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Abstract

The enormous increase of the size in databases makes finding an optimal subset of features

extremely difficult. In this paper, a new feature selection method is proposed that will
allow any subset evaluator -including the wrapper evaluation method- to be used to find
a group of features that will allow a distinction to be made between the different possible
classes. The method, BARS (Best Agglomerative Ranked Subset), is based on the idea of
relevance and redundancy, in the sense that a ranked feature (or set) is more relevant if it
adds information when it is included in the final subset of selected features. This heuristic
method reduces dimensionality drastically and leads to improvements in the accuracy, in
comparison to a complete set and as opposed to other feature selection algorithms.

1. Introduction

A feature selection algorithm combines two processes: one is the search for an optimum and
the other is an evaluation of sets of features. The evaluation measure estimates in the latter
process will guide the search. Therefore, a feature selection algorithm is simply a search
algorithm that should optimize a measure that shows how good a subset of features is (or an
individual feature). There are many possible combinations of search methods and feature
evaluation measures (1). However, search methods can be too costly in high-dimensional
databases, particularly if a learning algorithm is applied as an evaluation criterion.

There are two ways to group feature selection algorithms, depending on the chosen
evaluation measure: one, according to the model used (filter or wrapper) and two, according
to the way in which the features are evaluated (individually or by subsets).

The filter model evaluates features according to heuristics based on overall data char-
acteristics, notwithstanding the classification method applied, whereas the wrapper uses
the behaviour of a classification algorithm as a feature evaluation criterion. The wrapper
model chooses the features that show the best classification and help to improve a learning
algorithm’s behaviour. The downside is that its computational cost (2; 3) is higher than
the filter model. A key factor in wrapper methods is the way in which a search is made in
the feature subset space (4). It appears next to such search strategies as sequential greedy
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search, best-first search and genetic algorithms (1). Most of them have a temporal O(n?)
complexity and cannot be applied in databases with tens of thousands of features.

On the other hand, FR (Feature Ranking) methods evaluates features individually,
whereas FSS (Feature Subset Selection) evaluates the benefits of each candidate subset.
In the FR algorithm category, the first k& features will make up the final subset. This is
a good approach for high-dimensional databases, given their linear cost in relation to the
number of features. However, in algorithms capable of feature subset selection, some sort of
search strategy is used to generate the candidate subsets. There are many different search
strategies: exhaustive, heuristic and random, combined with various types of measures that
make up a large number of algorithms. The temporal complexity is exponential in relation
to the dimensionality of the data in an exhaustive search and quadratic in a heuristic
search. In a random search, the complexity may be linear to the number of iterations (5),
but experience shows that the number of iterations needed to find an optimal subset is at
least quadratic in relation to the number of features (6).

The aim of this paper is to study and propose a feature selection method that can
be applied to high-dimensional databases in a supervised learning framework, concretely
for classification purposes. Two classification learning algorithms will be used to compare
the effects of feature selection: one probabilistic (Naive Bayes) and a second one based on
decision trees (C4.5).

The paper is structured as follows: after an introduction on the particularities of feature
subset selection in large databases, a review will be made of the related literature and the
general concepts of relevance and redundancy. BARS algorithm is described in Section 3,
and the results obtained are shown in Section 4. Finally, Section 5 gives some of the more
interesting conclusions.

2. Related work

The limitations of both approaches, FR and FSS, clearly suggest the need for a hybrid
model. Lately, a new framework (7) for feature selection is used which includes several of
the methods given above, as well as the concepts of feature relevance and redundancy. There
are many definitions of relevance. We have chosen the one offered by (8) that is considered
especially suited to obtain a predictive feature subset. With respect to the redundancy, it
is usually expressed in terms of a correlation between features. Between pairs of variables
we can distinguish linear and non-linear correlation. However, it is not so clear how to
know when a feature is correlated with a set of features. (9) apply a technique based on
cross-entropy (KL-distance, (10)), called Markov blanket filtering, to eliminate redundant
features.

