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Abstract
We provide guarantees for learning latent variable models emphasizing on the overcomplete regime,
where the dimensionality of the latent space exceeds the observed dimensionality. In particular, we
consider multiview mixtures, ICA, and sparse coding models. Our main tool is a new algorithm for
tensor decomposition that works in the overcomplete regime.

In the semi-supervised setting, we exploit label information to get a rough estimate of the
model parameters, and then refine it using the tensor method on unlabeled samples. We establish
learning guarantees when the number of components scales as k = o(dp/2), where d is the observed
dimension, and p is the order of the observed moment employed in the tensor method (usually
p = 3, 4). In the unsupervised setting, a simple initialization algorithm based on SVD of the tensor
slices is proposed, and the guarantees are provided under the stricter condition that k ≤ βd (where
constant β can be larger than 1). For the learning applications, we provide tight sample complexity
bounds through novel covering arguments.
Keywords: unsupervised and semi-supervised learning, latent variable models, overcomplete rep-
resentations, tensor decomposition.

1. Introduction

Tensor decompositions have been popular for unsupervised learning of a wide range of latent vari-
able models (LVMs) such as topic models, Gaussian mixtures, independent component analysis,
network community models, and so on (Anandkumar et al., 2014a, 2013b; De Lathauwer et al.,
2007). It involves decomposition of a certain low order multivariate moment tensor (typically up to
fourth order), and is guaranteed to provide a consistent estimate of the model parameters. In prac-
tice, the tensor decomposition techniques have been effective in a number of applications such as
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blind source separation (Comon, 2002), computer vision (Vasilescu and Terzopoulos, 2003), topic
modeling (Zou et al., 2013), and community detection (Huang et al., 2013).

The state of art for guaranteed tensor decomposition involves two steps: converting the input
tensor to an orthogonal symmetric form, and then solving the orthogonal decomposition through
tensor eigen decomposition (Comon, 1994; Zhang and Golub, 2001; Anandkumar et al., 2014a).
While having efficient guarantees, this approach is unable to learn overcomplete representations,
where the latent dimensionality exceeds the observed dimensionality. This is especially limiting
given the recent popularity of overcomplete feature learning in many domains, e.g., see Bengio
et al. (2012); Lewicki and Sejnowski (2000). Overcomplete representations also provide flexible
modeling, and are robust to noise (Lewicki and Sejnowski, 2000).

In this paper, we establish guarantees for tensor decomposition in learning overcomplete LVMs,
such as multiview mixtures, independent component analysis (ICA), Gaussian mixtures and sparse
coding models. Note that learning general overcomplete models is ill-posed since the latent di-
mensionality exceeds the observed dimensionality. We impose a natural incoherence condition on
the components, which can be viewed as a soft orthogonality constraint, and limits the redundancy
among the components. Incoherence constraints are natural in the overcomplete regime, and have
been considered before, e.g., in compressed sensing (Donoho, 2006), independent component anal-
ysis (Le et al., 2011), and sparse coding (Arora et al., 2013; Agarwal et al., 2013).

1.1. Summary of Results

In this paper, we provide semi-supervised and unsupervised learning guarantees for LVMs such
as multiview mixtures, ICA and sparse coding models. Our algorithm is based on method of mo-
ments, and employs a tensor decomposition algorithm for learning. One of our main contributions
is the convergence analysis of a new tensor decomposition algorithm that works in the overcomplete
regime. Under the semi-supervised setting, we establish that highly overcomplete models can be
learned efficiently through the tensor decomposition method. The moment tensors are constructed
using unlabeled samples, and the labeled samples are used to provide a rough initialization to the
tensor decomposition algorithm. In the unsupervised setting, we propose a simple initialization
strategy for the tensor method, and can handle mildly overcomplete models. In both settings we
provide tight sample complexity bounds through novel covering arguments.

1.1.1. OVERCOMPLETE TENSOR DECOMPOSITION GUARANTEES

We employ a tensor decomposition algorithm for learning. Given rank-k tensor

T =
∑

i∈[k]

wi · ai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ Rd, (1)

the goal is to recover its rank-1 components {(ai, bi, ci), i ∈ [k]}. Here, ⊗ denotes the tensor outer
product; see Section 3.1 for the details of tensor notations and tensor rank. An overview of our
tensor decomposition algorithm is provided in Figure 2. The main step of our tensor decomposition
algorithm is alternating asymmetric tensor power update; see(11) for this update. We provide robust
analysis of the algorithm leading to local and global convergence guarantees when the input tensor
is noisy.1 Our analysis emphasizes on the challenging overcomplete regime where the tensor rank
is larger than the dimension, i.e., k > d.

1. Note that in the learning applications, we form the empirical moments as the input tensor which is noisy.
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We require natural deterministic conditions on the tensor components to argue the convergence
guarantees; see Appendix G for the details. All of these conditions are satisfied if the true rank-
1 components of the tensor are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1.
Among the deterministic assumptions, the most important one is the incoherence condition which
imposes a soft-orthogonality constraint between different rank-1 components of the tensor.

In the local convergence guarantee, we analyze the convergence properties of the algorithm
assuming we have good initialization vectors for the non-convex tensor decomposition algorithm.

Theorem 1 (Local convergence guarantee of the tensor decomposition algorithm) Consider noisy
rank-k tensor T̂ = T+Ψ as the input to the tensor decomposition algorithm, where T =

∑
i∈[k]wi ·

ai ⊗ bi ⊗ ci, and ψ := ‖Ψ‖ ≤ wmin/6. Let the rank condition k ≤ o
(
d1.5
)

is satisfied. Assuming
we have good initialization vectors (which have constant error with the true components), then the
algorithm outputs estimates Â := [â1 · · · âk] ∈ Rd×k and ŵ := [ŵ1 · · · ŵk]> ∈ Rk, satisfying w.h.p.

∥∥∥Â−A
∥∥∥
F
≤ Õ

(√
k · ψ
wmin

)
, ‖ŵ − w‖ ≤ Õ

(√
k · ψ

)
.

Same error bounds hold for other factor matrices B := [b1 · · · bk] and C := [c1 · · · ck]. The number
of iterations is N = Θ (log(1/ε̂R)) where ε̂R := min{ψ/wmin, Õ

(√
k/d
)
}.

Thus, we can decompose the tensor in the highly overcomplete regime k ≤ o
(
d1.5
)
. The

√
k factor

in the bound is from the fact that the final recovery guarantee is on the Frobenius norm of the whole
factor matrix A. In the following, we provide stronger column-wise guarantees (where there is no√
k factor) with the expense of having an additional residual error term. Our algorithm includes two

main update steps including tensor power iteration in (11) and residual error removal in (12). The
guarantee for the first step — tensor power iteration — is

Lemma 2 (Local convergence guarantee of the tensor power updates) Consider the same set-
tings as in Theorem 1. Then, the outputs of tensor power iteration steps in our algorithm satisfy
w.h.p.2

min
z∈{−1,1}

‖zâj − aj‖ ≤ Õ
(

ψ

wmin

)
+Õ

(√
k

d

)
, |ŵj − wj | ≤ Õ (ψ)+Õ

(
wmax

√
k

d

)
, j ∈ [k].

Same error bounds hold for other factor matrices B and C.

The above result provides guarantees with the additional residual error Õ
(√

k
d

)
, but we believe this

result also has independent importance for the following reasons. The above result provides column-
wise guarantees which is stronger than the guarantees on the whole factor matrix in Theorem 1.
Furthermore, we can only have recovery guarantees for a subset of rank-1 components of the tensor
(the ones for which we have good initializations) without worrying about the rest of components.
Finally, in the high-dimensional regime (large d), the residual error term goes to zero.

For the global convergence guarantee, we obtain good initialization vectors by performing a
rank-1 SVD on the random slices of the moment tensor.

2. Note that recovery of components is up to sign. This is because a third order tensor is unchanged if the sign along
one of the modes is fixed and the signs along the other two modes are flipped.
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Theorem 3 (Global convergence guarantee of the tensor decomposition algorithm) Consider the
same input tensor to the algorithm as in Theorem 1 with noise bound ψ := ‖Ψ‖ ≤ Õ

(
wmin/

√
d
)
.

Let k ≤ βd (for arbitrary constant β > 1), and the initialization is performed by SVD-based method
in Procedure 3 (in the Appendix) using a polynomial number of initializations scaled as kβ

2
. Then,

the same guarantees as in Theorem 1 hold.

Note that the argument in Lemma 2 can be similarly adapted leading to global convergence
guarantee of the tensor power iteration step.

For 4th and higher order tensors, same techniques can be exploited to argue similar results.
These new tensor decomposition guarantees combined with the new tensor concentration bounds
we derive are the key to prove our learning results, where the local convergence guarantee leads
to the semi-supervised learning and the global convergence guarantee leads to the unsupervised
learning results.

The above tensor decomposition results can be naturally applied to many settings like mulitiview
linear mixtures, ICA, and so on. But, there is a caveat as the incoherence condition is not natural
for models like topic models where there is a non-negativity constraint on the hidden components.

1.1.2. LEARNING MULTIVIEW MIXTURE MODEL

In the multiview mixtures model, given the hidden mixture component, each observation (view) is
independently drawn with some unknown mean parameter and noise distribution around that mean;
see (4) for the precise form. The goal is to estimate the conditional mean parameters. In this setting,
we assume reasonable property on noise, and for brevity, we consider the “low” noise regime (where
the norm of noise is of the same order as that of the component means).

In the semi-supervised setting, we use labeled samples to initialize the tensor decomposition
algorithm, and provide the following recovery guarantee.

Theorem 4 (Semi-supervised learning of multiview mixtures model: informal) Let k be the num-
ber of mixture components, and d be the observed dimensionality, and suppose k ≤ o(d1.5). We
show that having polylog(d, k) number of labeled samples for each label, and n ≥ Ω̃(k) number
of unlabeled samples are sufficient to consistently estimate the model parameters.

See Theorem 7 for the formal statement of this result. Thus, for recovering each rank-1 component,
we need far less number of labeled samples compared to the number of unlabeled samples required.
Note that in most applications, labeled samples are expensive/hard to obtain, while many more
unlabeled samples are easily available, e.g., see Le et al. (2011); Coates et al. (2011). Furthermore,
note that the unlabeled sample complexity is the minimax bound up to polylog factors.

We also provide unsupervised learning guarantees when no label is available. Here, the ini-
tialization is performing by the SVD-based method stated in the previous section. This imposes
additional conditions on rank and sample complexity as follows.

Theorem 5 (Unsupervised learning of multiview mixtures model: informal) Suppose the num-
ber of unlabeled samples n satisfies n ≥ Ω̃ (kd) . If k ≤ βd (for arbitrary constant β > 1), then the
model parameters can be learned using a polynomial number of initializations scaled as kβ

2
.

See Theorem 10 for the formal statement of this result. This result is an improvement over existing
results since we do not have dependence on the condition number of the component means and in
addition, we can handle overcomplete models.
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1.1.3. LEARNING ICA AND SPARSE ICA MODELS

We also provide semi-supervised and unsupervised learning guarantees for Independent Component
Analysis (ICA). By semi-supervised setting in ICA, we mean some prior information is available
which provides good initializations for the tensor decomposition algorithm. In the semi-supervised
setting, we show that when the number of components k = Θ(d2)/ polylog(d), the ICA model can
be efficiently learned from fourth order moments with n ≥ Ω̃(k2.5) number of unlabeled samples. In
the unsupervised setting, we show that when k ≤ βd (for arbitrary constant β > 1), the ICA model
can be learned with number of samples scaling as n ≥ Ω̃(k3) in kβ

2
number of initializations.

We also provide learning results for the sparse coding model, when the mixing coefficients
are independently drawn from a Bernoulli-Gaussian distribution and the dictionary satisfies some
deterministic conditions (see Appendix G and (RIP) in Section 2.1). Notice this corresponds to a
sparse ICA model since the hidden coefficients are independent.

Theorem 6 (Learning (sparse) ICA: informal) We can efficiently estimate the dictionary in the
(sparse) ICA model under the following conditions. Let s be the expected sparsity of the hidden
coefficients. In the semi-supervised setting (where prior information provides us good initializa-
tion), we need the number of components to be bounded by k = o(d2), and unlabeled sample
complexity satisfies n ≥ Ω̃(max{sk, s2k2/d3}). In the unsupervised setting, we need k = Θ(d),
and n ≥ Ω̃(k2s).

In the special case when s is a constant, the sample complexity is akin to learning multiview models,
and when s = Θ(k), it is akin to learning the “dense” ICA model. Thus, the sparse coding model
bridges the range of models between multiview mixtures model and ICA. See Theorem 12 for the
formal statement of above result on learning sparse ICA. Since dense ICA is a special case, its
detailed results are provided in the Appendix in Theorems 53 and 54.

1.2. Related Works

Several latent variable models can be learned through tensor decomposition including independent
component analysis (De Lathauwer et al., 2007), topic models, Gaussian mixtures, hidden Markov
models (Anandkumar et al., 2014a) and network community models (Anandkumar et al., 2013b).
In the undercomplete setting, Anandkumar et al. (2014a) analyze robust tensor power iteration for
learning LVMs, and Song et al. (2013) extend analysis to the nonparametric setting. These works
require the tensor factors to have full column rank, which rules out overcomplete models. Moreover,
they require whitening the input data, and the sample complexity depends on the condition number
of the factor matrices. For instance, when k = d, for random factor matrices, the previous tensor
approaches in (Song et al., 2013; Anandkumar et al., 2013a) have a sample complexity of Ω̃(k6.5).
Our result can be also extended to learning mixtures of spherical Gaussians, where we have better
sample complexity than the work by Hsu and Kakade (2012) (we have Ω̃(d2) instead of their Ω̃(d3)
when k = d). Note that this comparison is in the low noise regime (where the norm of noise is of
the same order as that of the component means). Thus, we provide the best known sample bounds
for semi-supervised and unsupervised learning of multiview mixtures model in the overcomplete
setting, assuming incoherent components.

In general, learning overcomplete models is challenging, and they may not even be identifiable
in general. The FOOBI procedure by De Lathauwer et al. (2007) shows that a polynomial-time pro-
cedure can recover the components of ICA model (with generic factors) when k = O(d2), where
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the moment is fourth order. However, the procedure does not work for third-order overcomplete
tensors. For the fifth order tensor, Goyal et al. (2013); Bhaskara et al. (2013) perform simultaneous
diagonalization on the matricized versions of random slices of the tensor and provide careful pertur-
bation analysis. But, this procedure cannot handle the same level of overcompleteness as FOOBI.
In addition, Goyal et al. (2013) provide stronger results for ICA, where the tensor slices can be
obtained in the Fourier domain. Given 4th order tensor, they need poly(k4) number of unlabeled
samples for learning ICA (where the poly factor is not explicitly characterized), while we only need
Ω̃(k2.5) (when k = Θ(d2)/ polylog(d)).

More discussions on related works in provided in Appendix A.
Notations: Let [n] := {1, 2, . . . , n}. Let ‖ · ‖ and ‖ · ‖F respectively denote the spectral and

Frobenius norms. We also use Õ and Ω̃ to hide polylog factors in O and Ω notations, respectively.

2. Learning Latent Variable Models

In this section, we provide our main results on learning different LVMs including multiview mix-
tures, mixture of Gaussians, ICA, and sparse coding. We establish sample complexity bounds for
all the LVMs.3 The details of the learning algorithm is provided in Section 3.

We consider two learning settings: 1) semi-supervised setting where a small amount of label
information is available, and 2) unsupervised setting where such information is not available. In
the former setting, we can handle overcomplete mixtures with number of components k = o(dp/2),
where d is the observed dimension and p is the order of observed moment. In the latter case, our
analysis works when k ≤ βd for any constant β.

Here, we review some of the assumptions and settings throughout the section. Consider tensor
decomposition form in (1). LetA := [a1 a2 · · · ak] ∈ Rd×k denote the factor matrix. Similar factor
matrices are defined as B and C in the asymmetric cases, e.g., multiview mixtures model. Without
loss of generality, we assume that the columns of factor matrices have unit `2 norm, since we can
always rescale them, and adjust the weights appropriately. We also require natural deterministic
conditions on the tensor components, but for simplicity we assume ai, bi, ci ∈ Rd, i ∈ [k], are
uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1 (see Remark 8). For brevity, we
also assume the ratio between largest and smallest weights to be a constant: wmax

wmin
≤ O(1). For the

sake of saving the notations, we only provide the learning results in the challenging overcomplete
regime where the number of components/mixtures is larger than observed dimension, i.e., k ≥ Ω(d).
But the results can be easily adapted to the easier highly undercomplete regime when k ≤ o(d).

2.1. Multiview Mixtures Model
h

x1 x2 xp· · ·
Figure 1: Multiview mixtures.

Consider a multiview mixtures model with k components and p ≥ 3
views; see Figure 1. Throughout the paper, we assume p = 3 for sim-
plicity, while the results can be also extended to higher-order observa-
tions. Suppose that hidden variable h ∈ [k] is a discrete categorical
random variable with Pr[h = j] = wj , j ∈ [k]. The variables (views) xl ∈ Rd are conditionally
independent given the k-categorical latent variable h ∈ [k], and the conditional means are

E[x1|h] = ah, E[x2|h] = bh, E[x3|h] = ch, (2)

3. The proof of theorems in this section are provided in Appendix K.

6



LEARNING OVERCOMPLETE LVMS THROUGH TENSOR METHODS

where A := [a1 a2 · · · ak] ∈ Rd×k denotes the factor matrix and B,C are similarly defined. The
goal of the learning problem is to recover the parameters of the model (factor matrices) A, B, and
C given observations xl’s.

For this model, the third order observed moment can be written as (Anandkumar et al., 2014a)

E[x1 ⊗ x2 ⊗ x3] =
∑

j∈[k]

wjaj ⊗ bj ⊗ cj . (3)

Hence, given third order observed moment, the unsupervised learning problem (recovering factor
matrices A, B, and C) reduces to computing a tensor decomposition as in (3).

Given hidden state h, suppose the observed variables xl ∈ Rd have conditional distributions as

x1|h ∼ ah + ζ
√
d · εA, x2|h ∼ bh + ζ

√
d · εB, x3|h ∼ ch + ζ

√
d · εC , (4)

where the noise vectors εA, εB, εC ∈ Rd are independent random vectors with zero mean and
covariance 1

dId, and ζ2 is a scalar denoting the variance of each entry. We also assume that noise
vectors εA, εB, εC are independent of hidden vector h.

In addition, we assume the noise matrices satisfy RIP property as follows. Given n samples for
the model, define noise matrix EA := [ε

(1)
A , ε

(2)
A , . . . , ε

(n)
A ] ∈ Rd×n, where ε(i)

A ∈ Rd is the i-th
sample of noise vector εA. EB and EC are similarly defined. These matrices need to satisfy the
following RIP property which is adapted from Candes and Tao (2006).

(RIP) Matrix E ∈ Rd×n satisfies a weak RIP condition such that for any subset of O
(

d
log2 d

)

number of columns, the spectral norm of E restricted to those columns is bounded by 2.

It is known that when n = poly(d), the above condition is satisfied w.h.p. for many random
models such as when the entries are i.i.d. zero mean Gaussian or Bernoulli random variables.

For brevity, we consider the low noise regime where the expected norm of noise vector is
bounded by a constant, i.e., ζ2d = O(1). Note that since model parameters ai, bi, ci, i ∈ [k], have
unit norm, low noise regime imposes that the expected norm of noise is in the same order of norm
of model parameters. The results for the general high noise regime is provided in Appendix L. In
addition, since wj’s are the mixture probabilities, for simplicity we consider wj = Θ(1/k), j ∈ [k].

2.1.1. SEMI-SUPERVISED LEARNING

In the semi-supervised setting, label information is exploited to build good initialization vectors for
the tensor decomposition algorithm as follows. Let x(l)

1,j , x
(l)
2,j , x

(l)
3,j ∈ Rd, j ∈ [k], l ∈ [mj ], denote

m =
∑

j∈[k]mj labeled samples, where the samples with subscript j have label j, i.e., they are
generated from hidden state h = j. Then, given conditional mean model in (2), we can compute the
empirical estimate of mixture components as

âj :=
1

mj

∑

l∈[mj ]

x
(l)
1,j , b̂j :=

1

mj

∑

l∈[mj ]

x
(l)
2,j , ĉj :=

1

mj

∑

l∈[mj ]

x
(l)
3,j , for any j ∈ [k]. (5)

We first provide the settings of learning algorithm which include input tensor T , number of
iterations N and the initialization setting.

Settings of Algorithm in Theorem 7: Given n unlabeled samples x(i)
1 , x

(i)
2 , x

(i)
3 ∈ Rd, i ∈ [n],

consider the empirical estimate of 3rd order moment in (3) as the input to the algorithm in Figure 2.
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Let the number of iterations N = Θ̃ (log (1/εR)) where εR := min{
√
k/n,

√
k/d}. Exploit the

empirical estimates in (5) as initialization vectors.

Theorem 7 (Semi-supervised learning of multiview mixtures model) Assume the Algorithm set-
tings mentioned above hold. Suppose the number of labeled samples with label j ∈ [k], denoted
by mj , and the number of unlabeled samples n satisfy mj ≥ Ω̃ (1) , n ≥ Ω̃ (k) . If rank condition
Ω(d) ≤ k ≤ o(d1.5) holds, then the algorithm outputs estimates Â := [â1 · · · âk] ∈ Rd×k and
ŵ := [ŵ1 · · · ŵk]> ∈ Rk, satisfying w.h.p.

∥∥∥Â−A
∥∥∥
F
≤ Õ

(
k√
n

)
, ‖ŵ − w‖ ≤ Õ

(
1√
n

)
. (6)

Similar error bounds hold for other factor matrices B and C.

Thus, we provide efficient learning guarantees for overcomplete multiview mixtures in the semi-
supervised setting given small number of labeled samples. It is also worth mentioning that there is
no dependence on the condition numbers of moment matrices in the sample complexity result.

Column-wise error bounds: In Section 1.1.1, we explain that the algorithm analysis also pro-
vides column-wise error bounds with the expense of introducing an additional approximation error.
More precisely, we provide stronger guarantees on the column-wise errors as

‖âj − aj‖ ≤ Õ
(√

k/n
)

+ Õ
(√

k/d
)
, j ∈ [k], (7)

where a
√
k factor is removed in the first term of bound comparing with the bound in (6), but

an additional approximation error Õ
(√
k/d
)

is introduced. See Lemma 2 and the corresponding
discussions for exact description.

