therefore
quality criteria should focus on the rank errors that are distributed on both sides of the co-
ranking matrix diagonal, namely intrusions and extrusions. According to this observation
we have proposed weighted and unweighted fractions that are computed over various blocks
or triangles of the co-ranking matrix. Experiments show that unweighted fractions of the
co-ranking matrix elements are sufficient and that any weighting inevitably turns out to be
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Figure 5: Quality assessment of the hollow sphere embedding;: Q;’%X (K) and BVIV’QIX(K ) for
NLM and CCA, for noisefree as well as noisy data.

arbitrary. Weighted fractions actually tend to emphasize some types of embedding errors
and can fail to detect others.
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