In databases with a large number of features, the selection process usually is divided into
two stages: In stage one, features are evaluated individually, providing a ranking based on
a filtering criterion. In stage two, a feature subset evaluator (filter or wrapper) is applied
to a certain number of features in the previous ranking (the ones that pass a threshold,
or the first k), following a search strategy. (11), (7), (12) and (13) are among the most
cited works that follow this path. Another work employed a linear sequential search over a
ranking (14), and any type of criteria could be used in ranking and in generating a feature
subset.
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When databases with a lot of features are ranked, there are normally many features
with similar scores. The frequent selection of redundant features in the final subset is often
criticized. However, according to (15), taking into account presumably redundant features
can reduce noise and, therefore, a better separation between the various classes can be
obtained. Moreover, a very high correlation (in absolute value) between variables does not
mean that they do not complement each other. Consequently, the idea of redundancy in
this paper is not based on the measure of correlation between two features. Rather, it is
based on any subset evaluation criterion, which may be a filter or wrapper approach. In
this sense, a feature (or set) is selected if additional information is obtained when it is
added to the previously selected feature subset, and rejected in the opposite case because
the information provided is already contained (redundant) in the previous subset.

3. Agglomerative search for feature subset selection

In this work, a new method is proposed. It is called agglomerative due to the way it
constructs the final subset of selected features. The method begins by generating a ranking.
Then, pairs of features are obtained with the ranking’s first features, in combination with
each one of the remaining features on the list. The pairs of features are ranked according
to the value of the evaluation, and the process is repeated, that is, the subsets made up
by the first sets on the new list are compared with the rest of the sets. The process ends
when only one feature subset is left, or when combining the subsets no longer causes an
improvement.

Our approach uses a fast search through the attribute space and any subset evaluation
measure, classifier approach included, can be embedded into it as evaluator. Therefore, a
feature subset evaluator, named SubFEvaluator, is used to select a small group of features.
Thus, given a SubEvaluator and given a feature subset X, a search is made in the P(X)
space for the feature subset with the best evaluation result, using the value to compare the
behaviour of the SubFvaluator on the test subset. Before continuing, we shall establish the
concepts of accuracy and measure value:

The result of dividing the number of correct classifications by the total number of samples
examined is wide known as accuracy (I'). Then, given a set tagged E of m instances (77, y;),
where j = 1,...,m, each one composed of n input values z;; with (i = 1,...,n) and one
output y;, and given the classifier L, in the following expression, if L(Z;) = y; (example well
classified) then 1 is counted, and 0 in any other case.

MEL =3 (L) = 3)
j=1

Considering that, in this paper, the selection algorithms are subsequently applied to a
classification task, the definition of accuracy given for the total set of data, applied to a

feature subset S, would be:
T(E/S,L) = — > (L(S(x7)) = ;)

Jj=1

Therefore, I'(E/S, L) is the accuracy, applying classifier L to the database with the features
that belong to subset S. In addition to a wrapper measure to evaluate a feature subset,
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we can use a filter type measure that also returns a real value on the goodness of the said
subset. This value, which we will call a measure value, can be defined as:

Definition 1 (Measure value) Let E be a set of tagged data; S a feature subset of E
data; the Y(E/S, L) measure value is the result of applying the evaluator type subset filter
X considering only the S data subset.

Therefore, if L is a subset evaluator, we can use two similar expressions: on the one
hand I'(E/S, L), which is valid for evaluating a subset by means of a wrapper measure; on
the other hand, the expression Y(E/S, L), that evaluates the S subset by means of an L
filter.

To make it easier, and to unify the notation, hereinafter the evaluation of a feature
subset S will be annotated by I'(E/S, L) assuming a dual role (wrapper or filter).

Let Wy = {A}, A}, ... AL} be the initial list of of candidate subsets, where A} = {X;},
that is, each subset on the list has a feature. Let W% and ¥¢ be two ranked sequences
obtained from the set ¥y:

UF =< Alyy, . Al >

the k first subsets of W; ranked by L descendingly and
i =< A%l), . .7A%€) >

the first € of W ranked likewise by L, k < € <n, and n being the total number of features.
Ty will be the result of applying the L subset evaluator to the subset best placed on the
\Il’f list, in this case, the most valued feature:

Ty = D(E/A}, L)

As indicated above, I encompasses the accuracy value of a L wrapper as well as the
measure value obtained with a filter type measure Y (E /A%l), L).