Remark 8 (Random assumption) In the above learning result, we assume that the mixture com-
ponents are uniformly i.i.d. drawn from unit d-dimensional sphere Sd−1. This assumption is pro-
vided for simplicity, while the original conditions for the recovery guarantees are deterministic
(provided in Appendix G). We show that random matrices satisfy these deterministic assumptions
with high probability. Notice the random assumption is reasonable for continuous models including
the multiview mixtures model described here. But, it is not appropriate for discrete models where
the non-negativity assumptions on the entries of factor matrices are required.

Remark 9 (Spherical Gaussian mixtures) Similar learning results as in Theorem 7 hold for the
spherical Gaussian mixtures. Note that in Appendix D, it is provided how learning this model can
be reduced to the tensor decomposition problem.

2.1.2. UNSUPERVISED LEARNING

In the unsupervised setting, there is no label information available to build the initialization vectors.
Here, the initialization is performed by doing rank-1 SVD on random slices of the moment tensor.

Settings of Algorithm in Theorem 10: Consider the same settings as in Theorem 7 with new
initialization method as follows. The initialization in each run of Algorithm 1 is performed by
SVD-based technique in Procedure 3, with the number of initializations as L ≥ kΩ(k2/d2).
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Theorem 10 (Unsupervised learning of multiview mixtures model) Assume the Algorithm set-
tings mentioned above hold. Suppose the number of unlabeled samples n satisfies n ≥ Ω̃ (kd) . If
rank condition k = Θ(d) holds, then the same guarantees as in Theorem 7 are satisfied.

We now compare the sample complexity in the above theorem with the previous result by Song
et al. (2013), which employs whitening procedure followed by tensor power updates in the un-
dercomplete setting. When k ≈ d, the sample complexity in (Song et al., 2013) is scaled as
n ≥ Ω̃(k6.5). In comparison, the sample complexity for our method scales as Ω̃(k2), which is
far better. This is especially relevant in the high dimensional regime, where k and d are large, and
our method requires fewer samples for learning than the previous approaches.

The above unsupervised learning result can be also adapted for learning mixture of spherical
Gaussians. An algorithm for learning mixture of spherical Gaussians in the undercomplete setting is
provided in (Hsu and Kakade, 2012), which is a moment-based technique combined with a whiten-
ing step. When k = d, the sample complexity in (Hsu and Kakade, 2012) scales as n ≥ Ω̃(d3). But,
our tight tensor concentration analysis leads to the better sample complexity of n ≥ Ω̃(d2).

Remark 11 (Extension to k ≤ o(d1.5)) We also argue that the SVD initialization can be slightly
modified, and under some regime of noise we can extend the above unsupervised learning result to
the highly overcomplete regime k ≤ o(d1.5). Suppose the expected norm of noise is constant (low
noise regime), and the noise vectors are incoherent with the true mean components (which is satis-
fied for random mean components). Then if the SVD initialization is performed using samples4 x

(i)
3 ,

then the same guarantees as in Theorem 10 hold under highly overcomplete regime k ≤ o(d1.5).

2.2. Independent Component Analysis (ICA) and Sparse ICA

In this section, we propose the semi-supervised and unsupervised learning results for the ICA and
sparse ICA models. By semi-supervised setting in ICA, we mean some prior information is available
which provides good initializations for the components. Recall the standard ICA model (Comon,
1994), where independent source signals are linearly mixed to generate the observations. Let h ∈
Rk be a random latent signal where its coordinates are independent, and A ∈ Rd×k be the mixing
matrix. Then, the observed vector is

x = Ah ∈ Rd.

For simplicity, we limit to noiseless setting. This is the standard setting, and is already challenging
because samples in ICA are mixtures of many components, unlike the mixture models. It is dis-
cussed in Appendix D how estimating the parameters of ICA model can be formulated as a tensor
decomposition problem where a modified version of 4th order observed moment (denoted by M4)
is characterized in a tensor decomposition form; see Lemma 15 in the appendix.

We now provide the learning results for the sparse ICA problem which is more general. This is
the ICA setting with the assumption that hidden vector h ∈ Rk can be sparse with i.i.d. Bernoulli-
subgaussian random entries. Assume the probability of each Bernoulli variable being 1 is s/k. Note
that (dense) ICA is special case when s = k. For the sparse ICA model, we also assume that mixing
matrix A satisfies the RIP property (see condition (RIP) in Section 2.1).

4. The SVD of T
(
I, I, x

(i)
3

)
is computed; see Procedure 3 in Appendix E for the details.
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Settings of Algorithm in Theorem 12: Given n samples xi = Ahi, i ∈ [n], consider the empir-
ical estimate of 4th order (modified) momentM4 (see (17) in the Appendix) as the input to the algo-
rithm with symmetric 4th order updates; see Appendix F.1.1 for higher order extension of the algo-
rithm. Let the number of iterationsN = Θ̃ (log (1/ε̃R)), where ε̃R := min

{
k2/min

{
n,
√
d3n
}
,
√
k/d1.5

}
.

The initialization is performed differently in different learning settings. In the semi-supervised set-
ting, it is assumed that for any j ∈ [k], an approximation of aj denoted by â(0)

j is given satisfying

‖â(0)
j − aj‖ ≤ α for some constant α < 1. In the unsupervised setting, the initialization is per-

formed by 4-th order generalization 5 of SVD-based technique in Procedure 3, with the number of
initializations as L ≥ kΩ(k2/d2).

Theorem 12 (Semi-supervised and unsupervised learning of (sparse) ICA) Assume the Algo-
rithm settings mentioned above hold. In the semi-supervised setting, suppose

n ≥
{

Ω̃(sk), sk ≤ O(d3)/ polylog(d),

Ω̃
(
s2k2/d3

)
, o.w.,

and rank condition Ω(d) ≤ k ≤ o(d2) hold. In the unsupervised setting, suppose n ≥ Ω̃
(
k2s
)
, and

rank condition Ω(d) = Θ(d) hold. Then the algorithm outputs estimates Â and ŵ, satisfying w.h.p.

max
{∥∥Â−A

∥∥
F
, ‖ŵ − w‖

}
≤ Õ

(
s · k1.5

min
{
n,
√
d3n
}
)
.

In one extreme when s = Θ(k), it is akin to learning the “dense” ICA model.6 On the other extreme
when s is a constant, it is akin to learning multiview models. Thus, the sparse coding model bridges
the range of models between multiview mixtures model and ICA.

Similar to the multiview mixture model, we can also provide column-wise recovery guarantees
with introducing additional approximation error Õ

(√
k/d1.5

)
. Note that this error is different from

multiview mixture since we exploit different tensor orders in the two models.

3. Algorithm

We first introduce tensor preliminaries, and then describe our tensor decomposition algorithm.

3.1. Tensor Preliminaries

A real p-th order tensor T ∈⊗pRd is a member of the outer product of Euclidean spaces Rd. The
different dimensions of the tensor are referred to as modes. For instance, for a matrix, the first mode
refers to columns and the second mode refers to rows. In addition, fibers are higher order analogues
of matrix rows and columns. A fiber is obtained by fixing all but one of the indices of the tensor
(and is arranged as a column vector). For example, for a third order tensor T ∈ Rd×d×d, the mode-1
fiber is given by T (:, j, l). Similarly, slices are obtained by fixing all but two of the indices of the
tensor. For example, for the third order tensor T , the slices along 3rd mode are given by T (:, :, l).

5. In the 4th order case, the SVD is performed on T (I, I, θ, θ) ∈ Rd×d for some random vector θ.
6. The complete results for learning ICA are provided in Appendix M which is a special case when s = k. Note that

since we provide a different proof for the ICA model, it does not need the RIP condition on dictionary matrix.
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We view a tensor T ∈ Rd×d×d as a multilinear operator. For vectors u, v, w ∈ Rd, we have 7

T (I, v, w) :=
∑

j,l∈[d]

vjwlT (:, j, l) ∈ Rd, (8)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a
multilinear combination of the tensor entries, and T (I, I, w) ∈ Rd×d is a linear combination of the
tensor slices. See (14) in the Appendix for the general definition of the multilinear form.

A 3rd order tensor T ∈ Rd×d×d is said to be rank-1 if it can be written in the form

T = w · a⊗ b⊗ c⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (9)

where ⊗ represents the outer product notation and a, b, c ∈ Rd are unit vectors. A tensor T ∈
Rd×d×d is said to have a CP rank k if it can be written as the (minimal) sum of k rank-1 tensors

T =
∑

i∈[k]

wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ Rd. (10)

3.2. Tensor Decomposition Algorithm Input: Tensor T =
∑

i∈[k] wi · ai ⊗ bi ⊗ ci

Algorithm Initialization:
1) Semi-supervised setting: using labels

2) Unsupervised setting: Procedure 3

Tensor Power Method Iterations (Algorithm 1)

Clustering the output of tensor power
method into k clusters (Procedure 2)

Removing the residual error (Algorithm 4)

Output: estimates {(ŵi, âi, b̂i, ĉi)}i∈[k]

Figure 2: Overview of tensor decomposition al-
gorithm. See Appendix E for algo-
rithms and more discussions.

In this section, we introduce the tensor decomposition
algorithm. The goal of tensor decomposition algorithm
is to recover the rank-1 components of tensor; see (10)
for the notion of tensor rank. Figure 2 depicts the
overview of our tensor decomposition method where the
corresponding algorithms and procedures are also spec-
ified. We now describe different steps of the algorithm
as follows. For the complete details of algorithms and
more discussions, see Appendix E.

Tensor power iteration: The main step of the al-
gorithm is tensor power iteration which basically per-
forms alternating asymmetric power updates 8 on dif-
ferent modes of the tensor as (see (8) for the definition
of multilinear form)

â(t+1) =
T
(
I, b̂(t), ĉ(t)

)

∥∥∥T
(
I, b̂(t), ĉ(t)

)∥∥∥
, b̂(t+1) =

T
(
â(t), I, ĉ(t)

)
∥∥T
(
â(t), I, ĉ(t)

)∥∥ , ĉ
(t+1) =

T
(
â(t), b̂(t), I

)

∥∥∥T
(
â(t), b̂(t), I

)∥∥∥
, (11)

where {â(t), b̂(t), ĉ(t)} denotes estimate in the t-th iteration. Notice that the updates alternate among
different modes of the tensor which can be viewed as a rank-1 form of the standard Alternating
Least Squares (ALS) method.

We now provide an intuitive argument on the functionality of this step. Consider a rank-k tensor
T as in (10), and suppose we start at the correct vectors â = aj and b̂ = bj , for some j ∈ [k]. Then,
the power update in (11) leads to T

(
â, b̂, I

)
= wjcj +

∑
i 6=j wi〈aj , ai〉〈bj , bi〉ci, where the first

7. Compare with the matrix case where for M ∈ Rd×d, we have M(I, u) =Mu :=
∑

j∈[d] ujM(:, j).
8. This is exactly the generalization of asymmetric matrix power update to 3rd order tensors.
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term is along cj and the second term is an error term due to non-orthogonality of the components.
For orthogonal decomposition, the second term is zero, and thus the true vectors aj , bj and cj
are stationary points of the power update procedure. However, since we consider non-orthogonal
tensors, this procedure cannot recover the decomposition exactly leading to a residual error after
running this step. Under incoherence conditions which encourages soft-orthogonality9 (and some
other conditions), we show that the residual error is small (see Lemma 2 where the guarantees for
the tensor power iteration step is provided). This enables us to remove this residual error with the
following additional step.

Removing residual error: We propose Algorithm 4 to remove the additional residual error
after tensor power iteration. This algorithm mainly runs a coordinate descent iteration as

c̃
(t+1)
i = Norm

(
T
(
â

(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

)
, i ∈ [k], (12)

where for vector v, we have Norm(v) := v/‖v‖, i.e., it normalizes the vector. The above is similarly
applied for updating ã(t+1)

i and b̃(t+1)
i . Unlike the power iteration, it can be immediately seen that

ai, bi and ci are stationary points of the above update even if the components are not orthogonal
to each other. Inspired by this intuition, we prove that when the residual error is small enough (as
guaranteed in the analysis of tensor power iteration), this step removes it.

Initialization and clustering procedures: It can be shown that the tensor power updates in (11)
are the alternating iterations for the problem of rank-1 approximation of the tensor; see (19) in the
appendix for the optimization viewpoint. This is a non-convex problem and has many local optima.
Thus, the power update requires careful initialization to ensure convergence to the true rank-1 tensor
components. In the semi-supervised setting, we exploit labeled samples for the initialization, and
in the unsupervised setting, we propose an SVD-based technique stated in Procedure 3. In this
procedure, we introduce the top singular vectors of matrix T (I, I, θ) (for some random Gaussian
vector θ) as the initialization vectors. We establish this method initializes the non-convex power
iteration with good initialization vectors when we try large enough number of initializations as
characterized in Theorem 3.

In the unsupervised setting, we also need to identify which initializations are successful in re-
covering the true rank-1 components of the tensor which is performed by the clustering Procedure 2.

Tensor decomposition guarantees: Recall that we provided local and global convergence guar-
antees of the tensor decomposition algorithm in Section 1.1.1. Those guarantees are required for
proving unsupervised and semi-supervised learning results proposed in Section 2.
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Appendix Organization

We first provide more discussions on related works in Section A and propose some experiment
results in Section B.

In Section C, we introduce more tensor notations, which are extensively used later in the ap-
pendix. Then in Section D, we review some previous approaches in applying tensor decomposition
to learning latent variable models, especially how to compute the corresponding moment tensor.

Part I of the appendix contains materials related to the new tensor decomposition algorithm,
including intuitive descriptions and detailed proofs.

Part II of the appendix contains the proofs for sample complexity bounds. The most important
tools we develop to prove these bounds are the tensor concentration bounds in Section N.

Appendix A. Related work

Tensor decomposition for learning undercomplete models: Several latent variable models can
be learned through tensor decomposition including independent component analysis (De Lathauwer
et al., 2007), topic models, Gaussian mixtures, hidden Markov models (Anandkumar et al., 2014a)
and network community models (Anandkumar et al., 2013b). In the undercomplete setting, Anand-
kumar et al. (2014a) analyze robust tensor power iteration for learning LVMs, and Song et al. (2013)
extend analysis to the nonparametric setting. These works require the tensor factors to have full col-
umn rank, which rules out overcomplete models. Moreover, they require whitening the input data,
and hence the sample complexity depends on the condition number of the factor matrices. For
instance, when k = d, for random factor matrices, the previous tensor approaches in Song et al.
(2013); Anandkumar et al. (2013a) have a sample complexity of Ω̃(k6.5), while our result provides
improved sample complexity Ω̃(k2) assuming incoherent components.

Learning overcomplete models: In general, learning overcomplete models is challenging, and
they may not even be identifiable. The FOOBI procedure by De Lathauwer et al. (2007) shows that
a polynomial-time procedure can recover the components of ICA model (with generic factors) when
k = O(d2), where the moment is fourth order. However, the procedure does not work for third-order
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overcomplete tensors. For the fifth order tensor, Goyal et al. (2013); Bhaskara et al. (2013) perform
simultaneous diagonalization on the matricized versions of random slices of the tensor and provide
careful perturbation analysis. But, this procedure cannot handle the same level of overcompleteness
as FOOBI, since an additional dimension is required for obtaining two (or more) fourth order tensor
slices. In addition, Goyal et al. (2013) provide stronger results for ICA, where the tensor slices can
be obtained in the Fourier domain. Given 4th order tensor, they need poly(k4) number of unlabeled
samples for learning ICA (where the poly factor is not explicitly characterized), while we only need
Ω̃(k2.5) (when k = Θ(d2)/ polylog(d)). Anderson et al. (2013) convert the problem of learning
Gaussian mixtures to an ICA problem and exploit the Fourier PCA method in Goyal et al. (2013).
More precisely, for a Gaussian mixtures model with known identical covariance matrices, when the
number of components k = poly(d), the model can be learned in polynomial time (as long as a
certain non-degeneracy condition is satisfied).

Arora et al. (2013); Agarwal et al. (2013); Barak et al. (2014) provide guarantees for the sparse
coding model (also known as dictionary learning problem). Arora et al. (2013); Agarwal et al.
(2013) provide clustering based approaches for approximately learning incoherent dictionaries and
then refining them through alternating minimization to obtain exact recovery of both the dictionary
and the coefficients. They can handle sparsity level up toO(

√
d) (per sample) and the size of the dic-

tionary k can be arbitrary. Barak et al. (2014) consider tensor decomposition and dictionary learning
using sum-of-squares (SOS) method. In contrast to simple iterative updates considered here, SOS
involves solving semi-definite programs. They provide guaranteed recovery by a polynomial time
complexity kO(1/δ) for some 0 < δ < 1, when the size of the dictionary k = Θ(d), and the sparsity
level is k1−δ. They also provide guarantees for higher sparsity levels up to (a small enough) con-
stant fraction of k, but the computational complexity of the algorithm becomes quasi-polynomial:
kO(log k). They can also handle higher level of overcompleteness at the expense of reduced sparsity
level. They do not require any incoherence conditions on the factor matrices and they can handle
the signal to noise ratio being a constant. Thus, their work has strong guarantees, but at the expense
of running a complicated algorithm. In contrast, we consider a simple alternating rank-1 updates
algorithm, but require more stringent conditions on the model.

There are other recent works which can learn overcomplete models, but under different settings
than the one considered in this paper. Anandkumar et al. (2013c) learn overcomplete sparse topic
models, and provide guarantees for Tucker tensor decomposition under sparsity constraints. Specif-
ically, the model is identifiable using (2n)th order moments when the latent dimension k = O(dn)
and the sparsity level of the factor matrix is O(d1/n), where d is the observed dimension. The
Tucker decomposition is more general than the CP decomposition considered here, and the tech-
niques in (Anandkumar et al., 2013c) differ significantly from the ones considered here, since they
incorporate sparsity, while we incorporate incoherence here.

Concentration Bounds: We obtain tight concentration bounds for empirical tensors in this paper.
In contrast, applying matrix concentration bounds, e.g. (Tropp, 2012), leads to strictly worse bounds
since they require matricizations of the tensor. Latala (2006) provides an upper bound on the mo-
ments of the Gaussian chaos, but they are limited to independent Gaussian distributions (and can be
extended to other cases such as Rademacher distribution). The principle of entropy-concentration
trade-off (Rudelson and Vershynin, 2009), employed in this paper, have been used in other con-
texts. For instance, Nguyen et al. (2010) provide a spectral norm bound for random tensors. They
first apply a symmetrization argument which reduces the problem to bounding the spectral norm
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of a random Gaussian tensor and then employ entropy-concentration trade-off to bound its spec-
tral norm. They also exploit the bounds on the Lipschitz functions of Gaussian random variables.
While Nguyen et al. (2010) employ a rough classification of vectors (to be covered) into dense and
sparse vectors, we require a finer classification of vectors into different “buckets” (based on their
inner products with given vectors) to obtain the tight concentration bounds in this paper. Moreover,
we do not impose Gaussian assumption in this paper, and instead require more general conditions
such as RIP or bounded 2-to-3 norms.

Appendix B. Experiments

In this Section, we run the algorithm for learning multiview Gaussian mixtures model. We consider
model S described in Section 2.1. The mixture components are uniformly i.i.d. drawn from d-
dimensional sphere Sd−1. We assume low-noise regime such that ζ

√
d = 0.1. In addition, let 10

wj = Pr[h = j] = 1
k , j ∈ [k]. We consider d = 100 and k = {10, 20, 50, 100, 200, 500}. In order

to see the effect of number of components k, we fix the number of samples n = 1000.
Notice that the empirical tensor T̂ in (22) is not explicitly computed, and the tensor power

updates in the algorithm are computed through the multilinear form stated in (23). This leads to
efficient computational complexity. See Section 3 for detailed discussion.

For each initialization τ ∈ [L], an alternative option of running the algorithm with a fixed
number of iterations N is to stop the iterations based on some stopping criteria. In this experiment,
we stop the iterations when the improvement in subsequent steps is small as

max

(∥∥∥â(t)
τ − â(t−1)

τ

∥∥∥
2
,
∥∥∥b̂(t)τ − b̂(t−1)

τ

∥∥∥
2
,
∥∥∥ĉ(t)
τ − ĉ(t−1)

τ

∥∥∥
2
)
≤ tS,

where tS is the stopping threshold. According to the error bound provided in Theorem 7, we let

tS := t1(log d)2

√
k

n
+ t2(log d)2

√
k

d
, (13)

for some constants t1, t2 > 0. Here, we set t1 = 1e− 08, and t2 = 1e− 07.
A random initialization approach is used where â(0) and b̂(0) are uniformly i.i.d. drawn from

sphere Sd−1. Initialization vector ĉ(0) is generated through update formula in (11). Figure 3 depicts
the ratio of recovered components vs. the number of initializations. We observe that the algorithm
is capable of recovering mixture components even in the overcomplete regime k ≥ d. As suggested
in the experimental results of Anandkumar et al. (2014b), we also observe that random initialization
works efficiently in the experiments, while the theoretical results for random initialization appear to
be highly pessimistic. This suggests additional room for improving the theoretical guarantees under
random initialization.

Table 1 provides the average square error of the estimates, the average weight error and the
average number of iterations for different values of k. The averages are over different initializations
and random runs. The square error is computed as

1

3

[
‖aj − â‖2 +

∥∥∥bj − b̂
∥∥∥

2
+ ‖cj − ĉ‖2

]
,

10. In order to see the algorithm performance more easily, we generate n samples such that each mixture component is
exactly appeared in n

k
observations. Note that this is basically imposing equal number of different mixture compo-

nents in the observations.
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Figure 3: Ratio of recovered components vs. the number of initializations. The figure is an average over 10
random runs.

Table 1: Results for learning a multi-view mixture model. d = 100, n = 1000, ζ
√

d = 0.1.

k
avg. square
error

avg. weight
error

avg. # of
iterations

avg. square
error /k

avg. weight
error /k

10 1.24e-03 1.73e-05 9.81 1.24e-04 1.73e-06
20 2.94e-03 5.28e-05 10.98 1.41e-04 2.64e-06
50 7.21e-03 1.84e-04 12.74 1.44e-04 3.69e-06
100 1.47e-02 5.36e-04 14.86 1.47e-04 5.36e-06
200 3.03e-02 1.85e-03 18.34 1.51e-04 9.23e-06
500 8.26e-02 1.23e-02 30.02 1.65e-04 2.45e-05

for the corresponding recovered column j. The weight error is computed as square relative error
|ŵ − wj |2/w2

j . The number of iterations performed before stopping the algorithm is mentioned
in the fourth column. We observe that we can still get good error bounds even for overcomplete
models with d = 100 and k = 500.