Sets based on the two above ranked sequences (¥} and ¥$) are constructed below in
such a way that each set of the first sequence is joined to each set of the second sequence.
Of the new sets generated, we are only interested in the ones that improve the best result
obtained with the subsets of Wy, that is, the ones with a more favourable evaluation than
Ti. We will call this new set Wo:

— 2142 _ g1 1

Vj: 1.k and Vi : 1..e with Ay € U and Aj, € ¥§ and with T(E/A7,L) > Ti}.

Likewise, \1112“ and U$§ will be two ranked sequences obtained from the ¥y set. In general,
the list of solutions V¥, is defined as the candidate feature subset. It is made up of each
subset by the joining of two subsets from the above list of solutions, and it obtained a more
favourable evaluation than the best subset on that list. That is,

-1 -1
U, = {AP|AP = A@) UAZ) } A T(E/AY L) > T,1}

The process continues until no new subsets are generated, or until the ones generated

do not exceed the value of the goodness of the best subset on the above list of solutions (let
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Algorithm 1 BARS-Best Agglomerative Ranked Subset.

Require: E-data set, U-ranking criterion, L-SubFEvaluator, k—No. of initial sets in the ranking, e-limits the
number of subsets in the ranking.
Ensure: BestSub—feature subset
R < generateRanking(U, E))
p&=1
: SolutionsList¥, < ()
for ¢ = 1 until n do
SolutionsList¥, < SolutionsListW, U{Al} (A} = {X;} A X; € R)
end for
while #SolutionsList¥, > 1 do
T <T(E/AY,L)
9: pe=p+1
10:  SolutionsListW, < ()

11: 1 <=1

12: for j =1 until £ do

13: for [ = j + 1 until e do

14: AP < APt U AT

15: if '(E/A?,L) > T then

16: SolutionsList¥, < SolutionsList¥, U A?
17: i1<=1+1

18: end if

19: end for

20:  end for

21:  rank SolutionsList¥, by I'(E/A?, L)
22: end while
23: BestsSub < AP~

U, be @). Therefore, the solution is established as S = Ai(’f)l, the most relevant subset on
the last list with available solutions.

Unlike the conventional forward sequential search, where the best feature, best pair, best
set of three and so on are obtained until no improvement occurs, the BARS method makes
a search at a lower cost because it covers a smaller part of the features space. Furthermore,
the search path developed by BAR.S is done around the most relevant subsets at each given
moment, choosing the best k£ subsets in each cycle of the algorithm, and expanding the
search to other relevance subsets in the ranking (ranking percentage €). This way we can
avoid getting caught in local minima. This approach provides the possibility of efficiently
applying any evaluation measure, wrapper models included, in high-dimensional domains.
The final subset is obviously not the optimum, but it is unfeasible to search for every
possible subset of attributes through the search space.

3.1 Algorithm

The process followed until the final subset is obtained is (see algorithm 1): Step one
generates a feature ranking (line 1) ranked from best to worst according to an evaluation
measure (U). Next, a list of solutions is generated (line 2-6, SolutionsList¥,), in such a
way that a solution for each individual feature is created and the same ranking order is
maintained. The steps required to make an agglomerative search is shown on lines 7-22. At
the end, the algorithm returns the best positioned feature subset of all the subsets evaluated.
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Evaluation
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Figure 1: Example of the reduction process followed by BARS. The horizontal lines rep-
resent the limits at the end of each heuristic stage.

The agglomerative search consists in making a subset of relevant features by joining
subsets with a lower number of features.

Each iteration of the repetitive while structure generates a new list of solutions from
the previous structure. Each candidate set, made by joining two sets from the previous list
of solutions, will become part of the next list of solutions if, when the subset evaluator L
is applied to it, it gives back a higher measure value (I') than the one obtained with the
best (or first) subset from the previous list of solutions (7). To prevent the algorithm from
having a prohibitive time cost, new sets of features are generated by joining the first sets
to the remaining previous list of solutions. That is, the first set on the list is joined to the
second set, next the first set is joined to the third set, and so on until the end of the list.
Next, the second set of the list is joined to the third set, the second set and the fourth set,
and so on until the last set on the list. This process of combining a set of features with the
rest of the sets on the list is carried out with the best k feature sets from the previous list
of solutions (line 12).

In line 13, the input parameter € can limit the number of new subsets. In data sets with
an extremely high dimensionality, or when a high computational cost SubFEvaluator is used,
€ can be fixed to a percentage of the previous solutions number.

Figure 1 shows an example of the feature selection process with BAR.S, using the non-
linear correlation C'F'S (Correlation-based Feature Selection algorithm (16)) as a subset
evaluation measure (L). The figure represents the evaluation of the feature subsets in the
different algorithm iterations. The numbers that can be seen on the abscissa axis represent
the order of the subset in the corresponding ranking, and the ordinate axis shows the
evaluation obtained for each subset. The horizontal lines set the limit at the end of each
stage of the algorithm.

The reduction process followed in this example, for k equals three and e equal to 100%
of the ranking (nine features), is given below:
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1. An initial feature ranking is generated. In this case, the non-linear correlation (C'F'S)
is used as an evaluation measure, obtaining:
Uy = [z1, 27, 24], 25, T2, T3, T, Ty, Ts.

2. The evaluation of the first feature of the previous ranking (x1) is used to set the
limit. In this example, the threshold is set at 0.167, obtained by applying the C'F'S
algorithm to the feature z1, L(X1) = 0.167.

3. Next, two subsets of features are made with the first three (kK = 3) of the previous
ranking (U3 = [z1,27,74]) and the ranking (\I/}OO% = X1,%7,%4,T5, T2, T3, TG, L9, TS)
with everything (¢ = 100%) and they are evaluated with L (CFS). The sets with
the evaluation in bold type have passed the threshold that was set beforehand with a
feature (0.167).

e With feature z; the following combinations are obtained: (x1,z7 — 0.261),
(x1,24—0.237), (z1,25—0.083), (z1,22—0.083), (z1,23—0.202), (z1,26—0.179),
(acl, rg — 0.083), (331,.%8 - 0.083)

e With feature xz7: (x7,24 — 0.289), (z7,25 — 0.123), (x7,29 — 0.123), (27,23 —
0.234), (.T7,JZ6 - 0.230), (x7,a:9 - 0.123), (.T7,.T8 - 0.123)

e And with feature z4: (z4,25—0.101), (24,22 —0.101), (x4, 23— 0.237), (x4, 26 —
0.198), (x4, 9 — 0.101), (4,3 — 0.101)

Ranking the subsets that have improved to the previous best subset (z; — 0.167)
leaves:

Uy = [(x7,24—0.289), (z1,27—0.261), (z1, 24—0.237)], (x4, 23—0.237), (7, 23—0.234),
(.%'7, e — 0.230), (.%'1, r3 — 0.202), (.1‘4, Te — 0.198), (.%1, Te — 0.179)

4. The evaluation of the first subset in the ranking sets the new threshold (z7, x4 —0.289).
Once again, subsets are made with the three first sets of the last ranking generated
(U3 = [(z7,24), (21, 27), (x1,24)]) with the remaining pairs (¥3°°%), and they are
evaluated with L. As in the previous step, the subsets that pass a new limit (0.289)
are in bold type.

e The combinations given below are obtained with the set (x7,x4): (27,24 ,21 —
0.296), (7, x4, 1 —0.296), (x7, 24,23 — 0.289), (z7, 24,23 — 0.289), (7, 24, T6 —
0.273), (1'7, T4,T1,T3 — 0.301), (x7, T4,T6 — 0.273), (.%'7, T4,T1, T — 0.287)

e With the set (z1,x7): (z1,27,24 — 0.296), (1,27, 24,23 — 0.301), (21,27, T3 —
0.261), (331,.737,1'6—0.255), (1’1,1‘7,.%‘3—0.261), (xl,x7,x4,a;6—0.287), ($1,$7,$6—
0.255)

e And with (x1,24): (21,24, 23 — 0.264), (21,24, 27,23 — 0.301), (21,24, 27, Tg —
0.287), (x1, x4, 23 — 0.264), (21,24, 26 — 0.234), (21, 24,16 — 0.234)

Ranking the subsets that pass the current threshold (0.289), we have: V3 = [(z7, x4, 1, 23—
0,301), (7, 4, 71 — 0,296)]
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Ordered Selected

Original set Ranking features Subset subset
= (SOAP, SU-CFS, evaluation
wrapper } {CFsS, wrapper}

Figure 2: Parts of a BARS selection algorithm.