In the last two columns, the normalized values of errors are provided. The normalization is done
by the number of mixtures k. Here, we observe that the normalized values (specially for the square
error) are very close for different k. This complies with the theoretical error bound in (7) which
claims that the square recovery error is bounded as Õ(k) when d and n are fixed as here.

Appendix C. More Matrix and Tensor Notations

A real p-th order tensor T ∈⊗p
i=1 Rdi is a member of the outer product of Euclidean spaces Rdi ,

i ∈ [p]. For convenience, we restrict to the case where d1 = d2 = · · · = dp = d, and simply
write T ∈ ⊗p Rd. As is the case for vectors (where p = 1) and matrices (where p = 2), we may
identify a p-th order tensor with the p-way array of real numbers [Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [d]],
where Ti1,i2,...,ip is the (i1, i2, . . . , ip)-th coordinate of T with respect to a canonical basis. For
convenience, we limit to third order tensors (p = 3) in our analysis, while the results for higher
order tensors are also provided.

Fibers are higher order analogues of matrix rows and columns. A fiber is obtained by fixing all
but one of the indices (and is arranged as a column vector). For instance, for a matrix, its mode-1
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Figure 3: Ratio of recovered components vs. the number of initializations. The figure is an average over 10
random runs.

Table 1: Results for learning a multi-view mixture model. d = 100, n = 1000, ζ
√
d = 0.1.

k
avg. square

error
avg. weight

error
avg. # of
iterations

avg. square
error /k

avg. weight
error /k

10 1.24e-03 1.73e-05 9.81 1.24e-04 1.73e-06
20 2.94e-03 5.28e-05 10.98 1.41e-04 2.64e-06
50 7.21e-03 1.84e-04 12.74 1.44e-04 3.69e-06

100 1.47e-02 5.36e-04 14.86 1.47e-04 5.36e-06
200 3.03e-02 1.85e-03 18.34 1.51e-04 9.23e-06
500 8.26e-02 1.23e-02 30.02 1.65e-04 2.45e-05

for the corresponding recovered column j. The weight error is computed as square relative error
|ŵ − wj |2/w2

j . The number of iterations performed before stopping the algorithm is mentioned
in the fourth column. We observe that we can still get good error bounds even for overcomplete
models with d = 100 and k = 500.

In the last two columns, the normalized values of errors are provided. The normalization is done
by the number of mixtures k. Here, we observe that the normalized values (specially for the square
error) are very close for different k. This complies with the theoretical error bound in (7) which
claims that the square recovery error is bounded as Õ(k) when d and n are fixed as here.
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A real p-th order tensor T ∈⊗p
i=1 Rdi is a member of the outer product of Euclidean spaces Rdi ,

i ∈ [p]. For convenience, we restrict to the case where d1 = d2 = · · · = dp = d, and simply
write T ∈ ⊗pRd. As is the case for vectors (where p = 1) and matrices (where p = 2), we may
identify a p-th order tensor with the p-way array of real numbers [Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [d]],
where Ti1,i2,...,ip is the (i1, i2, . . . , ip)-th coordinate of T with respect to a canonical basis. For
convenience, we limit to third order tensors (p = 3) in our analysis, while the results for higher
order tensors are also provided.
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Fibers are higher order analogues of matrix rows and columns. A fiber is obtained by fixing all
but one of the indices (and is arranged as a column vector). For instance, for a matrix, its mode-1
fiber is any matrix column while a mode-2 fiber is any row. For a third order tensor T ∈ Rd×d×d, the
mode-1 fiber is given by T (:, j, l), mode-2 by T (i, :, l) and mode-3 by T (i, j, :). For r ∈ {1, 2, 3},
the mode-r matricization of a third order tensor T ∈ Rd×d×d, denoted by mat(T, r) ∈ Rd×d2 ,
consists of all mode-r fibers arranged as column vectors.

We view a tensor T ∈ Rd×d×d as a multilinear form. Consider matrices Mr ∈ Rd×dr , r ∈
{1, 2, 3}. Then tensor T (M1,M2,M3) ∈ Rd1 ⊗ Rd2 ⊗ Rd3 is defined as

T (M1,M2,M3)i1,i2,i3 :=
∑

j1,j2,j3∈[d]

Tj1,j2,j3 ·M1(j1, i1) ·M2(j2, i2) ·M3(j3, i3). (14)

In particular, if u, v and w are vectors and T is a 3rd order tensor, then T (u, v, w) is a scalar,
T (I, v, w) is a vector, and T (I, I, w) is a matrix. See (8) for T (I, v, w).

The CP decomposition is closely related to the multilinear form in (14). In particular, consider
rank-k tensor

T =
∑

i∈[k]

wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ Rd.

Then, for vectors â, b̂, ĉ ∈ Rd, we have

T (â, b̂, ĉ) =
∑

i∈[k]

wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉.

Denote matrix A := [a1|a2| . . . |ak], and similarly B and C. Without loss of generality, we assume
that the matrices have normalized columns (in 2-norm), since we can always rescale them, and
adjust the weights wi appropriately.

Throughout, ‖v‖ := (
∑

i v
2
i )

1/2 denotes the Euclidean or `2 norm of a vector v, and ‖M‖
denotes the spectral (operator) norm of a matrixM . Furthermore, ‖T‖ and ‖T‖F denote the spectral
(operator) norm and the Frobenius norm of a tensor, respectively. In particular, for a 3rd order tensor,
we have

‖T‖ := sup
‖u‖=‖v‖=‖w‖=1

|T (u, v, w)|, ‖T‖F :=

√ ∑

i,j,l∈[d]

T 2
i,j,l.

Given vector w ∈ Rd, let diag(w) ∈ Rd×d denote the diagonal matrix with w on its main
diagonal. Given matrix A ∈ Rd×k, the following notations are defined to refer to its sub-matrices.
Aj denotes the j-th column and Aj denotes the j-th row of A. In addition, A\j ∈ Rd×(k−1) is A
with its j-th column removed, and A\j ∈ R(d−1)×k is A with its j-th row removed.

For two matrices A ∈ Rd1×k and B ∈ Rd2×k, the Khatri-Rao product is denoted by A � B ∈
Rd1d2×k, and its (i, j)th entry is given by

A�B(i, j) := Ai1,jBi2,j , i = (i1, i2) ∈ [d1]× [d2], j ∈ [k].

For two matrices A ∈ Rd×k and B ∈ Rd×k, the Hadamard product is defined as the entry-wise
multiplication of the matrices,

A ∗B(i, j) := A(i, j)B(i, j), i ∈ [d], j ∈ [k].
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Let ‖u‖p denote the `p norm of vector u. Let ‖A‖∞ denote the `∞ element-wise norm of matrix
A, and the induced q → p norm is defined as

‖A‖q→p := sup
‖u‖q=1

‖Au‖p.

Notice that while the standard asymptotic notation is to write f(d) = O(g(d)) and g(d) =
Ω(f(d)), we sometimes use f(d) ≤ O(g(d)) and g(d) ≥ Ω(f(d)) for additional clarity. We also
use the asymptotic notation f(d) = Õ(g(d)) if and only if f(d) ≤ αg(d) (for all d ≥ d0) for some
d0 > 0 and α = polylog(d), i.e., Õ hides polylog factors. Similarly, we say f(d) = Ω̃(g(d)) if and
only if f(d) ≥ αg(d) (for all d ≥ d0) for some d0 > 0 and α = polylog(d).

Appendix D. Tensor Decomposition for Learning Latent Variable Models

In this section, we discuss that the problem of learning several latent variable models reduces to the
tensor decomposition problem. We show that the observed moment of the latent variable models
can be written in a tensor-structured form when appropriate modifications are performed. This is
done for multiview linear mixture models (in the main text), spherical Gaussian mixtures and ICA
(Independent Component Analysis). For a more detailed discussion on the connection between
observed moments of LVMs and tensor decomposition, see Section 3 in Anandkumar et al. (2014a).

D.1. Spherical Gaussian mixtures

Consider a mixture of k different Gaussian distributions with spherical covariances. Let wj , j ∈ [k]
denote the proportion for choosing each mixture. For each Gaussian component j ∈ [k], aj ∈ Rd
is the mean, and ζ2

i I is the spherical covariance. For simplicity, we restrict to the case where all the
components have the same spherical variance, i.e., ζ2

1 = ζ2
2 = · · · = ζ2

k = ζ2. The generalization
is discussed in Hsu and Kakade (2012). In addition, in order to generalize the learning result to
the overcomplete setting, we assume that variance parameter ζ2 is known (see Remark 14 for more
discussions). The following lemma shows that the problem of estimating parameters of this mixture
model can be formulated as a tensor decomposition problem. This is a special case of Theorem 1 in
Hsu and Kakade (2012) where we assume the variance parameter is known.

Lemma 13 (Hsu and Kakade 2012) If

M3 := E[x⊗ x⊗ x]− ζ2
∑

i∈[d]

(E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]) , (15)

then

M3 =
∑

j∈[k]

wjaj ⊗ aj ⊗ aj .

In order to provide the learning guarantee, we define the following empirical estimates. Let
M̂3, M̂2, and M̂1 respectively denote the empirical estimates of the raw moments E[x ⊗ x ⊗ x],
E[x⊗ x], and E[x]. Then, the empirical estimate of the third order modified moment in (15) is

M̂3 := M̂3 − ζ2
∑

i∈[d]

(
M̂1 ⊗ ei ⊗ ei + ei ⊗ M̂1 ⊗ ei + ei ⊗ ei ⊗ M̂1

)
. (16)
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Remark 14 (Variance parameter estimation) Notice that we assume variance ζ2 is known in
order to generalize the learning result to the overcomplete setting. Since ζ is a scalar parameter, it
is reasonable to try different values of ζ till we get a good reconstruction. On the other hand, in the
undercomplete setting, variance ζ2 can be also estimated as proposed in Hsu and Kakade (2012),
where estimate ζ̂2 is the k-th largest eigenvalue of the empirical covariance matrix M̂2−M̂1M̂>

1 .

D.2. Independent component analysis (ICA)

In the standard ICA model (Comon, 1994; Cardoso and Comon, 1996; Hyvarinen and Oja, 2000;
Comon and Jutten, 2010), random independent latent signals are linearly mixed and perturbed with
noise to generate the observations. Let h ∈ Rk be a random latent signal, where its coordinates are
independent, A ∈ Rd×k be the mixing matrix, and z ∈ Rd be the Gaussian noise. In addition, h and
z are also independent. Then, the observed random vector is

x = Ah+ z.

The following lemma shows that the problem of estimating parameters of the ICA model can be
formulated as a tensor decomposition problem.

Lemma 15 (Comon and Jutten 2010) Define

M4 := E[x⊗ x⊗ x⊗ x]− T, (17)

where T ∈ Rd×d×d×d is the fourth order tensor with

Ti1,i2,i3,i4 := E[xi1xi2 ]E[xi3xi4 ] + E[xi1xi3 ]E[xi2xi4 ] + E[xi1xi4 ]E[xi2xi3 ], i1, i2, i3, i4 ∈ [d].

Let κj := E[h4
j ]− 3E[h2

j ], j ∈ [k]. Then, we have

M4 =
∑

j∈[k]

κjaj ⊗ aj ⊗ aj ⊗ aj .

See Hsu and Kakade (2012) for a proof of this theorem in this form. Let M̂4 be the empirical
estimate of M4 given n samples.
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Part I: Algorithm Analysis

Appendix E. Tensor Decomposition Algorithm

Figure 2 in the main part depicts the flowchart of the tensor decomposition algorithm. In this
section, we provide the details of all steps of that flowchart, and state more detailed discussions.
More detailed guarantees for the algorithm (compared with what presented in Section 1.1.1) are
also provided in Appendix F.

Recall that our algorithm includes two main update steps. First step is the tensor power iteration
which is provided in Algorithm 1, and the second step is residual error removal which is provided
in Algorithm 4.

Algorithm 1 Tensor decomposition via alternating asymmetric power updates
Input: Tensor T ∈ Rd×d×d, number of initializations L, number of iterations N .

1: for τ = 1 to L do
2: Initialize unit vectors â(0)

τ ∈ Rd, b̂(0)
τ ∈ Rd, and ĉ(0)

τ ∈ Rd as
• Semi-supervised setting: label information is exploited; see equation (5).
• Unsupervised setting: SVD-based Procedure 3 when k≤βd (for arbitrary constant β).

3: for t = 0 to N − 1 do
4: Asymmetric power updates (see (8) for the definition of multilinear form):

â(t+1)
τ =

T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)

∥∥∥T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)∥∥∥
, b̂(t+1)

τ =
T
(
â
(t)
τ , I, ĉ

(t)
τ

)

∥∥∥T
(
â
(t)
τ , I, ĉ

(t)
τ

)∥∥∥
, ĉ(t+1)

τ =
T
(
â
(t)
τ , b̂

(t)
τ , I

)

∥∥∥T
(
â
(t)
τ , b̂

(t)
τ , I

)∥∥∥
.

5: weight estimation: ŵτ = T
(
â

(N)
τ , b̂

(N)
τ , ĉ

(N)
τ

)
.

6: Cluster set
{(
ŵτ , â

(N)
τ , b̂

(N)
τ , ĉ

(N)
τ

)
, τ ∈ [L]

}
into k clusters as in Procedure 2.

7: return the center member of these k clusters as estimates (ŵj , âj , b̂j , ĉj), j ∈ [k].

Procedure 2 Clustering process

Input: Tensor T ∈ Rd×d×d, set of 4-tuples
{

(ŵτ , âτ , b̂τ , ĉτ ), τ ∈ [L]
}

, parameter ε.
1: for i = 1 to k do
2: Among the remaining 4-tuples, choose â, b̂, ĉ which correspond to the largest |T (â, b̂, ĉ)|.
3: Do N more iterations of alternating updates in (11) starting from â, b̂, ĉ.
4: Let the output of iterations denoted by (â, b̂, ĉ) be the center of cluster i.
5: Remove all the tuples with max{|〈âτ , â〉|, |〈̂bτ , b̂〉|, |〈ĉτ , ĉ〉|} > ε/2.
6: return the k cluster centers.

We now provide more discussions about the tensor power iteration step which is the main step
of our tensor decomposition algorithm. The rank-1 alternating update method for tensor decompo-
sition is given in Algorithm 1. Given an initial estimate of the vectors denoted by

(
â(0), b̂(0), ĉ(0)

)
,

an asymmetric power update in (11) on the input tensor T is performed in each iteration of the
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Procedure 3 SVD-based initialization when k ≤ βd for arbitrary constant β
Input: Tensor T ∈ Rd×d×d.

1: Draw a random standard Gaussian vector θ ∼ N (0, Id).
2: Compute u1 and v1 as the top left and right singular vectors of T (I, I, θ) ∈ Rd×d.
3: â(0) ← u1, b̂(0) ← v1, and initialize ĉ(0) by update formula in (11).
4: return

(
â(0), b̂(0), ĉ(0)

)
.

Algorithm 4 Coordinate descent algorithm for removing the residual error

Input: Tensor T ∈ Rd×d×d, initialization set
{
Â, B̂, Ĉ, ŵ(0)

}
, number of iterations N .

1: Initialize Â(0) as (similarly for B̂(0), Ĉ(0))

Â(0) := arg min
Ã

‖Ã‖ s. t. ‖ãi − âi‖ ≤ Õ
(√

k/d
)
, i ∈ [k]. (18)

2: for t = 0 to N − 1 do
3: for i = 1 to k do
4:

w̃
(t+1)
i =

∥∥∥∥T
(
â

(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

∥∥∥∥,

c̃
(t+1)
i =

1

w̃
(t+1)
i

(
T
(
â

(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

)
.

5: Update Ĉ(t+1) by applying Procedure 5 with inputs C̃(t+1) and Ĉ(t).
6: Repeat the above steps (with appropriate changes) to update Â(t+1) and B̂(t+1).
7: Update ŵ(t+1):

for any i ∈ [k], ŵ(t+1)
i =





w̃
(t+1)
i ,

∣∣∣w̃(t+1)
i − ŵ(t)

i

∣∣∣ ≤ η0

√
k
d ,

ŵ
(t)
i + sgn

(
w̃

(t+1)
i − ŵ(t)

i

)
· η0

√
k
d , o.w.

8: return
{
Â(N), B̂(N), Ĉ(N), ŵ(N)

}
.

algorithm. Notice that the update in (11) alternates among different modes of the tensor. Recall that
for vectors u ∈ Rd and v ∈ Rd, the multilinear form T (I, u, v) ∈ Rd which is used in the update
formula (11) is defined in (14) as

T (I, u, v)i :=
∑

j,l∈[d]

Ti,j,lujvl.

T (u, I, v) and T (u, v, I) are also defined in a similar way.
Optimization viewpoint of the algorithm: Consider the problem of best rank-1 approximation of

tensor T as

min
a,b,c∈Sd−1

w∈R

‖T − w · a⊗ b⊗ c‖F , (19)
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Procedure 5 Projection procedure

input Matrices C̃(t+1), Ĉ(t).
1: Compute the SVD of C̃(t+1) = UDV >.

2: Let D̂ be the truncated version of D as D̂i,i := min

{
Di,i, η1

√
k
d

}
.

3: Let Q := UD̂V >.

4: Update Ĉ(t+1): for any i ∈ [k], ĉ(t+1)
i =





Qi,
∥∥∥Qi − ĉ(t)

i

∥∥∥ ≤ η0

√
k
d ,

ĉ
(t)
i + η0

√
k
d

(
Qi−ĉ

(t)
i

)
∥∥∥Qi−ĉ

(t)
i

∥∥∥ , o.w.

5: return Ĉ(t+1).

where Sd−1 denotes the unit d-dimensional sphere. The optimization program is non-convex, and
has multiple local optima. Three updates in (11) are the alternating optimization for this program
where in each update, optimization over one vector is performed while the other two vectors are
assumed fixed. This alternating minimization approach does not converge to the true components
of tensor T in general, and we provide sufficient conditions for the decomposition guarantees.

We now provide a simple intuition behind the power update procedure. Consider a rank-k tensor
T as in (10), and suppose we have exact initialization vectors â = aj and b̂ = bj , for some j ∈ [k].
Then, we have

T
(
â, b̂, I

)
= T (aj , bj , I) = wjcj +

∑

i 6=j
wi〈aj , ai〉〈bj , bi〉ci, (20)

where the first term is along cj and the second term is arising due to non-orthogonality. For orthogo-
nal decomposition, the second term is zero, leading that the true vectors aj , bj and cj are stationary
points for the power update procedure. However, since we consider non-orthogonal tensors, this
procedure cannot recover the decomposition exactly. Under incoherence conditions which encour-
ages soft-orthogonality constraints,11 we establish that the second term in (20) is small, which leads
to approximate recovery results.

Notice that the algorithm is run for L different initialization vectors for which we do not know
the good ones in prior. In order to identify which initializations are successful at the end, we also
need a clustering step proposed in Procedure 2 in the main text to obtain the final estimates of the
vectors. The detailed analysis of clustering procedure is provided in Appendix J.

For generating initialization vectors
(
â(0), b̂(0), ĉ(0)

)
, we introduce two possibilities. One is the

simple random initializations, where â(0) and b̂(0) are uniformly drawn from unit sphere Sd−1. The
other option is SVD-based Procedure 3 in the main text, where top left and right singular vectors
of T (I, I, θ) (for some random θ ∈ Rd) are respectively introduced as â(0) and b̂(0). Under both
initialization procedures, vector ĉ(0) is generated through update formula in (11). We establish in
Section F.1.2 that when k = O(d), the SVD procedure leads to global convergence guarantees under
polynomial trials.

Comparison with symmetric tensor power method: This algorithm is similar to the symmetric
tensor power method analyzed by Anandkumar et al. (2014a) with the following main differences,
viz.,

11. See Assumption (A2) in Appendix G for precise description.
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• Symmetric and non-symmetric tensors: Our algorithm can be applied to both symmetric and
non-symmetric tensors, while symmetric tensor power method in (Anandkumar et al., 2014a)
is only for symmetric tensors.

• Linearity: The updates in Algorithm 1 are linear in each variable, while the tensor power
update is a quadratic operator given a third order tensor.

• Guarantees: In (Anandkumar et al., 2014a), guarantees for the symmetric tensor power update
under orthogonality are obtained, while here we consider non-orthogonal tensors under the
alternating updates.

Comparison with Alternating Least Square(ALS): The updates in Algorithm 1 can be viewed
as a rank-1 form of the standard alternating least squares (ALS) procedure. This is because the
unnormalized update for c in (11) can be rewritten as

c̃(t+1)
τ := T

(
â(t)
τ , b̂

(t)
τ , I

)
= mat(T, 3) ·

(
b̂(t)τ � â(t)

τ

)
, (21)

where � denotes the Khatri-Rao product, and mat(T, 3) ∈ Rd×d2 is the mode-3 matricization of
tensor T . On the other hand, the ALS update has the form

C̃(t+1) = mat(T, 3) ·
((

B̂(t) � Â(t)
)>)†

,

where k vectors (all columns of C̃) are simultaneously updated. In contrast, our procedure updates
only one vector (with the target of recovering a column of C) in each iteration. In our update, we do
not require finding matrix inverses. This leads to efficient computational complexity, and we also
show that our update procedure is more robust to perturbations.

Efficient implementation given samples: In Algorithm 1, a given tensor T is input, and we
then perform the updates. However, in many settings (especially machine learning applications),
the tensor is not available before hand, and needs to be computed from samples. Computing and
storing the tensor can be enormously expensive for high-dimensional problems. Here, we provide a
simple observation on how we can manipulate the samples directly to carry out the update procedure
in Algorithm 1 as multi-linear operations, leading to efficient computational complexity.