5. In the next step of the example, the limit is set at 0.301 (L(x7,Xa,x1,%3)), which is
not passed by any combination of subsets in the remaining ranking. Therefore, the
process ends because the new list of solutions ¥y (line 7) is empty. The previous list
of solutions W3 is ranked according to subset relevance. The selected subset will be
A3, which occupies the first position of Wj.

Generating sets that were already evaluated occurs very frequently in the process of
combining two subsets. Therefore, the evaluated subsets will be controlled to prevent the
evaluation from being repeated.

4. Experiments and results

The aim of this section is to evaluate our approach in terms of classification accuracy,
degree of dimensionality and speed in selecting features, in order to see how good BARS is
in situations where there is a large number of features and instances.

The comparison was performed with two representative groups of data sets: Twelve
data sets were selected from the UCI Repository (Table 1) and five from the NIPS 2003
feature selection benchmark (17). In this group (Table 2), the data sets were chosen to
span a variety of domains (cancer prediction from mass-spectrometry data, handwritten
digit recognition, text classification, and prediction of molecular activity). One data set is
artificial. The input variables are continuous or binary, sparse or dense. In this second group
all data sets are two-class classification problems. The full characteristics of all the data
sets are summarized in Tables 1 and 2. We chose two different learning algorithms, C4.5
and Naive Bayes, to evaluate the accuracy on selected features for each feature selection
algorithm.

Figure 2 can be considered to illustrate the two blocks that always make up a BARS
algorithm. Therefore, this selection algorithm needs a ranking and a feature subset measure.
Several versions of BARS selection algorithms could be made by combining the criteria
for each group of measures (individual and of subsets). Whenever the BARS algorithm
appears, the criteria for generating the ranking is given, as well as how feature subset quality
was evaluated in the selection process. To clarify the components that BARS uses in each
case as much as possible, a subscript is put before BA that indicates the ranking method
used, and a superscript is placed after it to indicate the SubEvaluator. In the experiments
made for BARS, the same evaluation measure was used to prepare the ranking as the one
used in the second part of the algorithm employed in the feature subset search. Two subset
evaluation measures are used, one for each type of approach (wrapper and filter-C'F'S). For
instance, cp BACF shows that CFS will be used as an individual measure in the first part
and CFS as a subset in the second part, and ¢pBAYE shows that NB or C4 classifier will
be used as a subset evaluator in the second part.
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Table 1: UCI data sets. ACRON-acronym. ATTS-number of attributes. INST-number of
instances.

DaTtA AcCRON. ATTS. INST. CLASS

ADS ADS 1558 3279 2
ARRHYTHMIA  ARR 279 452 16
HYPOTHYROID HYP 29 3772 4
ISOLET ISO 617 1559 26

KR VS KP KRV 36 3196 2
LETTER LET 16 20000 26
MULTI FEAT. MUL 649 2000 10
MUSHROOM MUS 22 8124
MUSK MUK 166 6598

SICK SIC 29 3772

SPLICE SPL 60 3190
WAVEFORM WAV 40 5000

W W N NN

Table 2: NIPS data sets. ACRON-acronym. ATTS-number of attributes. %RAN-percentage
of random Atts.

DATA  ACRON. ATTs. INST. %RAN.

ARCENE ARC 10000 100 30
DEXTER DEX 20000 300 50
DoroTHEA  DOR 100000 800 50
GISETTE GIS 5000 6000 30
MADELON MAD 500 2000 96

In the tests, BARS generated subsets from the three best subsets in the solutions
list it used at each stage, limiting the range to 50% of the solutions list in wrapper type
approaches and going to the end in the filter approaches. That is, k = 3 and €=50% and
100%, respectively.