Consider the setting where the goal is to decompose the empirical moment tensor T̂ of the form

T̂ :=
1

n

∑

l∈[n]

x
(l)
1 ⊗ x

(l)
2 ⊗ x

(l)
3 , (22)

where x(l)
r is the lth sample from view r ∈ [3]. Applying the power update (11) in Algorithm 1 to T̂ ,

we have
c̃ := T̂ (â, b̂, I) =

1

n
X3(X>1 â ∗X>2 b̂), (23)

where ∗ corresponds to the Hadamard product. Here, Xr :=
[
x

(1)
r x

(2)
r · · · x(n)

r

]
∈ Rd×n. Thus,

the update can be computed efficiently using simple matrix and vector operations. It is easy to see
that the above update in (23) is easily parallelizable, and moreover, the different initializations can
be parallelized, making the algorithm scalable for large problems.
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Appendix F. Guarantees for Tensor Decomposition

As described in the main text and previous section, our tensor decomposition algorithm includes
two main update steps including tensor power iteration in (11) and residual error removal in (12).
In this section, we provide the guarantees for these steps. The proofs are provided in Appendix H.

F.1. Guarantees for Tensor Power Iteration Step: Algorithm 1

In this section, we provide the local and global convergence guarantees for tensor decomposition
Algorithm 1. Throughout the section, we assume tensor T̂ ∈ Rd×d×d is of the form T̂ = T + Ψ,
where Ψ is the error or perturbation tensor, and

T =
∑

i∈[k]

wiai ⊗ bi ⊗ ci,

is a rank-k tensor such that ai, bi, ci ∈ Rd, i ∈ [k], are unit vectors. Without loss of generality we
assume wmax = w1 ≥ w2 ≥ · · · ≥ wk = wmin > 0. Let A := [a1 a2 · · · ak] ∈ Rd×k, and B and
C are similarly defined. Also, for simplicity we assume ai, bi, ci, i ∈ [k], are generated uniformly
at random from the unit sphere Sd−1. We state the deterministic assumptions in Appendix G, and
show that random matrices satisfy these assumptions. Notice that it is also reasonable to assume
these assumptions hold for some non-random matrices.

BASIC DEFINITIONS

The convergence guarantees are provided in terms of distance between the estimated and the true
vectors, defined below.

Definition 16 For any two vectors u, v ∈ Rd, the distance between them is defined as

dist(u, v) := sup
z⊥u

〈z, v〉
‖z‖ · ‖v‖ = sup

z⊥v

〈z, u〉
‖z‖ · ‖u‖ . (24)

Note that distance function dist(u, v) is invariant w.r.t. norm of input vectors u and v. Distance
also provides an upper bound on the error between unit vectors u and v as (see Lemma A.1 of
Agarwal et al. (2013))

min
z∈{−1,1}

‖zu− v‖ ≤
√

2 dist(u, v).

Incorporating distance notion resolves the sign ambiguity issue in recovering the components: note
that a third order tensor is unchanged if the sign of a vector along one of the modes is fixed and the
signs of the corresponding vectors in the other two modes are flipped.

Let ψ := ‖Ψ‖ denote the spectral norm of error tensor Ψ, and

εT :=
ψ

wmin
+ Õ

(
γ

√
k

d

)
, (25)

denote the target error where γ := wmax
wmin

.
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F.1.1. LOCAL CONVERGENCE GUARANTEE

The local convergence result is provided in the following theorem which bounds the estimation error
after t iterations of the Algorithm. Note that a good initialization is assumed in the local convergence
guarantee and the behavior of asymmetric power update in the inner loop of Algorithm 1 is analyzed.

Conditions for Theorem 17:

• Rank-k true tensor with generic components: Let

T =
∑

i∈[k]

wiai ⊗ bi ⊗ ci, wi > 0, ai, bi, ci ∈ Sd−1, ∀ i ∈ [k],

where ai, bi, ci, i ∈ [k], are generated uniformly at random from the unit sphere Sd−1. We
state the deterministic assumptions in Appendix G, and show that random matrices satisfy
these assumptions.
• Rank condition: k = o

(
d1.5
)
.

• Perturbation tensor Ψ satisfies the bound

ψ := ‖Ψ‖ ≤ wmin

6
.

• Weight ratio: The maximum ratio of weights γ := wmax
wmin

satisfies the bound

γ = O

(
min

{√
d,
d1.5

k

})
.

• Initialization: The following initialization bound holds w.r.t. some j ∈ [k] as

ε0 := max
{

dist
(
â(0), aj

)
,dist

(
b̂(0), bj

)}
= O(1/γ), (26)

where γ := wmax
wmin

. In addition, given â(0) and b̂(0), suppose ĉ(0) is also calculated by the
update formula in (11).

Theorem 17 (Local convergence guarantee of Algorithm 1) Consider T̂ = T + Ψ as the input
to Algorithm 1, and assume the conditions and settings mentioned above hold. Given initialization
vectors (â(0), b̂(0), ĉ(0)), then the asymmetric power iterations (in the inner loop) of Algorithm 1
satisfy the following bound with high probability (w.h.p.)

max
{

dist
(
â(t), aj

)
, dist

(
b̂(t), bj

)
,dist

(
ĉ(t), cj

)}
≤ O(εT ) + qtε0. (27)

Here q < 1 is a contraction factor and εT is defined in (25). Furthermore, the weight estimate
ŵ = T̂

(
â(N), b̂(N), ĉ(N)

)
satisfies w.h.p.

|ŵ − wj | ≤ O(wminεT ) + wminq
N+1ε0.
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See the proof in Appendix H.
Thus, we provide efficient recovery guarantees for alternating rank-1 updates under incoherent

factors. The incoherence property is precisely defined in Appendix G (see Assumption (A2)). We
also show that the incoherence property is satisfied for random components which is assumed here
for simplicity. Note that our recovery is in terms of distance between any true vector aj (or bj , cj)
and the estimate â(t) (or b̂(t), ĉ(t)).

Note that the second term in (27) is decaying linearly with the number of iterations. The first
term in (27) is fixed (even as t → ∞), and arises due to perturbation tensor Ψ (given by ψ

wmin
) and

non-orthogonality (given by Õ
(
γ
√
k
d

)
). Thus, there is an approximation error in recovery of the

tensor components. As t→∞, (27) can be interpreted as an approximate local identifiability result
for tensor decomposition under incoherent factors.

The result in (27) can be stated in the non-asymptotic form, and the contraction factor q < 1
can be characterized explicitly. See Appendix G for details.

Symmetric tensor decomposition: The above local convergence result also holds for recovering
the components of a rank-k symmetric tensor. Consider symmetric tensor T with CP decomposition
T =

∑
i∈[k]wiai⊗ ai⊗ ai. Algorithm 1 is applied to recover the components ai, i ∈ [k], where we

employ the symmetric update

â(t+1) =
T
(
â(t), â(t), I

)
∥∥T
(
â(t), â(t), I

)∥∥ . (28)

Then, the same local convergence result in Theorem 17 holds for this algorithm. The proof follows
the lines of Theorem 17 proof with some slight modifications considering the symmetric structure.

Extension to higher order tensors: Algorithm 1 and local convergence guarantee in Theorem 17
are provided for a 3rd order tensor. The algorithm can be simply extended to higher order tensors
to compute the corresponding CP decomposition. Consider p-th order tensor T ∈⊗pRd with CP
decomposition

T =
∑

i∈[k]

wia(1),i ⊗ a(2),i ⊗ · · · ⊗ a(p),i, (29)

where a(r),i ∈ Rd is the i-th column of r-th component A(r) :=
[
a(r),1 a(r),2 . . . a(r),k

]
∈ Rd×k,

for r ∈ [p]. Algorithm 1 can be extended to recover the components of above decomposition where
update formula for the p-th mode is defined as

â
(t+1)
(p) =

T
(
â

(t)
(1), â

(t)
(2), . . . , â

(t)
(p−1), I

)

∥∥∥T
(
â

(t)
(1), â

(t)
(2), . . . , â

(t)
(p−1), I

)∥∥∥
, (30)

and similarly the other updates are changed. Define the target error as (generalization of 3rd order
case in (25))

ε̃T :=
ψ

wmin
+ Õ

(
γ

√
k

dp−1

)
. (31)

28



LEARNING OVERCOMPLETE LVMS THROUGH TENSOR METHODS

Corollary 18 (Local convergence guarantee for p-th order tensor) Consider the same conditions
and settings as in Theorem 17, unless tensor T is p-th order with CP decomposition in (29) where
p ≥ 3 is a constant. In addition, the bounds on γ := wmax

wmin
and k are modified as

γ = O

(
min

{
d

p−2
2 ,

dp/2

k

})
, k = o

(
d

p
2

)
.

Then, the asymmetric power iterations (in the inner loop) of Algorithm 1 satisfy the following bound
with high probability (w.h.p.)

dist
(
â

(t)
(r), a(r),j

)
≤ O (ε̃T ) + q̃tε0, for r ∈ [p].

Here q̃ < 1 is a contraction factor and ε̃T is defined in (31). Furthermore, the weight estimate
ŵ = T̂

(
â

(N)
(1) , â

(N)
(2) , . . . , â

(N)
(p)

)
satisfies w.h.p.

|ŵ − wj | ≤ O(wminε̃T ) + wminq̃
N+1ε0.

F.1.2. GLOBAL CONVERGENCE GUARANTEE WHEN k = O(d)

Theorem 17 provides local convergence guarantee given good initialization vectors for different
components. In this section, we exploit SVD-based initialization method in Procedure 3 to provide
good initialization vectors when k = O(d). Combining the theoretical guarantees of this initial-
ization method (provided in Appendix I) with the local convergence guarantee in Theorem 17, we
provide the following global convergence result.

Settings of Algorithm 1 in Theorem 19:

• Number of iterations: N = Θ
(

log
(

1
γεT

))
, where γ := wmax

wmin
.

• The initialization in each run of Algorithm 1 is performed by SVD-based technique proposed
in Procedure 3, with the number of initializations as

L ≥ kΩ(γ4(k/d)2).

Conditions for Theorem 19:

• Rank-k decomposition and perturbation conditions as 12

T =
∑

i∈[k]

wiai ⊗ bi ⊗ ci, ψ := ‖Ψ‖ ≤ wmin
√

log k

α0

√
d

,

where ai, bi, ci, i ∈ [k], are generated uniformly at random from the unit sphere Sd−1, and
α0 > 1 is a constant.
• Rank condition: k = O(d).

12. Note that the perturbation condition is stricter than the corresponding condition in the local convergence guarantee
(Theorem 17).
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Theorem 19 (Global convergence guarantee of Algorithm 1 when k = O(d)) Consider T̂ = T+
Ψ as the input to Algorithm 1, and assume the conditions and settings mentioned above hold. Then,
for any j ∈ [k], the output of Algorithm 1 satisfies the following w.h.p.,

max
{

dist (âj , aj) , dist
(
b̂j , bj

)
, dist (ĉj , cj)

}
=O(εT ),

|ŵj − wj | =O(wminεT ),

where εT is defined in (25).

Thus, we can efficiently recover the tensor decomposition up to an approximation error εT , when
the tensor is undercomplete or mildly overcomplete (i.e., k = O(d)), using a simple SVD-based
initialization and then running alternating rank-1 updates. The number of initialization trials L is
polynomial when γ is a constant, and k = O(d).

TWO UNDERCOMPLETE, AND ONE OVERCOMPLETE COMPONENT

Here, we apply the global convergence result to the regime of two undercomplete and one overcom-
plete components. This arises in supervised learning problems under a multiview mixture model
and employing moment tensor E[x1 ⊗ x2 ⊗ y], where xi ∈ Rdu are multi-view high-dimensional
features and y ∈ Rdo is a low-dimensional label.

Since in the SVD initialization in Procedure 3, two components â(0) and b̂(0) are initialized
through SVD, and the third component ĉ(0) is initialized through update formula (11), we can gen-
eralize the global convergence result in Theorem 19 to the setting where A, B are undercomplete,
and C is relatively overcomplete.

Corollary 20 Consider the same setting as in Theorem 19. In addition, suppose the regime of
undercomplete components A ∈ Rdu×k and B ∈ Rdu×k, and overcomplete component C ∈ Rdo×k
such that du ≥ k ≥ do. In addition, in this case the bound on γ := wmax

wmin
is

γ = O

(
min

{√
do,

√
dudo
k

})
.

Then, if k = O(
√
dudo), the same convergence guarantee as in Theorem 19 holds.

We observe that given undercomplete modes A and B, mode C can be relatively overcomplete,
and we can still provide global recovery of A,B and C by employing SVD initialization procedure
along A and B modes.

Remark 21 When the two undercomplete modes A and B have orthogonal columns, then the
constraint k = O(

√
dudo) in the above theorem can be further relaxed. It now suffices to have

k = O(du), for any do. This is because under orthogonality, the SVD initialization provides a much
better initialization than under non-orthogonal components.
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F.1.3. PROOF OUTLINE

The global convergence guarantee in Theorem 19 is established by combining the local convergence
result in Theorem 17 and the SVD initialization result in Appendix I.

The local convergence result is derived by establishing error contraction in each iteration of Al-
gorithm 1. Since we assume generic factor matrices A,B and C, we utilize many useful properties
such as incoherence, bounded spectral norm of the matrices A,B and C, bounded tensor spectral
norm and so on. We list the precise set of deterministic conditions required to establish the local
convergence result in Appendix G. Under these conditions, with a good initialization (i.e. small
enough dist(â, aj) and dist(̂b, bj)), we show that the iterative update in (11) provides an estimate ĉ
with

dist(ĉ, cj) < O(εT ) + qε0,

for some contraction factor q < 1. The incoherence condition is crucial for establishing this result.
See Appendix H for the complete proof.

The initialization argument for SVD-based technique in Procedure 3 has two parts. The first
part claims that by performing enough number of initializations (large enough L), a gap condition is
satisfied, meaning that we obtain a vector θ which is relatively close to cj compared to any ci, i 6= j.
This is a standard result for Gaussian vectors, e.g., see Lemma B.1 of Anandkumar et al. (2014a). In
the second part of the argument, we analyze the dominant singular vectors of T (I, I, θ), for a vector
θ with a good relative gap, to obtain an error bound on the initialization vectors. This is obtained
through standard matrix perturbation results (Weyl and Wedin’s theorems). See Appendix I for the
complete proof.

F.2. Guarantees for Removing Residual Error: Algorithm 4

We first provide the following definition.

Definition 22 ((η0, η1)-nice) Suppose

max{‖A‖, ‖B‖, ‖C‖} ≤ η1

√
k

d
.

Given an approximate solution {Â, B̂, Ĉ, ŵ}, we call it (η0, η1)-nice if matrix Â (similarly B̂ and
Ĉ) satisfies

‖∆Ai‖ := ‖âi − ai‖ ≤ η0

√
k

d
, ∀i ∈ [k],

‖Â‖ ≤ η1

√
k

d
,

and the weights satisfy

|ŵi − wi| ≤ η0wmax

√
k

d
.

Note that the optimization program in (18) is proposed to ensure the above bound on ‖Â‖ is
satisfied on the input of this part of algorithm. Given above conditions are satisfied, we prove the
following guarantees for removing residual error, Algorithm 4.
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Theorem 23 Consider T as the input to Algorithm 4, where T is a rank-k tensor. Suppose Assump-
tions (A1)-(A5) and (A11) hold (which are satisfied whp when the components are uniformly i.i.d.
drawn from unit d-dimensional sphere). Given initial solution

{
Â(0), B̂(0), Ĉ(0), ŵ(0)

}
which is

(η0, η1)-nice, all the following iterations of Algorithm 4 are (2η0, 3η1)-nice. Furthermore, given the
exact tensor T , the Frobenius norm error max{‖∆A‖F , ‖∆B‖F , ‖∆C‖F , ‖∆w‖/wmin} shrinks
by at least a factor of 2 in every iteration. In addition, if we have a noisy tensor T̂ = T + Ψ such
that ‖Ψ‖ ≤ ψ, then

max{‖∆A(t)‖F , ‖∆B(t)‖F , ‖∆C(t)‖F , ‖∆w(t)‖/wmin} ≤ 2−tη0
k

d
+O

(
ψ
√
k

wmin

)
.

Appendix G. Deterministic Assumptions

In the main text, we assume matrices A, B, and C are randomly generated. However, we are not
using all the properties of randomness. In particular, we only need the following assumptions.

(A1) Rank-k decomposition: The third order tensor T has a CP rank of k ≥ 1 with decomposi-
tion

T =
∑

i∈[k]

wi(ai ⊗ bi ⊗ ci), wi > 0, ai, bi, ci ∈ Sd−1,∀ i ∈ [k], (32)

where Sd−1 denotes the unit d-dimensional sphere, i.e. all the vectors have unit 13 2-norm as
‖ai‖ = ‖bi‖ = ‖ci‖ = 1, i ∈ [k]. Furthermore, define wmin := mini∈[k]wi and wmax :=
maxi∈[k]wi.

(A2) Incoherence: The components are incoherent, and let

ρ := max
i 6=j
{|〈ai, aj〉|, |〈bi, bj〉|, |〈ci, cj〉|} ≤

α√
d
, (33)

for some α = polylog(d). In other words, A>A = I + JA, B>B = I + JB , and C>C =
I +JC , where JA, JB , and JC , are incoherence matrices with zero diagonal entries. We have
max {‖JA‖∞, ‖JB‖∞, ‖JC‖∞} ≤ ρ as in (33).

(A3) Spectral norm conditions: The components satisfy spectral norm bound

max {‖A‖, ‖B‖, ‖C‖} ≤ 1 + α0

√
k

d
,

for some constant α0 > 0.

(A4) Bounds on tensor norms: Tensor T satisfies the bound

‖T‖ ≤ wmaxα0,

∥∥T\j(aj , bj , I)
∥∥ :=

∥∥∥∥
∑

i 6=j
wi〈ai, aj〉〈bi, bj〉cj

∥∥∥∥ ≤ αwmax

√
k

d
,

for some constant α0 and α = polylog(d).

13. This normalization is for convenience and the results hold for general case.
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(A5) Rank constraint: The rank of the tensor is bounded by k = o
(
d1.5/poly log d

)
.

(A6) Bounded perturbation: Let ψ denote the spectral norm of perturbation tensor as

ψ := ‖Ψ‖. (34)

Suppose ψ is bounded as 14

ψ ≤ min

{
1

6
,

√
log k

α0

√
d

}
· wmin,

where α0 is a constant.

(A7) Weights ratio: The maximum ratio of weights γ := wmax
wmin

satisfies the bound

γ = O

(
min

{√
d,
d1.5

k

})
.

(A8) Contraction factor: The contraction factor q in Theorem 17 as

q :=
2wmax

wmin


 2α√

d

(
1 + α0

√
k

d

)2

+ β′


 , (35)

for some constants α0, β
′ > 0, and α = polylog(d). In particular, we need αα0

√
k/d+β′ <

wmax/10wmin which ensures q < 1/2. This is satisfied when
√
k/d < wmax/wmin poly log d

and β′ < wmax/20wmin. The parameter β′ is determined by the following assumption (ini-
tialization).

(A9) Initialization: Let

ε0 := max
{

dist
(
â(0), aj

)
, dist

(
b̂(0), bj

)}
,

denote the initialization error w.r.t. to some j ∈ [k]. Suppose it is bounded as

ε0 ≤ min

{
β′

α0
,

√
wmin

6wmax
,
wminq

4wmax
,
2wmax

wminq

(
wmin

6wmax
− α
√
k

d

)}
,

for some constants α0, β
′ > 0, α = polylog(d), and 0 < q < 1 which is defined in (35).

(A10) 2 → p norm: For some fixed constant p < 3, max{‖A>‖2→p, ‖B>‖2→p, ‖C>‖2→p} ≤
1 + o(1).

Remark 24 Many of the assumptions are actually parameter choices. The only properties of ran-
dom matrices required are (A2), (A3), (A4) and (A10),. See Appendix G.1 for detailed discussion.

14. Note that for the local convergence guarantee, only the first condition ψ ≤ wmin
6

is required.
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Let us provide a brief discussion about the above assumptions. Condition (A1) requires the pres-
ence of a rank-k decomposition for tensor T . We normalize the component vectors for convenience,
and this removes the scaling indeterminacy issues which can lead to problems in convergence. Ad-
ditionally, we impose incoherence constraint in (A2), which allows us to provide convergence guar-
antee in the overcomplete setting. Assumptions (A3) and (A4) impose bounds on the spectral norm
of tensor T and its decomposition components. Note that assumptions (A2)-(A4) and (A10) are
satisfied w.h.p. when the columns of A, B, and C are generically drawn from unit sphere Sd−1 (see
Lemma 25 and Guédon and Rudelson (2007)), all others are parameter choices. Assumption (A5)
limits the overcompleteness of problem which is required for providing convergence guarantees.
The first bound on perturbation in (A6) as ψ ≤ wmin

6 is required for local convergence guarantee

and the second bound ψ ≤ wmin
√

log k

α0

√
d

is needed for arguing initialization provided by Procedure 3.
Assumption (A7) is required to ensure contraction happens in each iteration. Assumption (A8)
defines contraction ratio q in each iteration, and Assumption (A9) is the initialization condition
required for local convergence guarantee.

The tensor-spectral norm and 2 → p norm assumption (A4) (A10) may seem strong as we
cannot even verify them given the matrix. However, when k < d1.25−ε for arbitrary constant ε > 0,
both conditions are implied by incoherence. We only need these assumptions to go to the very
overcomplete setting.

G.1. Random matrices satisfy the deterministic assumptions

Here, we provide arguments that random matrices satisfy conditions (A2), (A3), (A4), and (A10). It
is well known that random matrices are incoherent, and have small spectral norm (bound on spectral
norm dates back to Wigner (1955)). See the following lemma.

Lemma 25 Consider random matrixX ∈ Rd×k where its columns are uniformly drawn at random
from unit d-dimensional sphere Sd−1. Then, it satisfies the following incoherence and spectral
bounds with high probability as

max
i,j∈[k],i 6=j

|〈Xi, Xj〉| ≤
α√
d
,

‖X‖ ≤ 1 + α0

√
k

d
,

for some α = O(
√

log k) and α0 = O(1).

The spectral norm of the tensor is less well-understood. However, it can be bounded by the
2 − 3 norm of matrices. Using tools from Guédon and Rudelson (2007); Adamczak et al. (2011),
we have the following result.