Due to the high dimensionality of data, we limited our comparison to sequential forward
(SF) techniques, fast correlation-based filter (FCBF') algorithm (7) and the incremental
ranked (BI) algorithm (14). We chose two representative subset evaluation measures in
combination with SF' search engine. One, denoted by SFy g, uses a target learning algo-
rithm (NB or C4) to estimate the worth of feature subsets; the other, denoted by SFCF,
is a subset search algorithm which exploit sequential forward search and use correlation
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measures (CFS, Correlation-based Feature Selection algorithm (16)) to guide the search.
BI use the same nomenclature as BARS.

Tables 3, 5, 4 and 6 show the results obtained with NB and C4 classifiers. By columns:
the results obtained with BARS, BI and SF' algorithms using the wrapper as a subset
evaluator and using C'F'S; FFCBF algorithm; and the results obtained with the complete
database. The columns headed by Ac and AT” show the success rate and the reduction per-
centage respectively. On NIPS data, the reduction percentage is too low to be comparable,
therefore the number of features (AT#) is shown. In each case, the results were obtained by
calculating the mean of five executions of two crossed validations (5x2CV). Two reductions
were made in each execution, one for each training set, to prevent the selection algorithm
from being over-adjusted to the data used. A paired t-Student test was applied to evaluate
whether the difference between the wrapper approach of the proposed algorithm and the
other results was statistically significant at a confidence level of 0.05.

As it is possible to observe in Tables 3 and 5 obtained on data from Table 1, chosen
subsets by BARS are considerably smaller than the other compared techniques and dras-
tically less than the original set. With N B classifier, the reduction percentage of BARS
was 9.8%, while the other methods obtained 15.8%xgBINE, 16.5%-SFNB, 14.1%-SFCF
and 18.1%—FCBF, although with a light loss of precision. With C4.5 classifier the dif-
ferences are greater BARS was 10.4%, while the other methods obtained 16.3%c4BI¢*,
18.2%-SFNB 14.1% SFCF and 18.1% FCBF, without significant lost of accuracy.

Notice that in two cases with C4 classifier (ISO and MUK) SFy r did not report any
results after three weeks running, therefore, there are not selected attributes nor success
rates. Although it is supposed that the missed results would favor to BARS, since SF has
not finished because of the inclusion of many attributes.

Actually, BARS demonstrates its relevance on very high—dimensional data as it can
be seen in Table 4 and 6. It is possible to be observed that in comparison with FCBF
the number of selected attributes is drastically smaller, without lost of precision in the
classification.

Tables 7 and 8 report the running time for each feature selection algorithm on UCI and
NIPS data sets respectively, showing three different results, two for wrapper approaches
(depending on the learning algorithm chosen) and one for filter approaches. In the wrapper
cases, we can observe that BARS need a little more time than BI on average (see Table 7,
columns 2-3 and 5-6). However, the time savings of BARS with respect to BI became
more obvious when the number of features of the data increased (for example ADS data
set). This assertion is confirmed in Table 8 where BARS takes half (columns 2-3) for NB
classifier or quarter (columns 5-6) for C4.5. Therefore, the more data is high-dimensional
the more BAR.S is much more efficient.

On the other hand, the advantage of BARS with respect to the SF' (sequential forward
search) is clear. BARS is between 5 and 7 times faster (see Table 7, columns 24 and 5-7),
and we must take into account that SF did not report any results on several data sets.

Finally, filter approaches are compared (columns from 8 to 11 in Table 7). BARS is
faster than the rest of filter options: BI, 25% on average; SFCF (SF with CFS), 3 times
faster; and FCBF over 60%. On NIPS data (columns from 6 to 8 in Table 8) BARS is faster
than BI algorithm again, but 3 times slower than FCBF. This result can be explained
by the way like BARS search the minimum subset of attributes, while FCBF does not fit
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Table 3: Results obtained with NB for each feature selection algorithm on UCI Data. Ac-accuracy; AT”- percentage of attributes
retained. The symbols o and e respectively identify statistically significant (at 0.05 level) wins or losses over the second
column (ypBANB).

DATA NBBANB NBBINB SFNB CFBACF CFBICF SFCF FCBF ORIG.
Ac  AT% Ac AT% Ac AT% Ac AT% Ac AT% Ac AT% Ac A% Ac
ADS | 95.80 0.5 95.42 0.7 95.83 1.1 94.61e 0.3 95.38 0.4 95.81 0.6 95.64 5.3 96.38
ARR | 68.94 2.3 68.01 5.5 67.70 3.0 67.30 4.1 66.5 4.1 68.05 6.2 63.98 2.9 60.13
HYP | 94.92 10.3 95.10 15.9 95.32 29.3 | 94.15e 3.4 94.15¢ 3.4 94.15e 3.4 94.90 18.3 | 95.32
ISO | 77.41 3.4 83.300 11.1 82.28 4.7 66.95e 3.8 77.61 11.1 80.79 15.4 74.62 3.7 80.42
KRV | 94.09 11.4 94.27 13.9 94.320 14.4 | 84.41 7.2 90.43¢ 8.3 90.43e 8.3 92.50 18.1 | 87.50e
LET | 55.74 39.4 65.670 68.8 65.670 72.5 | 64.280 56.3 64.280 56.3 64.280 56.3 | 65.060 64.4 | 63.970
MUL | 96.80 2.1 97.21 3.4 96.87 2.4 96.55 3.9 97.04 4.3 96.72 13.9 | 96.19 18.7 | 94.37e
MUS | 98.68 7.3 98.78 9.5 99.01 13.6 | 98.52 4.5 98.52 4.5 98.52 4.5 98.52 16.4 | 95.10e
MUK | 84.60 1.0 84.59 0.6 84.59 0.0 74.54 7.5 79.94 3.9 69.78e 9.8 72.29 1.7 83.56
SIC | 93.88 3.4 94.55 8.3 93.88 0.0 93.89 3.4 93.89 3.4 93.89 3.4 | 96.250 16.6 | 92.41
SPL | 94.65 15.3 94.85 21.8 94.91 24.7 | 93.63e¢ 10.0 93.63¢ 10.0 93.60e 10.2 95.49 36.3 | 95.26
WAV | 80.38 21.3 80.85 30.5 81.55 32.3 | 80.34 35.3 81.01 31.0 &80.12 37.0| 78.42 15.3 | 80.02
Av. | 86.32 9.8 90.36 15.8 89.19 16.5 | 85.08 11.6 86.24 11.7 87.70 14.1 86.26 18.1 85.44
Table 4: Similar to Table 3 on NIPS Data. AT#- number of attributes retained.
DATA NBBANB NBBINB SFNB CFBACF CFBICF SFCF FCBF ORIG.
Ac  AT#  Ac  AT# Ac AT# Ac AT#  Ac  AT¥ Ac  AT#¥ | Ac AT# Ac
ARC | 65.40 4.6 64.60 15.3 60.60 3.8 66.00 22,5 63.20 39.2 60.20 42.6 | 61.20 35.2 | 65.40
DEX | 79.13 15.3 81.33 30.2 75.33 13.2 | 80.67 7.5 8247 11.3 87.73 35.5 | 8.07 25.1 | 86.470
DOR | 93.25 2.3 93.23 10.5 N/A 93.25 2.1 93.80 11.9 N/A 92.38 75.3 | 90.68
GIS | 91.17 9.2 92.66 35.3 93.550 24.2 | 87.26e 8.6 90.83 30.2 92.64 62.2 | 87.58 31.2 | 91.88
MAD | 60.99 4.9 59.00 11.8 60.12 5.8 60.37 6.3 60.56 5.8 60.17 9.9 58.20 4.7 58.24
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Table 5: Results obtained with C4 for each feature selection algorithm on UCI Data. Ac-accuracy; A% percentage of attributes
retained. The symbols o and e respectively identify statistically significant (at 0.05 level) wins or losses over the second
column (ypBANP).