Lemma 26 Consider a random matrix A ∈ Rd×k whose columns are drawn uniformly at random
from unit sphere. If k < dp/2/ polylog(d), then

∥∥A>
∥∥

2→p ≤ 1 + o(1).
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This directly implies Assumption (A10). In particular, since we only apply Assumption (A10)
to unsupervised setting (k ≤ O(d)) in Appendix J, for randomly generated tensor, Assumption
(A10) holds for all p > 2 (notice that we only need it to hold for some p < 3).

We also give an alternative proof of 2 → p norm which does not assume randomness and only
relies on incoherence.

Lemma 27 Suppose columns of matrix A ∈ Rd×k has unit norm and satisfy the incoherence
condition (A2), when k ≤ d1.25−ε, the 2→ p norm ofA> is bounded by 1+o(1) for any p > 3−2ε.

Proof: Let L =
√
d/poly log d. By incoherence assumption we know every subset of L columns

in A has singular values within 1± o(1) (by Gershgorin Disk Theorem).
For any unit vector u, let S be the set of L indices that are largest in A>u. By the argument

above we know ‖(AS)>u‖ ≤ ‖AS‖‖u‖ ≤ 1 + o(1). In particular, the smallest entry in A>S u is at
most 2/

√
L. By construction of S this implies for all i not in S, |A>i u| is at most 2/

√
L. Now we

can write the `p (p > 2) norm of A>u as

‖A>u‖pp =
∑

i∈S
|A>i u|p +

∑

i 6∈S
|A>i u|p

≤
∑

i∈S
|A>i u|2 + (2/

√
L)p−2

∑

i 6∈S
|A>i u|2

≤ 1 + o(1).

Here the second inequality uses that every entry outside S is small, and last inequality uses the fact
that p > 3− 2ε. �

The 2→ 3 norm implies a bound on the tensor spectral norm by Hölder’s inequality.

Fact 1 (Hölder’s Inequality) When 1/p + 1/q = 1, for two sequence of numbers {ai}, {bi}, we
have

∑

i

aibi ≤
(∑

i

|ai|p
)1/p(∑

i

|bi|q
)1/q

.

Consequently, we have the following corollary.

Corollary 28 For vectors f, g, h, and weights wi ≥ 0, we have
∑

i

wifigihi ≤ wmax‖f‖3‖g‖3‖h‖3.

Proof: The proof applies Hölder’s inequality twice as
∑

i

wifigihi ≤ wmax

∑

i

|figihi| ≤ wmax(
∑
|fi|3)1/3(

∑
|gihi|3/2)2/3 ≤ wmax‖f‖3‖g‖3‖h‖3,

where in the first application, p = 3 and q = 3/2, and in the second application, p = q = 2 (which
is the special case known as Cauchy-Schwartz). �

In the following lemma, it is shown that the first bound in Assumption (A4) holds for random
matrices w.h.p.
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Lemma 29 Let A, B, and C be random matrices in Rd×k whose columns are drawn uniformly at
random from unit sphere. If k < d3/2/ polylog(d), and

T =
∑

i∈[k]

wiai ⊗ bi ⊗ ci,

then
‖T‖ ≤ O(wmax).

Proof: For any unit vectors â, b̂, ĉ, we have

T (â, b̂, ĉ) =
∑

i∈[k]

wi(A
>â)i(B

>b̂)i(C
>ĉ)i

≤ wmax‖A>â‖3‖B>b̂‖3‖C>ĉ‖3
≤ wmax‖A>‖2→3‖â‖ · ‖B>‖2→3‖b̂‖ · ‖C>‖2→3‖ĉ‖
= O(wmax),

where Corollary 28 is exploited in the first inequality, and Lemma 26 is used in the last inequality.
�

Finally, we show in the following lemma that the second bound in Assumption (A4) is satisfied
for random matrices.

Lemma 30 Let A, B, and C ∈ Rd×k be independent, normalized (column) Gaussian matrices.
Then for all i ∈ [k], we have with high probability

∥∥∥C\i diag(w\i)(JA ∗ JB)
\i
i

∥∥∥ = Õ

(
wmax

√
k

d

)
.

Proof: We have

C\i diag(w\i)(JA ∗ JB)
\i
i =

∑

j 6=i
Cjwj〈Ai, Aj〉〈Bi, Bj〉 =

∑

j 6=i
Cjδj ,

where δj := wj〈Ai, Aj〉〈Bi, Bj〉 is independent of Cj . From Lemma 25, columns of A and B are
incoherent, and therefore, for j 6= i, we have

|δj | = Õ(wmax/d).

Now since Cj’s are independent, zero mean vectors, the sum
∑

j 6=i δjCj is zero mean and its vari-
ance is bounded by Õ(w2

maxk/d
2). Then, from vector Bernstein’s bound we have with high proba-

bility
∥∥∥C\i diag(w\i)(JA ∗ JB)

\i
i

∥∥∥ = Õ

(
wmax

√
k

d

)
.

The proof is completed by applying union bound. �
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SPECTRAL NORM OF KHATRI-RAO PRODUCT

For the convergence guarantees of the second step of algorithm on removing residual error, we need
the following additional bound on the spectral norm of Khatri-Rao product of random matrices.

(A11) Spectral Norm Condition on Khatri-Rao Products: The components satisfy the following
spectral norm bound on the Khatri-Rao products as

max {‖A�B‖, ‖B � C‖, ‖A� C‖} ≤ 1 + α0

√
k

d
,

for α0 ≤ poly log d.

We now prove that Assumption (A11) is satisfied with high probability, if the columns of A, B
and C are uniformly i.i.d. drawn from unit d-dimensional sphere.

The key idea is to view (A�B)>(A�B) as the sum of random matrices, and use the following
Matrix Bernstein’s inequality to prove concentration results.

Lemma 31 Let M =
∑n

i=1Mi be sum of independent symmetric d× d matrices with E[Mi] = 0,
assume all matrices Mi’s have spectral norm at most R almost surely, let σ2 = ‖E[M2

i ]‖, then for
any τ

Pr[‖M‖ ≥ τ ] ≤ 2d exp

( −τ2/2

σ2 +Rτ/3

)
.

Remark: Although the lemma requires all Mi’s to have spectral norm at most R almost surely, it
suffices to have spectral norm bounded byRwith high probability and bounded byR∞ = poly(d, k)
almost surely. This is because we can always condition on the fact that ‖Mi‖ ≤ R for all i.
Such conditioning can only change the expectations by a negligible amount, and does not affect
independence between Mi’s.

Random unit vectors are not easy to work with, as entries in the same column are not indepen-
dent. Thus, we first prove the result for matrices A and B whose entries are independent Gaussian
variables.

Lemma 32 Suppose A, B ∈ Rd×k(k > polylog d) are independent random matrices with in-
dependent Gaussian entries, let M = (A � B)>(A � B) = (A>A) ∗ (B>B), then with high
probability

‖M − diag(M)‖ ≤ O(d
√
k log d)

Proof: Let a1, a2, ..., ad ∈ Rk be the columns of A> (the rows of A, but treated as column
vectors). We can rewrite M − diagM as

M − diagM = (
∑

i∈[d]

aia
>
i ) ∗ (B>B − diag(B>B)) =

∑

i∈[d]

(aia
>
i ) ∗ (B>B − diag(B>B)).

Now let Q = B>B − diag(B>B), and Mi = (aia
>
i ) ∗Q, we would like to bound the spectral

norm of the sum M =
∑

i∈[d]Mi. Clearly these entries are independent, E[Mi] = E[aia
>
i ] ∗ Q =

I ∗Q = 0, so we can apply Matrix Bernstein bound.
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Note that when d < k, by standard random matrix theory we know ‖Q‖ ≤ O(k). Also, every
row of Q has norm smaller than the corresponding row of B>B, which is bounded by ‖B‖‖b(i)‖ ≤
O(
√
kd). When d ≥ k, again by matrix concentration we know ‖Q‖ ≤ O(

√
dk log d). Every

row of Q has norm bounded by O(
√
kd) (because entries in a row are independently random, with

variance equal to d).
First let us bound the spectral norm for each of theMi’s. Notice that for any vector v, v>[(aia

>
i )∗

Q]v = (v ∗ ai)>Q(v ∗ ai) by definition of Hadamard product. On the other hand, ‖v ∗ ai‖ ≤
‖v‖‖ai‖∞. With high probability ‖ai‖∞ ≤ O(

√
log k), hence ‖Mi‖ ≤ ‖ai‖2∞‖Q‖. This is

bounded by O(k log d) when d < k and O(
√
kd log2 d) when k ≤ d.

Next we bound the variance ‖E[
∑

i∈[d]M
2
i ]‖. Since all the Mi’s are i.i.d., it suffices to analyze

E[M2
1 ]. Let T = E[M2

1 ] = E[((a1a
>
1 ) ∗Q)2], by definition of Hadamard product, we know

Tp,q = E[
∑

r∈[k]

Qp,rQr,qa1(p)a1(q)a1(r)2].

This number is 0 when p 6= q by independence of entries of a1. When p = q, this is bounded
by 3

∑
r∈[k]Q

2
p,r because E[a1(p)2a1(r)2] is 1 when p 6= r and 3 when p = r. Therefore Tp,p ≤

3
∑

r∈[k]Q
2
p,r = 3‖Q(p)‖2 ≤ O(dk). Since T is a diagonal matrix, we know ‖T‖ ≤ O(dk), and

σ2 = ‖dT‖ = O(d2k).
By Matrix Bernstein we know with high probability ‖M‖ ≤ O(d

√
k log d). �

Using this lemma, it is easy to get a bound when columns of A, B are unit vectors. In this case,
we just need to normalize the columns, the normalization factor is bounded between d2/2 and 2d2

with high probability, and therefore, ‖(A>A)(B>B)− I‖ ≤ O(
√
k log d/d).

Appendix H. Proof of Algorithm Convergence Results

In this section, we prove the convergence guarantees of our algorithm provided in Appendix F.

H.1. Proof of Convergence Results in Theorems 17 and 19 of Appendix

The main part of the proof is to show that error contraction happens in each iteration of Algorithm
1. Then, the contraction result after t iterations is directly argued. In the following two lemmata, we
provide a local contraction result for one update (iteration) of Algorithm 1 given perturbed tensor
T̂ .

Define function f(ε; k, d) as

f(ε; k, d) := α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ε+ α0ε
2, (36)

where α = polylog(d) and α0 = O(1). Notice that this function is a small constant when k <
d1.5/ poly log d.

Lemma 33 (Contraction result of Algorithm 1 in one update) Consider T̂ = T+Ψ as the input
to Algorithm 1, where T is a rank-k tensor, and Ψ is a perturbation tensor. Suppose Assumptions
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(A1)-(A5) hold, and estimates â and b̂ satisfy distance bounds

dist(â, aj) ≤ εa,
dist(̂b, bj) ≤ εb,

for some j ∈ [k], and εa, εb > 0. Let ε := max{εa, εb}, and suppose ψ defined in (34) be small
enough such that 15

wj − wjε2 − wmaxf(ε; k, d)− ψ > 0,

where f(ε; k, d) is defined in (36). Then, update ĉ in (11) satisfies the following distance bound with
high probability (w.h.p.)

dist(ĉ, cj) ≤
wmaxf(ε; k, d) + ψ

wj − wjε2 − wmaxf(ε; k, d)− ψ . (37)

Furthermore, if the bound in (37) is such that dist(ĉ, cj) ≤ ε, then the update ŵ := T̂ (â, b̂, ĉ) also
satisfies w.h.p.

|ŵ − wj | ≤ 2wjε
2 + wmaxf(ε; k, d) + ψ.

Remark 34 In the asymptotic regime, f(ε; k, d) is

f(ε; k, d) = Õ

(√
k

d

)
+ Õ

(
max

{
1√
d
,
k

d3/2

})
ε+O(1)ε2.

Note that the last term is the only effective contracting term. The other terms include a con-
stant term, and the term involving ε disappears in only one iteration as long as k, d → ∞, and
Õ
(

k
d3/2

)
→ 0.

Remark 35 (Rate of convergence) The local convergence result provided in Theorem 17 has a
linear convergence rate. But, Algorithm 1 actually provides an almost-quadratic convergence rate
in the beginning, and linear convergence rate later on. It can be seen by referring to one-step
contraction argument provided in Lemma 33 where the quadratic term α0ε

2 exists. In the beginning,
this term is dominant over linear term involving ε, and we have almost-quadratic convergence.
Writing α0ε

2 = α0ε
ζε2−ζ , we observe that we get rate of convergence equal to 2− ζ as long as we

have initialization error bounded as εζ0 = O(1). Therefore, we can get arbitrarily close to quadratic
convergence with appropriate initialization error. Note that when the model is more overcomplete,
the algorithm more rapidly reaches to the linear convergence phase. For the sake of clarity, in
proposing Theorem 17, we approximated the almost-quadratic convergence rate in the beginning
with linear convergence.

Lemma 33 is proposed in the general form. In Lemma 36, we provide explicit contraction
result by imposing additional perturbation, contraction and initialization Assumptions (A6), (A8)
and (A9). We observe that under reasonable rank, perturbation and initialization conditions, the
denominator in (37) can be lower bounded by a constant, and the numerator is explicitly bounded
by a term involving ε, and a constant non-contracting term.

Lemma 36 (Contraction result of Algorithm 1 in one update) Consider T̂ = T+Ψ as the input
to Algorithm 1, where T is a rank-k tensor, and Ψ is a perturbation tensor. Let Assumptions 16 (A1)-

15. This is the denominator of bound provided in (37).
16. As mentioned in the assumptions, from perturbation bound in (A6), only the bound ψ ≤ wmin

6
is required here.
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(A9) hold. Note that initialization bound in (A9) is satisfied for some j ∈ [k]. Then, update ĉ in (11)
satisfies the following distance bound with high probability (w.h.p.)

dist(ĉ, cj) ≤ Const.︸ ︷︷ ︸
non-contracting term

+ qε0︸︷︷︸
contracting term

,

where

Const. :=
2

wmin

(
ψ + wmaxα

√
k

d

)
, (38)

and contraction ratio q < 1/2 is defined in (35). Note that α = polylog(d). The final estimation of
weights satisfy

|ŵ − wj | ≤ O(wmaxα
√
k/d+ ψ).

Before proving Lemma 33 and 36, we first explain how they can be applied in proving the
theorems.
Proof of Theorem 17: We incorporate condition (A7) to show that q < 1 in assumption (A8) is
satisfied. In addition, (A7) implies that the bound on ε0 in assumption (A9) holds where it can be
shown that the bound in (A9) is bounded asO(1/γ). Then, the result is directly proved by iteratively
applying the result of Lemma 36. �
Proof of Theorem 19: The error bounds on wi, ai, bi, ci, i ∈ [k], are proved by combining the local
convergence result in Theorem 17, and initialization result in Theorem 39. �

In order to prove Lemma 33 and 36, first recall a few definitions and notations.
In Assumption (A2), matrices JA, JB , and JC , are defined as incoherence matrices with zero

diagonal entries such that A>A = I + JA, B>B = I + JB , and C>C = I + JC . We have
max {‖JA‖∞, ‖JB‖∞, ‖JC‖∞} ≤ ρ as in (33).

Given matrix A ∈ Rd×k, the following notations are defined to refer to its sub-matrices. Aj
denotes the j-th column and Aj denotes the j-th row of A. Hence, we have Aj = aj , j ∈ [k]. In
addition, A\j ∈ Rd×(k−1) isA with its j-th column removed, andA\j ∈ R(d−1)×k isA with its j-th
row removed.
Proof of Lemma 33: Let z∗a ⊥ aj and z∗b ⊥ bj denote the vectors that achieve supremum value in
(24) corresponding to dist(â, aj) and dist(̂b, bj), respectively. Furthermore, without loss of gener-
ality, assume ‖z∗a‖ = ‖z∗b‖ = 1. Then, â and b̂ are decomposed as

â = 〈aj , â〉aj + dist(â, aj)z
∗
a, (39a)

b̂ = 〈bj , b̂〉bj + dist(̂b, bj)z
∗
b . (39b)

Let C := C Diag(w) denote the unnormalized matrix C, and c̃ := T̂ (â, b̂, I) denote the unnormal-
ized update in (11). The goal is to bound dist

(
c̃, Cj

)
. Consider any zc ⊥ Cj such that ‖zc‖ = 1.

Then, we have

〈zc, c̃〉 = T̂ (â, b̂, zc) = T (â, b̂, zc) + Ψ(â, b̂, zc).
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Substituting â and b̂ from (39a) and (39b), we have

T (â, b̂, zc) = 〈aj , â〉〈bj , b̂〉T (aj , bj , zc)︸ ︷︷ ︸
S1

+ 〈aj , â〉 dist(̂b, bj)T (aj , z
∗
b , zc)︸ ︷︷ ︸

S2

+ dist(â, aj)〈bj , b̂〉T (z∗a, bj , zc)︸ ︷︷ ︸
S3

+ dist(â, aj) dist(̂b, bj)T (z∗a, z
∗
b , zc)︸ ︷︷ ︸

S4

.

In the following derivations, we repeatedly use the equality that for any u, v ∈ Rd, we have
T (u, v, I) = C(A>u ∗B>v). For S1, we have

S1 ≤ |T (aj , bj , zc)| = |z>c C(A>aj ∗B>bj)|
=
∣∣∣z>c C

[
ej + (JA ∗ JB)j

]∣∣∣

=
∣∣∣z>c C\j (JA ∗ JB)

\j
j

∣∣∣

≤ wmaxα

√
k

d
,

where equalities A>A = I + JA and B>B = I + JB are exploited in the second equality, and
the assumption that zc ⊥ Cj is used in the last equality. The last inequality is from Assumption
(A4).For S2, we have

S2 ≤ εb|T (aj , z
∗
b , zc)| = εb|z>c C(A>aj ∗B>z∗b )|

= εb

∣∣∣z>c C\j
[
(JA)

\j
j ∗

(
B\j
)>
z∗b

]∣∣∣

≤ εb
∥∥C\j

∥∥ ·
∥∥∥(JA)

\j
j

∥∥∥
∞
·
∥∥∥
(
B\j
)>
z∗b

∥∥∥

≤ wmax
α√
d

(
1 + α0

√
k

d

)2

εb,

for some α = polylog(d) and α0 = O(1). Second inequality is concluded from ‖u ∗ v‖ ≤
‖u‖∞ · ‖v‖, and Assumptions (A2) and (A3) are exploited in the last inequality. Similarly, for S3,
we have

S3 ≤ εa
∣∣∣z>c C\j

[
(JB)

\j
j ∗

(
A\j
)>
z∗a

]∣∣∣

≤ wmax
α√
d

(
1 + α0

√
k

d

)2

εa.

Finally, for S4, we have

S4 ≤ εaεb|T (z∗a, z
∗
b , zc)| ≤ εaεb‖T‖ ≤ wmaxα0εaεb,

for some α0 = O(1). The bound on ‖T‖ is from Assumption (A4). Note that for random compo-
nents, we showed in Lemma 29 that this bound holds w.h.p. exploiting Assumption (A5) and results
of Guédon and Rudelson (2007). For the error term Ψ(â, b̂, zc), we have

Ψ(â, b̂, zc) ≤ ψ,
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which is concluded from the definition of spectral norm of a tensor. Note that all vectors â, b̂, zc
have unit norm.

Let ε := max{εa, εb}. Then, combining all the above bounds, we have w.h.p.

〈zc, c̃〉 ≤ wmaxf(ε; k, d) + ψ,

where f(ε; k, d) is

f(ε; k, d) := α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ε+ α0ε
2.

For c̃, we have

c̃ = T (â, b̂, I) + Ψ(â, b̂, I)

=
∑

i

wi〈ai, â〉〈bi, b̂〉ci + Ψ(â, b̂, I)

= wj〈aj , â〉〈bj , b̂〉cj +
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉ci + Ψ(â, b̂, I),

and therefore,

‖c̃‖ ≥
∥∥∥wj〈aj , â〉〈bj , b̂〉cj

∥∥∥−
∥∥∥∥
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉ci

∥∥∥∥− ‖Ψ(â, b̂, I)‖

≥ wj − wjε2 − wmaxf(ε; k, d)− ψ,

where inequality 〈aj , â〉〈bj , b̂〉 ≥ 1 − ε2 is exploited in the last inequality. Hence, as long as this
lower bound on ‖c̃‖ is positive (small enough ε and ψ), we have

dist(c̃, Cj) ≤
wmaxf(ε; k, d) + ψ

wj − wjε2 − wmaxf(ε; k, d)− ψ . (40)

Since dist(·, ·) function is invariant with respect to norm, we have dist (ĉ, cj) = dist
(
c̃, Cj

)
which

finishes the proof for bounding dist (ĉ, cj). Note that c̃ = ‖c̃‖ĉ, and Cj = wjcj where wj > 0.
Now, we provide the bound on |wj − ŵ|. As assumed in the lemma, we have distance bounds

max
{

dist (â, aj) , dist
(
b̂, bj

)
,dist (ĉ, cj)

}
≤ ε.

The estimate ŵ = T̂ (â, b̂, ĉ) can be expanded as

ŵ = T (â, b̂, ĉ) + Ψ(â, b̂, ĉ)

=
∑

i

wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉+ Ψ(â, b̂, ĉ)

= wj〈aj , â〉〈bj , b̂〉〈cj , ĉ〉+
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉+ Ψ(â, b̂, ĉ),
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and therefore,

|wj − ŵ| ≤
∣∣∣wj

(
1− 〈aj , â〉〈bj , b̂〉〈cj , ĉ〉

)∣∣∣+

∣∣∣∣
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉

∣∣∣∣+
∣∣∣Ψ(â, b̂, ĉ)

∣∣∣

≤ wj
(

1−
(
1− ε2

)1.5)
+ wmaxf(ε; k, d) + ψ

≤ 2wjε
2 + wmaxf(ε; k, d) + ψ,

where 〈aj , â〉〈bj , b̂〉〈cj , ĉ〉 ≥
(
1− ε2

)1.5 is exploited in the second inequality. Notice that this
argument is similar to the argument provided earlier for lower bounding ‖c̃‖.

�
Proof of Lemma 36: The result is proved by applying Lemma 33, and incorporating additional
conditions (A6), (A8), and (A9). f(ε0; k, d) in (36) can be bounded as

f(ε0; k, d) = α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ε0 + α0ε
2
0

≤ α
√
k

d
+


 2α√

d

(
1 + α0

√
k

d

)2

+ β′


 ε0

= α

√
k

d
+

wmin

2wmax
qε0,

where ε0 ≤ β′

α0
from Assumption (A9) is exploited in the inequality. The last equality is concluded

from definition of contracting factor q in (35). On the other hand, the denominator in (37) can be
lower bounded as

wmin

[
1− wmax

wmin
ε20 −

wmax

wmin
f(ε0; k, d)− ψ

wmin

]
≥ wmin

[
1− 1

6
− 1

6
− 1

6

]
=
wmin

2
,

where Assumptions (A9) and (A6) are used in the inequality. Applying Lemma 33, the result on
dist(ĉ, cj) is proved.

From Lemma 33, we also have

|ŵ − wj | ≤ 2wjε
2 + wmaxf(ε; k, d) + ψ,

where ε can be replaced by the final error Const = 2(ψ + wmaxα
√
k/d)/wmin (see Equation 38).

Substituting this, and notice the bounds onwmax/wmin andψ, we know |ŵ−wj | ≤ O(wmaxα
√
k/d+

ψ). �

H.2. Proof of Convergence Result in Theorem 23 of Appendix

To prove this theorem, we first observe that the algorithm update formula in (12) is (before normal-
ization) wi〈ai, âi〉〈bi, b̂i〉ci + εi where

εi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj).

In the following lemma, we show that the error terms εi’s are small.
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Lemma 37 Before normalization w̃ic̃i = wi〈ai, âi〉〈bi, b̂i〉ci + εi where

k∑

i=1

‖εi‖2 ≤ o(1)(wmax(‖∆(A)‖2F + ‖∆(B)‖2F + ‖∆(C)‖2F ) + ‖∆w‖2).

Proof: By the update formula in (12), we know

εi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj).

We expand it into several terms as follows.

εi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj)

=
∑

j 6=i
〈ai, aj〉〈bi, bj〉(wjcj − ŵj ĉj) (type 1)

+
∑

j 6=i
wj〈aj ,∆Ai〉〈bj , bi〉cj +

∑

j 6=i
wj〈aj , ai〉〈bj ,∆Bi〉cj (type 2)

−
∑

j 6=i
ŵj〈aj , ai〉〈bj ,∆Bi〉ĉj −

∑

j 6=i
ŵj〈aj , ai〉〈∆Bj , b̂i〉ĉj

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈bj , bi〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈bj , bi〉ĉj

+
∑

j 6=i
〈aj ,∆Ai〉〈bj ,∆Bi〉cj (type 3)

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈bj ,∆Bi〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈bj ,∆Bi〉ĉj

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈∆Bj , b̂i〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈∆Bj , b̂i〉ĉj .

The norm of three different types of terms mentioned above are bounded in Section H.2.1, which
conclude the desired bound in the lemma. �

We are now ready to prove the main theorem.
Proof of Theorem 23: Since w̃i is the norm of wi〈ai, âi〉〈bi, b̂i〉ci + εi, we know

|w̃i − wi| ≤ ‖εi‖+ wi(Θ(‖∆Ai‖2 + ‖∆Bi‖2)),

and therefore

‖w̃ − w‖ ≤ o(1)(wmax(‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F ) + ‖∆w‖).

On the other hand, since the coefficientwi〈ai, âi〉〈bi, b̂i〉 is at least 1−o(1), we know ‖c̃i−ci‖ ≤
4‖εi‖/wmin. This implies

‖C̃ − C‖F ≤ o(1)((‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F ) + ‖∆w‖/wmin).
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By Lemma 38, we know after the projection procedure, we get ‖Ĉ − C‖F ≤ 2‖C̃ − C‖F .
Therefore combining the two steps we know

‖Ĉ − C‖F ≤ 2‖C̃ − C‖F ≤ o(1)(‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F + ‖∆w‖/wmin).

When we have noise, all the εi’s have an additional term Ψ(âi, b̂i, I) which is bounded by ψ,
and thus, the second part of the theorem follows directly.

�

Handling Symmetric Tensors: For symmetric tensors we should change the algorithm as com-
puting the following:

T (âi, b̂i, I)− 1

d

d∑

i=1

T (ei, ei, I)−
∑

j 6=i
ŵj(〈âi, âj〉〈̂bi, b̂j〉 −

1

d
)ĉj .

The result of this will be a change in the term of type 1. Now the Q matrix will be (A�A)T (A�
A)− (1− 1

d)I − 1
dJ which has desired spectral norm for random matrices.

H.2.1. CLAIMS FOR PROVING LEMMA 37

The first term deals with the difference between C and Ĉ.

Claim 1 We have
√√√√

k∑

i=1

‖
∑

j 6=i
〈ai, aj〉〈bi, bj〉(wici − ŵiĉi)‖2 ≤ o(1)(wmax‖∆C‖F + ‖ŵ − w‖).

Proof: This sum is equal to the Frobenius norm of a matrix M = QZ. Here the matrix Q is a
matrix such that is equal to Q = (A�B)>(A�B)− I:

Qi,j =

{
〈ai, aj〉〈bi, bj〉, i 6= j,
0, i = j,

The matrix Z has columns Zi = wici − ŵiĉi. By assumption we know ‖Q‖ ≤ o(1), and ‖Z‖F ≤
wmax‖∆C‖F + ‖ŵ − w‖. Therefore we have

‖M‖F = ‖QZ‖F ≤ ‖Q‖‖Z‖F ≤ o(1)(wmax‖∆C‖F + ‖ŵ − w‖).
�

Of course, in the error εi, we don’t have
∑

j 6=i〈ai, aj〉〈bi, bj〉wici, instead we have terms like∑
j 6=i〈âi, aj〉〈̂bi, bj〉wici. The next two lemmas show that these two terms are actually very close.

Claim 2 We have
√√√√

k∑

i=1

‖
∑

j 6=i
〈∆Ai, âj〉〈bi, bj〉ŵiĉi‖2 ≤ o(wmax)‖∆A‖F .

√√√√
k∑

i=1

‖
∑

j 6=i
〈∆Aj , âi〉〈bi, bj〉ŵiĉi‖2 ≤ o(wmax)‖∆A‖F .

Same is true if any ·̂ is replaced by the true value.
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Proof: Similar as before, we treat the left hand side as the Frobenius norm of some matrix M =
QZ. Here Zi = ŵiĉi, and Q is the following matrix:

Qi,j =

{
〈∆Ai, âj〉〈bi, bj〉, i 6= j,
0, i = j,

We shall bound ‖M‖F by ‖Z‖‖Q‖F . By assumption we know ‖Z‖ ≤ wmax · 2η1

√
k/d =

O(wmax

√
k/d). On the other hand, we know 〈bi, bj〉 ≤ Õ(1/

√
d) hence ‖Q‖F ≤ Õ(1/

√
d)‖ÂT∆A‖F ≤

Õ(1/
√
d)‖Â‖‖∆A‖F = Õ(

√
k/d)‖∆A‖F . Therefore we have

‖M‖F ≤ ‖Z‖‖Q‖F ≤ O(wmax

√
k/d)·Õ(wmax

√
k/d)‖∆A‖F = Õ(k/d

√
d)‖∆A‖F = o(wmax)‖∆A‖F .

Notice that the proof works for both terms. �

Claim 3 We have
√√√√

k∑

i=1

‖
∑

j 6=i
〈∆Ai, âj〉〈∆Bi, b̂j〉ŵiĉi‖2 ≤ o(wmax)(‖∆A‖F + ‖∆B‖F ).

The same is true if the inner-products are between 〈∆Aj , âi〉 or 〈∆Bj , b̂i〉, or if any ·̂ is replaced by
the true value.

Proof: Similar as before, we treat the left hand side as the Frobenius norm of some matrix M =
QZ. Here Zi = ŵiĉi, and Q is the following matrix

Qi,j =

{
〈∆Ai, âj〉〈∆Bi, bj〉, i 6= j,
0, i = j,

Now using definition of 2 → 4 norm and 2ab ≤ a2 + b2 we first bound the Frobenius norm of the
matrix Q:

∑

i 6=j
(〈∆Ai, âj〉〈∆Bi, b̂j〉)2 ≤

∑

i 6=j
(〈∆Ai, âj〉)4+(〈∆Bi, b̂j〉)4 ≤

k∑

i=1

‖Â>‖2→4‖∆Ai‖4+‖B̂>‖2→4‖∆Bi‖4

Now we first bound the 2 → 4 norm of the matrix Â> = A> + ∆A>. By assumption we
already know ‖A>‖2→4 ≤ O(1). On the other hand, for any unit vector u

k∑

i=1

〈∆Ai, u〉4 ≤
k

max
i=1
〈∆Ai, u〉2

k∑

i=1

〈∆Ai, u〉2 ≤ Õ(k2/d3) = o(1).

Here we used the assumption that ‖∆Ai‖ ≤ Õ(
√
k/d) and ‖∆A‖ ≤ O(

√
k/d). Therefore

‖Â>‖2→4 ≤ ‖A>‖2→4 + ‖∆A>‖2→4 ≤ O(1) (and similarly for B̂>).
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Therefore

‖Q‖F ≤

√√√√
k∑

i=1

‖Â>‖2→4‖∆Ai‖4 + ‖B̂>‖2→4‖∆Bi‖4

≤ O(1)

√√√√
k∑

i=1

‖∆Ai‖4 + ‖∆Bi‖4

≤ O(1) · k
max
i=1

(‖∆A‖i + ‖∆B‖i)

√√√√
k∑

i=1

‖∆Ai‖2 + ‖∆Bi‖2

≤ Õ(
√
k/d)(‖∆A‖F + ‖∆B‖F ).

On the other hand we know ‖Z‖ ≤ O(wmax

√
k/d), hence ‖M‖F ≤ ‖Z‖‖Q‖F ≤ o(wmax)(‖∆A‖F+

‖∆B‖F ).
�

H.2.2. PROJECTION PROCEDURE 5

In this section, we describe the functionality of projection Procedure 5. Suppose the initial solution
{Â0, B̂0, Ĉ0, ŵ0} is (η0, η1)-nice. Then, given an arbitrary solution {Ã, B̃, C̃, w̃}, we run projec-
tion Procedure 5 to get a (2η0, 4η1)-nice solution without losing too much in Frobenius norm error.
This is shown in the following Lemma.

Lemma 38 Suppose the initial solution {Â0, B̂0, Ĉ0, ŵ0} is (η0, η1)-nice. For any solution {Ã, B̃, C̃, w̃},
let error E = max{‖Ã−A‖F , ‖B̃ −B‖F , ‖C̃ −C‖F , ‖w̃−w‖/wmin}. Then after the projection
Procedure 5, the new solution is (2η0, 3η1)-nice and has error at most 2E.

Proof: Intuitively, by truncatingD the matrix we get is closest to Ã among matrices with spectral
norm η1

√
k/d. We first prove this fact:

Claim 4
‖Q− Ã‖F = min

‖M‖≤η1
√
k/d

‖M − Ã‖F .

Proof: By symmetric properties of Frobenius and spectral norm (both are invariant under ro-
tation), we can rotate the matrices Q,M, Ã simultaneously, so that Ã becomes a diagonal ma-
trix D. Since M has spectral norm bounded by η1

√
k/d, in particular all its entries must be

bounded by η1

√
k/d. Also, we know ‖D − D̂‖F = min∀(i,j)Mi,j≤η1

√
k/d
‖D − M‖F , there-

fore ‖D− D̂‖F = min‖M‖≤η1
√
k/d
‖D−M‖F . By the rotation invariant property this implies the

claim. �
Since the optimal solution A has spectral norm bounded by η1

√
k/d, in particular from above

claim we know ‖Q−Ã‖F ≤ ‖Ã−A‖F . By triangle inequality we get ‖Q−A‖F ≤ 2E. In the next
step we are essentially projecting the solution Q to a convex set that contains A (the set of matrices
that are column-wise η1

√
k/d close to Â0), so the distance can only decrease. Similar arguments

work for B̂, Ĉ, ŵ, therefore the error of the new solution is bounded by 2E.
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By construction it is clear that the columns of the new solution is within η0

√
k/d to the columns

of the initial solution, so they must be within 2η0

√
k/d to the columns of the true solution. The only

thing left to prove is that ‖Â‖ ≤ 3η1

√
k/d.

First we observe that Â = Â0 +Z where Z is a matrix whose columns are multiples of Q− Â0,
and the multiplier is never larger than 1. Therefore ‖Â‖ ≤ ‖hA0‖+ ‖Z‖ ≤ ‖Â0‖+ ‖Q− Â0‖ ≤
2‖Â0‖+ ‖Q‖ ≤ 3η1

√
k/d. �

Appendix I. SVD Initialization Result

In this section, we provide an SVD-based technique to propose good initialization vectors close to
the columns of true components A and B in the regime of k = O(d).

Given a vector θ ∈ Rd, matrix T (I, I, θ) results a linear combination of slices of tensor T . For
tensor T in (32), we have

T (I, I, θ) =
∑

i∈[k]

wi〈θ, ci〉aib>i =
∑

i∈[k]

λiaib
>
i = ADiag(λ)B>, (41)

where λi := wi〈θ, ci〉, i ∈ [k], and λ := [λ1, λ2, . . . , λk]
> ∈ Rk is expressed as

λ = Diag(w)C>θ.

Since A and B are not orthogonal matrices, the expansion in (41) is not the SVD 17 of T (I, I, θ).
But, we show in the following theorem that if we draw enough number of random vectors θ in
the regime of k = O(d), we can eventually provide good initialization vectors through SVD of
T (I, I, θ).
Define

g(L) :=
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(k).

Theorem 39 (SVD initialization when k = O(d)) Consider tensor T̂ = T+Ψ where T is a rank-
k tensor, and Ψ is a perturbation tensor. Let Assumptions (A1)-(A3) hold and k = O(d). Draw L

i.i.d. random vectors θ(j) ∼ N (0, Id), j ∈ [L]. Let u(j)
1 and v(j)

1 be the top left and right singular
vectors of T̂ (I, I, θ(j)). This is L random runs of Procedure 3. Suppose L satisfies the bound

g(L) ≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)
4
√

log k,

with µ = 2µR+µ̃−1
1−µ̃ < wmin

wmaxρ
− 1, for µR and µmin defined in (44), and some 0 < µ̃ < 1. Note that

ρ ≤ α√
d

is also defined as the incoherence parameter in Assumption (A2). Then, w.h.p., at least one

of the pairs (u
(j)
1 , v

(j)
1 ), j ∈ [L], say j∗, satisfies

max
{

dist
(
u

(j∗)
1 , a1

)
,dist

(
v

(j∗)
1 , b1

)}
≤ 4wmaxµmin(1 + ρ)

√
log k + α0

√
dψ

wminµ̃g(L)− α0

√
dψ

,

where ψ := ‖Ψ‖ is the spectral norm of perturbation tensor Ψ, and α0 > 1 is a constant.

17. Note that if A and B are orthogonal matrices, columns of A and B are directly recovered by computing SVD of
T (I, I, θ).
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Proof: Let λ(j) := Diag(w)C>θ(j) ∈ Rk and λ̃(j) := C>θ(j) ∈ Rk. From Lemmata 40 and 41,
there exists a j∗ ∈ [L] such that w.h.p., we have

max
{

dist
(
u

(j∗)
1 , a1

)
, dist

(
v

(j∗)
1 , b1

)}
≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ .

From (42), with probability at least 1− 2k−1, we have

λ
(j∗)
1 ≥ wming(L).

From (43), with probability at least 1− k−7, we have

λ
(j∗)
(2) ≤ wmax

(
ρλ̃

(j∗)
1 + 4

√
log k

)
≤ 4wmax(1 + ρ)

√
log k,

where in the last inequality, we also applied upper bound on λ̃(j∗)
1 . Combining all above bounds and

Lemma 45 finishes the proof. �

I.1. Auxiliary lemmata

In the following Lemma, we show that the gap condition between the maximum and the second
maximum of vector λ required in Lemma 41 is satisfied under some number of random draws.

Lemma 40 (Gap condition) Consider an arbitrary matrix C ∈ Rd×k with unit-norm columns
which also satisfies incoherence condition maxi 6=j |〈ci, cj〉| ≤ ρ for some ρ > 0. Let

λ := Diag(w)C>θ ∈ Rk,

denote the vector that captures correlation of θ ∈ Rd with columns of C. Without loss of generality,
assume that λ1 = maxi |λi|, and let λ(2) := maxi 6=1 |λi|. Draw L i.i.d. random vectors θ(j) ∼
N (0, Id), j ∈ [L], and λ(j) := Diag(w)C>θ(j). Suppose L satisfies the bound

√
ln(L)

8 ln(k)

(
1− ln(ln(L)) + c

4 ln(L)
−
√

ln(k)

ln(L)

)
≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)
,

for some 0 < µ < wmin
wmaxρ

−1. Then, with probability at least 1−2k−1−k−7, we have the following
gap condition for at least one draw, say j∗,

λ
(j∗)
1 ≥ (1 + µ)λ

(j∗)
(2) .

Proof: Define λ̃ := Diag(w)−1λ = C>θ. We have λj = wj λ̃j , j ∈ [k].
Each vector λ̃(j) is a random Gaussian vector λ̃(j) ∼ N (0, C>C). Let j∗ := arg maxj∈[L] λ̃

(j)
1 .

Since maxj∈[L] λ̃
(j)
1 , is a 1-Lipschitz function of L independent N (0, 1) random variables, similar

to the analysis in Lemma B.1 of Anandkumar et al. (2014a), we have

Pr

[
λ̃

(j∗)
1 ≥

√
2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(k)

]
≥ 1− 2

k
. (42)
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Any vector ci, i 6= 1, can be decomposed to two components parallel and perpendicular to c1 as
ci = 〈ci, c1〉c1 + P⊥c1

(ci). Then, for any λ̃i, i 6= 1, we have

λ̃i := 〈θ, ci〉 = θ>〈ci, c1〉c1︸ ︷︷ ︸
=:λ̃i,‖

+ θ>P⊥c1
(ci)︸ ︷︷ ︸

=:λ̃i,⊥

.

Since P⊥c1
(ci) ⊥ c1, i 6= 1, we have λ̃i,⊥, i 6= 1, are independent of λ̃1 := θ>c1, and therefore, the

following bound can be argued independent of bound in (42). From Lemma 43, we have

Pr

[
max
i 6=1

λ̃
(j∗)
i,⊥ ≥ 4

√
log k

]
≤ k−7.

For λ̃i,‖, we have

λ̃i,‖ = θ>〈ci, c1〉c1 ≤ ρθ>c1 = ρλ̃1,

where we also assumed that λ̃1 := θ>c1 > 0 which is true for large enough L, concluded from (42).
By combining above two bounds, with probability at least 1− k−7, we have

λ̃
(j∗)
(2) ≤ ρλ̃1 + 4

√
log k. (43)

From the given bound on L in the lemma and inequalities (42) and (43), with probability at least
1− 2k−1 − k−7, we have

λ̃
(j∗)
1 ≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)

(
λ̃

(j∗)
(2) − ρλ̃

(j∗)
1

)
.

Simple calculations imply that

wminλ̃
(j∗)
1 ≥ (1 + µ)wmaxλ̃

(j∗)
(2) .

Incorporating inequalities λ1 ≥ wminλ̃1 and λ(2) ≤ wmaxλ̃(2) finishes the proof saying that the
result of lemma is valid for the j∗-th draw. �

In the following lemma, we show that if a vector θ ∈ Rd is relatively more correlated with c1

(comparing to ci, i 6= 1), then dominant singular vectors of T̂ (I, I, θ) provide good initialization
vectors for a1 and b1.

Before proposing the lemma, we define

µE := α

√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
, µR :=

(
1 + α0

√
k

d

)2

, µmin := min{µE , µR}.

(44)

where α = polylog(d), and α0 > 0 is a constant.
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Lemma 41 Consider T̂ = T + Ψ, where T is a rank-k tensor, and Ψ is a perturbation tensor.
Let assumptions (A1)-(A3) hold for T . Let u1 and v1 be the top left and right singular vectors of
T̂ (I, I, θ). Let

λ := Diag(w)C>θ ∈ Rk,

denote the vector that captures correlation of θ with different ci, i ∈ [k], weighted by wi, i ∈ [k].
Without loss of generality, assume that λ1 = maxi |λi|, and let λ(2) := maxi 6=1 |λi|. Suppose the
relative gap condition

λ1 ≥ (1 + µ)λ(2), (45)

is satisfied for some µ > λ1
λ1−‖Ψ(I,I,θ)‖2µR − 1, where µR and µmin are defined in (44). Then, with

high probability (w.h.p.),

max{dist(u1, a1),dist(v1, b1)} ≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

for ‖Ψ(I, I, θ)‖/λ1 < µ̃ < 1 defined as

µ̃ :=
1 + µ− 2µR

1 + µ
.

Proof: From Assumption (A1), T (I, I, θ) can be written as equation (41), Expanded as

T (I, I, θ) = λ1a1b
>
1 +

∑

i 6=1

λiaib
>
i

︸ ︷︷ ︸
=:R

.

From here, we prove the result in two cases. First when µE < µR and therefore µmin = µE , and
second when µE ≥ µR and therefore µmin = µR.

Case 1 (µE < µR): According to the subspaces spanned by a1 and b1, we decompose matrix
R to two components as R = P⊥(R) + P‖(R). First term P⊥(R) is the component with column
space orthogonal to a1 and row space orthogonal to b1, and P‖(R) is the component with either the
column space equal to a1 or the row space equal to b1. We have

P⊥(R) = (I − Pa1)R(I − Pb1),

P‖(R) = Pa1R+RPb1 − Pa1RPb1 ,

where Pa1 = a1a
>
1 is the projection operator on the subspace in Rd spanned by a1, and similarly

Pb1 = b1b
>
1 is the projection operator on the subspace in Rd spanned by b1. Thus, for T̂ = T + Ψ,

we have

T̂ (I, I, θ) = λ1a1b
>
1 + P⊥(R)︸ ︷︷ ︸
=:M

+P‖(R)
︸ ︷︷ ︸

=:E

+Ψ(I, I, θ).