DATA caBAC® caBI¢? SFC4 cpBACT crpBICT SFCF FCBF ORIC.
Ac  At®  Ac  AT% Ac A% | Ac  AT®  Ac  AT® Ac  Ar®| Ac  AT% Ac
ADS | 96.42 0.5 96.55 0.5 96.85 0.8 95.30 0.3 96.43 0.4 96.39 0.6 95.85 5.3 96.46
ARR | 67.92 2.0 68.01 2.4 67.39 3.1 66.46 4.1 66.42 4.1 67.04 6.2 64.87 2.9 64.29
HYP | 98.90 10.7 99.07 14.5 99.30 20.3 | 96.56e 3.4 96.56e 3.4 96.56e 3.4 98.03 18.3 99.36
ISO | 68.15 2.7 69.43 3.6 N/A 67.29 3.8 72.68 11.1 71.94 15.4 | 66.63 3.7 73.38
KRV | 94.09 11.1 95.11 17.2 94.26 13.6 | 84.41 7.2 90.43e¢ 8.3 90.43e¢ 8.3 94.07 18.1 99.070
LET | 80.50 45.0 84.99 68.8 85.17 63.1 | 84.21 56.3 84.21 56.3 84.21 56.3 | 84.84 64.4 84.45
MUL | 93.74 1.5 92.42 3.2 93.11 2.1 92.77 3.9 93.17 4.3 93.12 13.9 | 92.29 18.7 92.74
MUS | 99.41 9.1 99.910 18.6 100.000 22.3 | 98.52¢ 4.5 98.52¢ 4.5 98.52¢ 4.5 98.84 16.4 | 100.000
MUK | 95.71 4.9 95.43 5.8 N/A 94.44 7.5 94.06e 3.9 94.60 9.8 | 91.19e 1.7 95.12
SIC | 96.33 7.2 98.280 20.3 98.190 19.0 | 96.33 3.4 96.33 3.4 96.33 3.4 | 97.500 16.6 | 98.420
SPL | 92.73 12.2 93.05 16.3 93.04 18.3 | 92.54 10.0 92.54 10.0 92.61 10.2 | 93.17 36.3 92.92
WAV | 75.93 17.5 76.20 24.0 75.44 19.8 | 76.65 35.3 76.46 31.0 76.56 37.0 | 74.52 15.3 74.75
Av. | 88.32 10.4 87.03 16.3 88.07 18.2 | 85.04 11.6 84.78 11.7 85.87 14.1 86.31 18.1 85.94
Table 6: Similar to Table 5 on NIPS Data. AT#- number of attributes retained.
Data | 4 BACE caBIC? SFCA or BACT crBICT SFCF FCBF ORIG.

Ac  AT#* Ac  AT#* Ac  AT# Ac AT#  Ac  AT*  Ac  AT# Ac AT# Ac
ARC | 63.60 2.7 6580 7.9 6240 3.7 61.60 22.5 59.00 39.2 56.60 42.6 | 58.80 35.2 | 57.00
DEX | 7830 5.8 80.27 18.9 90.47 8.7 80.40 7.5 81.47 11.3 80.13 35.5 | 79.00 25.1 | 73.80
DOR | 93.20 2.6 92.13 7.2 N/A 93.20 2.1 91.63 11.9 N/A 90.33 75.3 | 88.73
GIS | 93.00 11.5 93.29 26.9 N/A 89.60e 8.6 90.92 30.2 93.07 62.2 | 90.99¢ 31.2 92.68
MAD | 68.40 4.3 73.02 17.0 72,99 124 | 69.30 6.3 69.77 5.8 69.29 9.9 61.11 4.7 57.73e
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well to the minimum subset as it can be seen in column AT# (number of features) below
FCBF, Tables 4 and 6.

5. Conclusions

The success of many learning schemes in the attempt to construct data models depends
on their ability to identify a small subset of highly predictive features. During the model’s
construction stage, the inclusion of features that are irrelevant, redundant or have noise may
cause poor predictive behaviour and a computational increase. Applying the more popular
search methods in databases with a great many features may be prohibitive. However,
in this paper, a new feature selection method has been presented that allows any subset
evaluator -including the wrapper evaluation model- to be used to find a good set of features
for classification. Our technique BARS chooses a very small subset of features from the
original set with similar predictive performance to other methods. For massive data sets,
wrapper—based methods might be computationally unfeasible, so BARS turns out a fast
technique that provides good performance in prediction accuracy.
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