Looking at M , it becomes more clear why we proposed the above decomposition for R. Since the
column and row space of P⊥(R) are orthogonal to a1 and b1, respectively, the SVD of M has a1

and b1 as its left and right singular vectors, respectively. Hence, M has the SVD form

M = [a1 Ũ2]

[
λ1 0

0 Σ̃2

]
[b1 Ṽ2]>,
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where P⊥(R) = Ũ2Σ̃2Ṽ
>

2 is the SVD of P⊥(R). Let σ̃2 := maxi(Σ̃2)ii. From gap condition (45)
assumed in the lemma and inequality (46), we have λ1 ≥ σ̃2, and therefore, a1 and b1 are the top
left and right singular vectors of M . On the other hand, T̂ (I, I, θ) has the corresponding SVD form

T̂ (I, I, θ) = [u1 U2]

[
σ1 0
0 Σ2

]
[v1 V2]>,

where u1 and v1 are its top left and right singular vectors. We have

σ̃2 = ‖P⊥(R)‖ ≤ ‖R‖

=

∥∥∥∥∥
k∑

i=2

λiaib
>
i

∥∥∥∥∥

≤ λ(2)

∥∥A\1
∥∥
∥∥∥B>\1

∥∥∥

≤ λ(2) ‖A‖
∥∥∥B>

∥∥∥

≤
(

1 + α0

√
k

d

)2

λ(2) =: µRλ(2), (46)

where the sub-multiplicative property of spectral norm is used in the second inequality, and the last
inequality is from Assumption (A3). From Weyl’s theorem, we have

|σ1 − λ1| ≤ ‖E‖+ ‖Ψ(I, I, θ)‖

≤ λ(2)α

√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
+ ‖Ψ(I, I, θ)‖

=: µEλ(2) + ‖Ψ(I, I, θ)‖, (47)

where (48) is used in the second inequality. Therefore, we have

σ1 − σ̃2 = σ1 − λ1 + λ1 − σ̃2

≥ −µEλ(2) − ‖Ψ(I, I, θ)‖+ λ1 − µRλ(2)

≥
(

1− µE + µR
1 + µ

)
λ1 − ‖Ψ(I, I, θ)‖,

=: µ̃1λ1 − ‖Ψ(I, I, θ)‖ =: ν,

where bounds (46) and (47) are used in the first inequality, and the second inequality is concluded
from the gap condition (45) assumed in the lemma. Therefore, since σ1 ≥ β + ν and σ̃2 ≤ β for
some β > 0, Wedin’s theorem is applied to the equality T̂ (I, I, θ) = M + E + Ψ(I, I, θ), which
implies that

max
{√

1− 〈u1, a1〉2,
√

1− 〈v1, b1〉2
}
≤ ‖E + Ψ(I, I, θ)‖

ν

≤
µEλ(2) + ‖Ψ(I, I, θ)‖
µ̃1λ1 − ‖Ψ(I, I, θ)‖

≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,
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where we used µmin = µE and µ̃1 > µ̃ in the last inequality when µE < µR. Since dist2(u1, a1) +
〈u1, a1〉2 = 1, the proof is complete for this case.

Bounding the spectral norm of E: For any i 6= j, let ρ(a)
ij := |〈ai, aj〉| and ρ(b)

ij := |〈bi, bj〉|.
We have

E := P‖(R) = Pa1R+RPb1 − Pa1RPb1 ,
= a1a

>
1 R+Rb1b

>
1 − a1a

>
1 Rb1b

>
1

=
∑

i 6=1

λia1a
>
1 aib

>
i +

∑

i 6=1

λiaib
>
i b1b

>
1 −

∑

i 6=1

λia1a
>
1 aib

>
i b1b

>
1

=
∑

i 6=1

λiρ
(a)
1i a1b

>
i +

∑

i 6=1

λiρ
(b)
1i aib

>
1 −

∑

i 6=1

λiρ
(a)
1i ρ

(b)
1i a1b

>
1

= A(1) Diag(λ(a))B
>
\1︸ ︷︷ ︸

E1

+A\1 Diag(λ(b))B
>
(1)︸ ︷︷ ︸

E2

−A(1) Diag(λ(a,b))B
>
(1)︸ ︷︷ ︸

E3

,

where A(1) :=
[ k−1 times︷ ︸︸ ︷
a1|a1| · · · |a1

]
∈ Rd×(k−1), B\1 := [b2|b3| · · · |bk] ∈ Rd×(k−1), and λ(a) :=

[λiρ
(a)
1i ]i 6=1 ∈ Rk−1. The other notations are similarly defined.

For E1, we have

‖E1‖ ≤ ‖A(1) Diag(λ(a))‖‖B>\1‖
= ‖λ(a)‖‖a1‖‖B>\1‖
≤
√
kλ(2)ρ‖B>‖

≤ λ(2)α

√
k

d

(
1 + α0

√
k

d

)
.

Where the first equality is concluded from Lemma 44, and Assumptions (A2) and (A3) are exploited
in the last inequality. Similarly, for E2 and E3, we have

‖E2‖ ≤ λ(2)α

√
k

d

(
1 + α0

√
k

d

)
,

‖E3‖ ≤ λ(2)α
2

√
k

d
.

Therefore, we have

‖E‖ ≤ λ(2)α

√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
. (48)

Case 2 (µR ≤ µE): The result can be similarly achieved when µR ≤ µE . Here we directly
apply Wedin’s theorem to T̂ (I, I, θ) = λ1a1b

>
1 +R+Ψ(I, I, θ), treatingR+Ψ(I, I, θ) as the error

term. From Weyl’s theorem, we have

σ1 ≥ λ1 − ‖R‖ − ‖Ψ(I, I, θ)‖ ≥
(

1− µR
1 + µ

)

︸ ︷︷ ︸
=:µ̃2

λ1 − ‖Ψ(I, I, θ)‖,
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where (46) and gap condition (45) are used in the second inequality. Since σ̃2 = 0, by Wedin’s
theorem, we have

max
{√

1− 〈u1, a1〉2,
√

1− 〈v1, b1〉2
}
≤
µRλ(2) + ‖Ψ(I, I, θ)‖
µ̃2λ1 − ‖Ψ(I, I, θ)‖

≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

where we used µmin = µR and µ̃2 ≥ µ̃ in the last inequality when µR ≤ µE . Since dist2(u1, a1) +
〈u1, a1〉2 = 1, the proof is complete for this case. �

Lemma 42 Let x ∼ N (0, σ) be a Gaussian random variable with mean zero and variance σ2.
Then, for any t > 0, we have

(
σ

t
− σ3

t3

)
f(t/σ) ≤ Pr[x ≥ t] ≤ σ

t
f(t/σ),

where f(t) = 1√
2π
e−t

2/2.

Proof: Let z = x
σ , where z ∼ N (0, 1) is a standard Gaussian random variable. Then, we have

Pr[x ≥ t] = Pr[z ≥ t/σ], and therefore, the result is proved by using standard tail bounds for
Gaussian random variable. �

Lemma 43 Consider r = [r1, r2, . . . , rk]
> ∈ Rk as a k-dimensional random Gaussian vector

with zero mean and covariance Σ, i.e., r ∼ N (0,Σ). For any k ≥ 2, we have

Pr
[
r(1) ≥ 4σmax

√
log k

]
≤ k−7.

Proof: From Lemma 42, for any i ∈ [k], we have

Pr
[
|ri| ≥ 4σmax

√
log k

]
≤ 1

2
√

2π log k
k−8 ≤ k−8,

where the last inequality is concluded from the fact that k ≥ 2. The result is then proved by taking
a union bound. �

Lemma 44 Given h ∈ Rm and v ∈ Rn, let H = [h|h| · · · |h] Diag(v) ∈ Rm×n. Then, ‖H‖ =
‖h‖‖v‖.

Proof: By definition

‖H‖ = sup
‖x‖=1

‖Hx‖.

We have Hx = 〈v, x〉h, and therefore, ‖Hx‖ = |〈v, x〉|‖h‖. This is maximized by x = v/‖v‖, and
this finishes the proof. �

In the following lemma, we show that noise matrix Ψ(I, I, θ) has bounded norm with high
probability which is useful for initialization argument in Theorem 39.

54



LEARNING OVERCOMPLETE LVMS THROUGH TENSOR METHODS

Lemma 45 Let θ ∈ Rd be standard multivariate Gaussian as N (0, Id). Then, for any α0 > 1, we
have

Pr
[
‖Ψ(I, I, θ)‖ ≤ α0

√
dψ
]
≥ 1− e−(α0−1)2d/2,

where ψ := ‖Ψ‖ is the spectral norm of error tensor Ψ.

Proof: Let θn := 1
‖θ‖θ denote the normalized version of θ. Then, we have

‖Ψ(I, I, θ)‖ = ‖θ‖ · ‖Ψ(I, I, θn)‖ ≤ ‖θ‖ψ,

where the last inequality is from the definition of tensor spectral norm. Applying the bound on ‖θ‖
in Lemma 46 finishes the proof. �

The following lemma provides concentration bound for the norm of standard Gaussian vector
which is basically a tail bound for the chi-squared random variable.

Lemma 46 (Lemma 15 of Dasgupta et al. (2006)) Let the random vector θ is distributed asN (0, Id).
Then, for any α0 > 1, we have

Pr
[
‖θ‖ ≥ α0

√
d
]
≤ e−(α0−1)2d/2.

Appendix J. Clustering Process

In the last step of main algorithm, we need to cluster the generated 4-tuples into k clusters. Theoret-
ically, we only have convergence guarantees when the initialization vectors are good enough, while
the other initializations can potentially generate arbitrary 4-tuples. In the worst case, these arbitrary
4-tuples can make the clustering process hard, and therefore, we provide specific Procedure 2 for
which the output properties are provided in Lemma 49.

Note that the key observation for the algorithm is if T (â, b̂, ĉ) is large for some (â, b̂, ĉ), then
these vectors are close to (ai, bi, ci) for some i ∈ [k].

For simplicity, we only prove this when the initialization procedure in Theorem 19 takes polyno-
mial time, namely k = O(d) and wmax/wmin = O(1). Without loss of generality, we also assume
wmax = w1 ≥ w2 ≥ · · · ≥ wk = wmin. In this case, we choose the threshold ε in the following
lemmata to be some small constant depending on k/d and wmax/wmin. Also, we work in the case
when noise Ψ = 0, however the proof still works when the noise ψ = ‖Ψ‖ = o(1).

Lemma 47 Suppose

max{|〈ai, â〉|, |〈bi, b̂〉|, |〈ci, ĉ〉|} ≤ ε, ∀i ∈ [t− 1],

for some t ∈ [k]. Let δ := O
(
wmax
wmin

ε3−p
)

, and assume |T (â, b̂, ĉ)| ≥ (1− δ)wt. Then, there exists
some j such that

max{dist(â, aj), dist(̂b, bj), dist(ĉ, cj)} <
wmin

10wmax
.
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Proof: Partition tensor T =
∑

i∈[k]wiai ⊗ bi ⊗ ci to T1 + T2, where T1 contains all the terms
indexed from 1 to t− 1, and T2 contains the remaining terms. From Corollary 28, we have

|T1(â, b̂, ĉ)| ≤ wmax

∥∥∥A>[t−1]â
∥∥∥

3
·
∥∥∥B>[t−1]b̂

∥∥∥
3
·
∥∥∥C>[t−1]ĉ

∥∥∥
3
,

where A[t−1] ∈ Rd×(t−1) denotes the first t − 1 columns of A, and similarly for B[t−1] and C[t−1].
We also have ∥∥∥A>[t−1]â

∥∥∥
3

3
≤
∥∥∥A>[t−1]â

∥∥∥
p

p
· max
i∈[t−1]

|〈ai, â〉|3−p = O
(
ε3−p

)
,

where Assumption (A10) and the assumption in the lemma are exploited in the last step. Similar
arguments hold for b and c. Combining with the earliest inequality, we have

|T1(â, b̂, ĉ)| ≤ wmaxO
(
ε3−p

)
≤ wtδ,

where the definition of δ is exploited in the last inequality. Applying assumption |T (â, b̂, ĉ)| ≥
(1− δ)wt to the above bound, we have

|T2(â, b̂, ĉ)| ≥ (1− 2δ)wt. (49)

On the other hand, from Corollary 28,

|T2(â, b̂, ĉ)| ≤ wt‖A>â‖3‖B>b̂‖3‖C>ĉ‖3.

Since all the 3-norms are bounded by 1 + o(1), each of them must be at least 1 − O(δ) to let
inequality (49) hold. Now we have

1−O(δ) ≤
k∑

j=1

|〈aj , â〉|3 ≤ max{|〈aj , â〉|}3−p
k∑

t=1

|〈aj , â〉|p ≤ (1 + o(1)) max{|〈aj , â〉|}3−p,

where the last inequality is from Assumption (A10). This implies max{|〈aj , â〉|} = 1 − O(δ),
which in turn implies there exists a j such that

dist(â, aj) < wmin/10wmax

when ε and δ are small enough.
By symmetry we know there is also a j′ such that dist(̂b, bj′) < wmin/10wmax. If j 6= j′, then

it is easy to check T2(â, b̂, ĉ) cannot be large. Hence, j = j′ and the Lemma is correct. �
On the other hand, we know if there is a good initialization, the largest T (â, b̂, ĉ) must be large.

Lemma 48 Suppose there exists a good initialization (see initialization condition (26) in the local
convergence theorem) for some column t ∈ [k], and

max{|〈ai, â(0)〉|, |〈bi, b̂(0)〉|, |〈ci, ĉ(0)〉|} ≤ ε, ∀i 6= t.

Let δ := O
(
wmax
wmin

ε3−p
)

. Then the corresponding output of iterations in Algorithm 1 denoted by

(â, b̂, ĉ) satisfy
|T (â, b̂, ĉ)| > (1− δ)wt.

Furthermore, for any i 6= t, max{|〈â, ai〉|, |〈̂b, bi〉|, |〈ĉ, ci〉|} ≤ o(ε).
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Proof: Similar to the proof of Lemma 47, partition tensor T =
∑

i∈[k]wiai ⊗ bi ⊗ ci to T2 =
wtat ⊗ bt ⊗ ct and T1 = T − T2. Since the initialization is good, by the local convergence result in
Theorem 17, we have

dist(â, at) ≤ Õ
(
wmax

wmin

√
k

d

)
≤ o(δ),

where the incoherence condition and p > 2 are exploited in the last step. Therefore, |T2(â, b̂, ĉ)| ≥
(1− δ/2)wt.

Similar to Lemma 47, by using Corollary 28, we have |T1(â, b̂, ĉ)| ≤ wtδ/2. Applying these
bounds, we have

|T (â, b̂, ĉ)| ≥ |T2(â, b̂, ĉ)| − |T1(â, b̂, ĉ)| ≥ (1− δ)wt.
The last part of the Lemma is trivial because dist(â, at) is small and 〈ai, at〉 is small by inco-

herence. �
Finally we prove the clustering process succeeds.

Lemma 49 Procedure 2 outputs k cluster centers that are Õ
(
wmax
wmin

√
k
d

)
close to the true compo-

nents of the tensor.

Proof: We prove by induction to show that every step of the algorithm correctly computes one
component.

Suppose all previously found 4-tuples are Õ(wmax

√
k/wmind) close to some (ai, bi, ci) (notice

that this is true at the beginning when no components are found). Let t be the smallest index that
has not been found. Then all the remaining 4-tuples satisfy

max{|〈ai, â〉|, |〈bi, b̂〉|, |〈ci, ĉ〉|} ≤ ε, ∀i < t.

By Lemma 48 we know there must be a 4-tuple with |T (â, b̂, ĉ)| > wt(1 − δ). On the other
hand, by Lemma 47 we know the 4-tuple we found must satisfy max{dist(â, aj), dist(̂b, bj)} <
wmin/10wmax for some j (and this cannot be some j that has already been found). This tuple then
satisfies the conditions of the local convergence Theorem 17. Hence, after N iterations it must have
converged to (aj , bj , cj). At this step the algorithm successfully found a new component of the
tensor.

�
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Part II: Learning Guarantees and Concentration Bounds

Appendix K. Proof of Main Learning Guarantees

We first explain how different algorithm guarantees and tensor concentration bounds are combined
leading to the main learning Theorems.
Proof of Theorem 7 (in the main text): The result is proved by applying the tensor concentration
bound in Lemma 56 to the local convergence results of algorithm in Theorems 17 and 23 (all in the
Supplementary materials). Note that in the low noise regime ζ2 = O

(
1
d

)
considered here, the term

ζ
√
wmax

d
n in Lemma 56 is dominant. �

Proof of Theorem 10 (in the main text): The result is proved by applying the tensor concentration
bound in Lemma 56 to the global convergence results of algorithm in Theorems 19 and 23 (all in
the Supplementary materials). �
Proof of Theorem 53 (in the appendix): The result is proved by applying the tensor concentration
bound in Lemma 63 to the local convergence results of algorithm in Corollary 18 and Theorem 23
(all in the Supplementary materials). Note that for learning ICA, the 4th order generalization of the
algorithm is applied. The details of generalization of coordinate descent Algorithm 4 to 4th order is
omitted, but it can be argued with similar techniques we exploited for the 3rd order case. �
Proof of Theorem 54 (in the appendix): The result is proved by applying the tensor concentration
bound in Lemma 63 to the global convergence results of algorithm in Theorems 19 and 23 (all
in the Supplementary materials). Note that the SVD technique is applied to the 4-th order case
as described in the settings. Therefore, the requirement on noise in global convergence result is
changed as ψ := ‖Ψ‖ ≤ wmin

√
log k

α2
0d

. �

Proof of Theorem 12 (in the main text): The result is proved similar to the ICA case with the
difference that the concentration bound in Lemma 64 for sparse ICA is exploited. �

Appendix L. Learning Multiview linear Mixtures Model

Here, we state more general learning results for multiview linear mixtures model. In particular, the
result in the high noise regime ζ2 = Θ(1) is also provided.

L.1. Semi-supervised learning of multiview linear mixtures model in the overcomplete setting

Suppose that the distribution of observed variables given hidden state is sub-Gaussian with covari-
ance matrix ζ2I (as model S is described in Section 2.1 in the main text), we have the following
concentration bound where with probability at least 1− δ, âj satisfies

‖âj − aj‖ ≤ C1

√
ζ2d log(1/δ)

mj
, j ∈ [k],

for some constant C1 > 0.

Settings of Algorithm 1 in Theorem 50:

• Number of iterations: N = Θ
(

log
(

1
γε̃T

))
, where γ := wmax

wmin
.

• Initialization: Exploit the empirical estimates in (5) in the main text as initialization vectors,
and therefore the number of initializations L = k.
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Conditions for Theorem 50:

• Rank condition: k = o(d3/2).
• The columns of factor matrices are uniformly i.i.d. drawn from unit d-dimensional sphere
Sd−1 (see Remark 8 for more discussion).
• Suppose the distribution of observed variables given hidden state is sub-Gaussian, and the

number of labeled samples with label j, denoted by mj , satisfies 18

mj ≥ Ω̃
(
γ2ζ2d

)
, j ∈ [k], (50)

where γ := wmax
wmin

.
• Sample complexity requirements and settings for different latent variable models:

� Multiview linear mixture model: Consider the empirical estimate of 3rd order moment
in (3) in the main text as the input of Algorithm 1. Furthermore, given n samples, noise
matrices EA, EB and EC satisfy the RIP condition in (RIP) which is satisfied with high
probability for many random models (see Remark 51 for details on RIP condition). The
number of samples n satisfies

n ≥





Ω
(

d
w2

min

)
, ζ2 = Θ(1),

Ω
(
wmax

w2
min

)
, ζ2 = Θ

(
1
d

)
,

(51)

where ζ2 is the variance of each entry of observation vectors.
� Spherical Gaussian mixtures: Consider 3rd order empirical (modified) moment M̂3

in (16) as the input of Algorithm 1 with symmetric updates. The number of samples
n satisfies the same bounds as (51), where ζ2I is the spherical covariance matrix of
observations.

Theorem 50 (Semi-supervised learning of multiview linear mixture models and spherical Gaussian mixtures)
Assume the conditions and settings mentioned above hold. Then, Algorithm 1 outputs âj , j ∈ [k]

as the estimates of columns of true factor matrix A satisfying w.h.p.

dist (âj , aj) = O(ε̃T ), j ∈ [k],

where dist(·, ·) function and ε̃T are defined in (24) and (25), respectively. In the asymmetric cases,
similar bounds hold for other factor matricesB andC. In addition, the weight estimates ŵj , j ∈ [k]
satisfy w.h.p.

|ŵj − wj | = O(wminε̃T ).

Proof: The result is proved by applying the tensor concentration bound in Lemma 56 to the local
convergence result of Algorithm 1 in Theorem 17. Note that in the high noise regime ζ2 = Θ(1),

the term ζ3
√

d
n in Lemma 56 is dominant, and in the low noise regime ζ2 = Θ

(
1
d

)
, the term

ζ
√
wmax

d
n in Lemma 56 is dominant �

18. In model S, the columns of factor matrices are unit vectors, and therefore, the most reasonable regime of error is
when the expected norm of error vector is constant, i.e., E

[
‖ζ
√
dε‖2

]
= ζ2d ≤ O(1). But, note that the label

complexity holds even if ζ2d ≥ ω(1).
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Remark 51 (RIP property) Given n samples for the model S proposed in Section 2.1, define noise
matrix

EA := [ε1
A, ε

2
A, . . . , ε

n
A] ∈ Rd×n,

where εiA ∈ Rd is the i-th sample of noise vector εA. EB and EC are similarly defined. These
matrices need to satisfy the RIP property as follows which is adapted from Candes and Tao (2006).

(RIP) Matrix E ∈ Rd×n satisfies a weak RIP condition such that for any subset of O
(

d
log2 d

)

number of columns, the spectral norm of E restricted to those columns is bounded by 2.

It is known that the above condition is satisfied with high probability for many random models
such as when the entries are i.i.d. zero mean Gaussian or Bernoulli random variables.

L.2. Unsupervised learning of multiview linear mixtures models

The conditions and settings for unsupervised learning are stated as follows where comparing to
the semi-supervised learning, the initialization setting, rank and sample complexity conditions are
changed.

Settings of Algorithm 1 in Theorem 52:

• Number of iterations: N = Θ
(

log
(

1
γε̃T

))
, where γ := wmax

wmin
.

• Instead of initialization by exploiting label information (which is not available in the unsu-
pervised setting), the initialization in each run of Algorithm 1 is performed by SVD-based
technique proposed in Procedure 3, with the number of initializations as

L ≥ kΩ(γ4(k/d)2).

Conditions for Theorem 52:

• Rank condition: k = O(d).
• The columns of factor matrices are uniformly i.i.d. drawn from unit d-dimensional sphere
Sd−1.
• Sample complexity and input settings: Consider the same settings for input tensors (moments)

as in semi-supervised setting, but the sample complexity for both multiview linear mixture
models and spherical Gaussian mixtures are changed as

n ≥





Ω
(

d2

w2
min

)
, ζ2 = Θ(1),

Ω
(
wmax

w2
min

d
)
, ζ2 = Θ

(
1
d

)
.

Theorem 52 (Unsupervised learning of multiview linear mixture models and spherical Gaussian mixtures)
Assume the conditions and settings mentioned above hold. Then, Algorithm 1 outputs âj , j ∈ [k]

as the estimates of columns of true factor matrix A satisfying w.h.p.

dist (âj , aj) = O(ε̃T ), j ∈ [k],
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where dist(·, ·) function and ε̃T are defined in (24) and (25), respectively. In the asymmetric cases,
similar bounds hold for other factor matricesB andC. In addition, the weight estimates ŵj , j ∈ [k]
satisfy w.h.p.

|ŵj − wj | = O(wminε̃T ).

Proof: The result is proved by applying the tensor concentration bound in Lemma 56 to the global
convergence result of Algorithm 1 in Theorem 19. The dominant error bounds in Lemma 56 are the
same as what stated in the proof of Theorem 7. �

Appendix M. Learning ICA and Sparse ICA

In this section, we propose the semi-supervised and unsupervised learning results for ICA model.
By semi-supervised setting in ICA, we mean some prior information is available which provides
good initializations for the components. Recall the standard ICA model (Comon, 1994), where
random independent latent signals are linearly mixed to generate the observations. Let h ∈ Rk be
a random latent signal where its coordinates are independent, and A ∈ Rd×k be the mixing matrix.
Then, the observed vector is

x = Ah ∈ Rd.

For simplicity, we limit to noiseless setting. This is the standard setting, and is already challenging
because samples in ICA are mixtures of many components, unlike the mixture models. It is dis-
cussed in Appendix D how estimating the parameters of ICA model can be formulated as a tensor
decomposition problem where a modified version of 4th order observed moment (denoted by M4)
is characterized in a tensor decomposition form; see Lemma 15 in the appendix.

Settings of Algorithm in Theorem 53: Given n samples xi = Ahi, i ∈ [n], consider the empir-
ical estimate of 4th order (modified) momentM4 (see (17) in the Appendix) as the input to the algo-
rithm with symmetric 4th order updates; see Appendix F.1.1 for higher order extension of the algo-
rithm. Let the number of iterationsN = Θ̃ (log (1/ε̃R)), where ε̃R := min

{
k2/min

{
n,
√
d3n
}
,
√
k/d1.5

}
.

For initialization, it is assumed that for any j ∈ [k], an approximation of aj denoted by â(0)
j is given

satisfying ‖â(0)
j − aj‖ ≤ α for some constant α < 1.

Theorem 53 (Semi-supervised learning of ICA) Assume the Algorithm settings mentioned above
hold. Let the entries of h are independent subgaussian variables with E[h2

j ] = 1, and constant
nonzero 4th order cumulant. Suppose the rank condition Ω(d) ≤ k ≤ o(d2) holds, and the number
of unlabeled samples n satisfies

n ≥
{

Ω̃(k2), k ≤ O(d1.5)/ polylog(d),

Ω̃
(
k4/d3

)
, o.w.

Then the algorithm outputs estimates Â and ŵ, satisfying w.h.p.

max
{∥∥Â−A

∥∥
F
, ‖ŵ − w‖

}
≤ Õ

(
k2.5

min
{
n,
√
d3n
}
)
, j ∈ [k].
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We observe that for highly overcomplete regime k = Θ(d2)/ polylog(d), the ICA model can
be efficiently learned from fourth order moment with n ≥ Ω̃(k2.5) number of unlabeled samples.

Similar to the multiview Gaussian mixture model, we can also provide column-wise recovery
guarantees with introducing additional approximation error Õ

(√
k/d1.5

)
. Note that this error is dif-

ferent from multiview Gaussian mixture since we exploit different tensor orders in the two models.
Settings of Algorithm in Theorem 54: Consider the same settings as in Theorem 53 for the

input tensor and the number of iterations N . But, the initialization is performed by 4-th order
generalization 19 of SVD-based technique in Procedure 3, with the number of initializations as L ≥
kΩ(k2/d2).

Theorem 54 (Unsupervised learning of ICA) Assume the Algorithm settings mentioned above
hold. Let the entries of h are independent subgaussian variables with E[h2

j ] = 1, and constant
nonzero 4th order cumulant. Suppose the rank condition k = Θ(d) holds, and the number of
unlabeled samples satisfies n ≥ Ω̃

(
k3
)
. Then the algorithm outputs satisfy the same guarantees as

in Theorem 53.

M.1. Sparse ICA

Finally, we discuss sparse ICA problem. This is the ICA setting with the additional assumption
that hidden vector h ∈ Rk is sparse with i.i.d. Bernoulli-subgaussian random entries. Assume the
probability of each Bernoulli variable being 1 is s/k. Here, we also assume that mixing matrix A
satisfies the RIP property (see condition (RIP) in the Appendix).

Theorem 55 (Semi-supervised and unsupervised learning of sparse ICA) Similar semi-supervised
and unsupervised learning guarantees as in Theorems 53 and 54 hold for the sparse ICA model as

max
{∥∥Â−A

∥∥
F
, ‖ŵ − w‖

}
≤ Õ

(
s · k1.5

min
{
n,
√
d3n
}
)
, j ∈ [k].

The sample complexity requirements are changed as follows. For semi-supervised setting, we need

n ≥
{

Ω̃(sk), sk ≤ O(d3)/ polylog(d),

Ω̃
(
s2k2/d3

)
, o.w.,

and for unsupervised setting, we need n ≥ Ω̃
(
k2s
)
.

In terms of sparsity of latent vector h, the sparse ICA is between multiview Gaussian mixtures
(where h has one nonzero entry in basis vector encoding), and ICA (where h is fully dense). Com-
paring the guarantees, we also observe that the sample complexity results for sparse ICA bridges
the range of models between multiview mixtures model and ICA.

Appendix N. Tensor Concentration Bounds

In this section, we provide tensor concentration bounds for different latent variable models.

19. In the 4th order case, the SVD is performed on T (I, I, θ, θ) ∈ Rd×d for some random vector θ.
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N.1. Multiview linear mixture model

In this section, we provide a tensor concentration result for the multiview linear mixture model
which bounds the spectral norm of error tensor given n samples. In order to get polynomial sample
complexity bounds for unlabeled samples in semi-supervised and unsupervised learning results, it
is usually enough to treat the tensor as a vector/matrix and apply appropriate vector/matrix concen-
tartion bounds such as Bernstein bounds. However, these bounds can be significantly improved in
many cases by considering the concentration property of the tensor spectral norm directly. Here we
provide the tensor concentration bound for the multiview mixture models.

As introduced in Section 2.1, the conditional expectations of the three views are

E[x1|h] = ah, E[x2|h] = bh, E[x3|h] = ch.

Let A := [a1 a2 · · · ak] ∈ Rd×k and similarly B and C. Recall model S proposed in Section 2.1
saying the conditional distributions of observed variables given hidden states are

x1|h ∼ ah + ζ
√
d · εA, x2|h ∼ bh + ζ

√
d · εB, x3|h ∼ ch + ζ

√
d · εC ,

where εA, εB, εC ∈ Rd are independent random vectors with zero mean and variance 1
dI , and ζ2

is a scalar denoting the variance of each entry. We also assume that noise vectors εA, εB, εC are
independent of hidden vector h. In addition, let all the vectors ah, bh, ch, h ∈ [k], have unit `2 norm.

Let xi1, x
i
2, x

i
3, i ∈ [n] denote n samples of views x1, x2, x3. Since the main focus is on recov-

ering the components, we bound the spectral norm of difference between the empirical tensor

T̂ :=
1

n

n∑

i=1

xi1 ⊗ xi2 ⊗ xi3,

and

T̃ := E[x1 ⊗ x2 ⊗ x3|h] =
1

n

n∑

i=1

(ahi)⊗ (bhi)⊗ (chi),

where the conditional expectation is over the choice of hidden states for n samples. Here, hi ∈ [k]
denotes the hidden state for sample i ∈ [n]. Notice that this tensor has the same form as equation
(3)

T̃ =
∑

j∈[k]

w̃jaj ⊗ bj ⊗ cj ,

where w̃j , j ∈ [k] are the empirical frequencies of different hidden states h ∈ [k]. It is easy to see

that if n = Ω
(

log k
wmin

)
, then all the empirical frequencies w̃j are within [wj/2, 2wj ].

Given n samples, define noise matrix

EA :=
[
ε1
A, ε

2
A, . . . , ε

n
A

]
∈ Rd×n.

EB and EC are similarly defined.

Lemma 56 (Tensor concentration bound for multiview linear mixture model) Consider n sam-
ples {(xi1, xi2, xi3), i ∈ [n]} from the multiview linear mixture model S with corresponding hidden
states {hi, i ∈ [n]}. Assume matrices A>, B> and C> have 2 → 3 norm bounded by O(1),
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and noise matrices EA, EB and EC satisfy the RIP condition in (RIP). For T̂ and T̃ as above, if
n = poly(d), we have with high probability (over the choice of h and the noise)

‖T̂ − T̃‖ ≤ Õ
(
ζ

(√
d

n
+

√
wmax

d

n

)
+ ζ2

(
d

n
+

√
wmax

d1.5

n

)
+ ζ3

(
d1.5

n
+

√
d

n

))
.

Proof: Expanding the difference T̂ − T̃ , we have

T̂ − T̃ =
1

n
ζ3d1.5

∑

i∈[n]

εiA ⊗ εiB ⊗ εiC (52a)

+
1

n
ζ2d

∑

i∈[n]

ahi ⊗ εiB ⊗ εiC + εiA ⊗ bhi ⊗ εiC + εiA ⊗ εiB ⊗ chi (52b)

+
1

n
ζ
√
d
∑

i∈[n]

ahi ⊗ bhi ⊗ εiC + ahi ⊗ εiB ⊗ chi + εiA ⊗ bhi ⊗ chi . (52c)

There are three types of terms in the above difference which are bounded separately in Claims 5-7
in Section N.1.2. Combining the results of claims, the lemma follows directly.

�

Remark 57 In a more general setting, the above tensor concentration result is also valid for the
following model. Let the hidden variable h ∈ Rk is a discrete categorical random variable taking
value ej ∈ Rk if the hidden variable is in the j-th state. The observed variables xl ∈ Rd are
conditionally independent given the k-dimensional latent variable h, and are represented as

xl = Alh+ εl,

where εl ∈ Rd is the noise vector. In addition, given n samples xil, i ∈ [n], suppose the noise
matrices El :=

[
ε1
l ε

2
l · · · εnl

]
, l ∈ [p], satisfy the RIP property in (RIP). Notice that the described

multiview linear mixture model belongs to this class of models.

N.1.1. BASIC DEFINITIONS AND LEMMATA

In the proof of the claims in Section N.1.2, we extensively apply two different types of partitioning
as follows.

Definition 58 (Small and large terms) Consider matrices EA := [ε1
A, ε

2
A, . . . , ε

n
A] ∈ Rd×n, and

EB andEC which are similarly defined. For any set of vectors u, v andw, the set of columns [n] are
partitioned into 2 sets called sets of small and large terms according to the value of inner products
〈u, εiA〉, 〈v, εiB〉 and 〈w, εiC〉 as follows. The set of small values denoted by Lc ⊆ [n] is defined as

Lc :=

{
i ∈ [n] : |〈u, εiA〉| <

10 log d√
d
∧ |〈v, εiB〉| <

10 log d√
d
∧ |〈w, εiC〉| <

10 log d√
d

}
,

and the rest of columns belong to the set of large values denoted by L ⊆ [n].
Note that when necessary, the above partitioning is similarly applied to one or two matrices.
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Lemma 59 Suppose matrix E := [ε1, ε2, . . . , εn] ∈ Rd×n satisfies the RIP property (RIP). For a
vector u ∈ Rd, let set L ⊆ [n] denote the set of columns of E corresponding to large inner products
〈u, εi〉 as defined in Definition 58, i.e.,

L :=

{
i ∈ [n] : |〈u, εi〉| ≥ 10 log d√

d

}
.

Then, the size of set L is bounded as

|L| ≤ d

25 log2 d
. (53)

Proof: It can be shown by a contradiction argument assuming |L| > d
25 log2 d

. Consider submatrix
E[L] (matrix E with columns restricted to set L). We have

‖E‖2 ≥
∥∥∥E[L]>u

∥∥∥
2

=
∑

i∈L
〈u, εi〉2 ≥ |L|100 log2 d

d
> 4,

where the first inequality is from the definition of large terms for which |〈u, εi〉| > 10 log d/
√
d,

and the second inequality is from contradiction assumption on |L|. This contradicts with the RIP
property that ‖E[L]‖ ≤ 2, and therefore the bound in (53) holds. �

The above partitioning into small and large sets is not enough in part of the analysis, and in order
to get a tight bound (specially in the low noise regime), we propose the following finer partitioning.

Definition 60 (Buckets and constrained vectors) Consider matrix C := [c1, c2, . . . , ck] ∈ Rd×k,
and let t :=

⌈
log2

√
d
⌉

. For any vector w, the set of columns [k] are partitioned into t+ 1 buckets
according to the value of inner products 〈cj , w〉 as

K0 :=

{
j ∈ [k] : |〈cj , w〉| ≤

1√
d

}
,

Kl :=

{
j ∈ [k] : |〈cj , w〉| ∈

(
2l−1

√
d
,

2l√
d

]}
, l ∈ [t].

Furthermore, the constrained vector zl ∈ Rk, l ∈ {0, 1, 2, . . . , t}, corresponds to the inner
products in bucket l as

zlj :=

{
〈cj , w〉, j ∈ Kl,
0, j /∈ Kl.

One advantage of bucketing (which is not applicable to the small and large partitioning in the
previous definition) is that buckets with large value has a smaller ε-net. This exploits the additional
property of matrices with bounded 2→ 3 norm.

Lemma 61 Consider matrix C := [c1, c2, . . . , ck] ∈ Rd×k where the columns have unit norm, and
‖C>‖2→3 = O(1). For a vector w with unit norm, consider the buckets on columns of matrix C
defined in Definition 60. For constrained vector zl, l ∈ [t], let pl := 2l−1. Then, we have

• zl has at most O
(
d3/2

p3l

)
nonzero entries.
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• There is an ε-net of size exp
(
O
(
d3/2

p3l

(
log k + log 1

ε

)))
for zl.

Proof: The first part can be proved by a contradiction argument assuming |Kl| > O
(
d3/2

p3l

)
. Let

C[Kl] denote the restriction of matrix C to columns indexed by Kl. We have

∥∥∥C>w
∥∥∥

3

3
≥
∥∥∥C[Kl]

>w
∥∥∥

3

3
=
∑

j∈Kl

|〈w, cj〉|3 > O

(
d3/2

p3
l

)
·
(
pl√
d

)3

= O(1),

where the second inequality is from the definition of terms in bucket Kl, and the assumption |Kl| >
O
(
d3/2

p3l

)
. This contradicts with the 2 → 3 norm bound on C>, and therefore, we have |Kl| ≤

O
(
d3/2

p3l

)
. Since the number of nonzero entries in zl is the same as |Kl|, the proof of first part is

finished.
Let ql := d3/2

p3l
. First enumerate the support of zl. There are

(
k
ql

)
possibilities for the location of

ql nonzero entries in zl which is bounded as
(
k

ql

)
≤
(
e
k

ql

)ql
≤ eO(ql log k).

For a given support, take an ε-net for all vectors in that support which has size

eO(ql log( 1
ε)).

The union of these ε-nets is a valid ε-net for zl of the desired size. This finishes the proof of second
claim.

�
A similar (but stronger) lemma can be proved for RIP matrices:

Lemma 62 Consider matrixE := [ε1, ε2, . . . , εn] ∈ Rd×n where the columns have unit norm, and
it satisfies RIP property (RIP). For a vector w with unit norm, consider the buckets on columns of
matrixE defined in Definition 60. For constrained vector zl, let pl := 2l−1. Then, for l > 4 log log d
we have

• zl has at most O
(
d
p2l

)
nonzero entries.

• There is an ε-net of size exp
(
O
(
d
p2l

(
log n+ log 1

ε

)))
for zl.

Proof: The first claim follows from the same argument as in Lemma 59. The ε-net is constructed
in the same way as in the previous lemma. �

N.1.2. PROOF OF CLAIMS

In this section, we separately bound different error terms (52a)-(52c). Among all the terms, the
terms like (52c) is most difficult to bound (intuitively because terms like bhi are not “as random”
as terms like εiA). In fact, the proof for the term (52c) can be adapted to bound all the other terms.
Here for clarity we start from the simplest term (52a), and point out new ideas in the proofs of (52b)
and (52c).
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Claim 5 (Bounding norm of (52a)) With high probability over εiA, ε
i
B, ε

i
C’s and hi’s, we have

∥∥∥∥∥
1

n

n∑

i=1

εiA ⊗ εiB ⊗ εiC

∥∥∥∥∥ ≤ Õ
(

1

n
+

1

d
√
n

)
.

Proof: Let

T1 :=
1

n

n∑

i=1

εiA ⊗ εiB ⊗ εiC .

Rewrite the tensor as

T1 =
1

n

n∑

i=1

ηiε
i
A ⊗ εiB ⊗ εiC , (54)

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2. Clearly, T1 has the same
distribution as the original term, because of the symmetry in error vectors implying e.g. ηiεiA ∼ εiA.
We first sample the vectors εiA, ε

i
B, ε

i
C , and therefore, the remaining random variables are just the

ηi’s.
The goal is to bound norm of T1 in (54) which is defined as

‖T1‖ := sup
‖u‖=‖v‖=‖w‖=1

|T1(u, v, w)| = sup
‖u‖=‖v‖=‖w‖=1

∣∣∣∣∣
1

n

n∑

i=1

ηi〈u, εiA〉〈v, εiB〉〈w, εiC〉
∣∣∣∣∣ . (55)

In order to bound the above, we provide an ε-net argument. Construct an ε-net for vectors u, v
and w with ε = 1/n2. By standard construction, size of the ε-net is eO(d logn). First, for any fixed
triple (u, v, w), we bound |T1(u, v, w)| where T1(u, v, w) is a sum of independent variables. As
introduced in Definition 58, we partition the sum into large and small terms as

T1(u, v, w) =
1

n

n∑

i=1

ηi〈u, εiA〉〈v, εiB〉〈w, εiC〉 := SL + SLc ,

where SLc is the sum of small terms consisting of terms satisfying
{
|〈u, εiA〉| <

10 log d√
d
∧ |〈v, εiB〉| <

10 log d√
d
∧ |〈w, εiC〉| <

10 log d√
d

}
,

and SL is the sum of large terms including all the other terms.
Bounding |SLc |: The sum SLc is just a weighted sum of ηi’s, and the Bernstein’s Inequality is

exploited to bound it. Each term in the summation is bounded as
∣∣∣∣
1

n
〈u, εiA〉〈v, εiB〉〈w, εiC〉

∣∣∣∣ ≤ O
(

log3 d

nd3/2

)
,

where the bound on the small terms is exploited. The variance term is also bounded as

O

(
log6 d

nd3

)
.
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Applying Bernstein’s inequality, with probability at least 1− e−Cd logn (where C is a large enough
constant), the sum of small terms |SLc | is bounded by Õ

(
1

d
√
n

)
.

Bounding |SL|: From RIP property (RIP), we know that noise matrices EA := [ε1
A, . . . , ε

n
A],

EB := [ε1
B, . . . , ε

n
B] and EC := [ε1

C , . . . , ε
n
C ] satisfy the weak RIP condition with high probability

such that for any subset of O
(

d
log2 d

)
number of columns, the spectral norm of matrices restricted

to those columns is bounded by 2. Let L denote the set of large terms in the proposed partitioning,
and EA[L], EB[L] and EC [L] be the matrices EA, EB and EC restricted to the columns indexed by
L. Applying Lemma 59, we have

|L| ≤ 3d

25 log2 d
.

Note that an additional factor 3 shows up here since the set of small terms is defined as the inter-
section of 3 sets comparing to what proved in Lemma 59. Therefore, RIP property of EA, EB and
EC implies that EA[L], EB[L] and EC [L] have spectral norm bounded by 2. Now applying triangle
inequality, we have

|SL| ≤
1

n

∑

i∈L
|〈u, εiA〉|·|〈v, εiB〉|·|〈w, εiC〉| ≤

1

n

∑

i∈L
|〈u, εiA〉|·|〈v, εiB〉| ≤

1

n

∥∥∥EA[L]>u
∥∥∥·
∥∥∥EB[L]>v

∥∥∥ ≤ 4

n
,

where the second step uses the fact that |〈w, εiC〉| ≤ 1, the third step exploits Cauchy-Schwartz
inequality, and the last step uses bounds ‖EA[L]‖ ≤ 2 and ‖EB[L]‖ ≤ 2. Notice the three matrices
are already sampled before we do the ε-net argument, and therefore, we do not need to do union
bound over all u, v, w for this event.

At this point, we have bounds on |SL| and |SLc | for a fixed triple (u, v, w) in the ε-net. By
applying union bound on all vectors in the ε-net, the bound holds for every triple (u, v, w) in the
ε-net. The argument for other (u, v, w)’s which are not in the ε-net follows from their closest triples
in the ε-net. �

Claim 6 (Bounding norm of (52b)) With high probability over εiA, ε
i
B’s and hi’s, we have

∥∥∥∥∥
1

n

n∑

i=1

εiA ⊗ εiB ⊗ chi

∥∥∥∥∥ ≤ Õ
(

1

n
+

√
wmax

n
√
d

)
.

Proof: The proof is similar to the previous claim. Let

T2 =
1

n

n∑

i=1

ηiε
i
A ⊗ εiB ⊗ chi ,

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2. Similar to the previous
claim, we first sample the vectors εiA, ε

i
B and hi’s, and therefore, the remaining random variables

are just the ηi’s. Assume the matrices EA, EB satisfy the RIP property, and the number of times
hi = j for j ∈ [k] is bounded by [nwmin/2, 2nwmax]. All the events happen with high probability
when n ≥ Ω̃(1/wmin) and n ≤ poly(k).

The goal is to bound ‖T2‖. We construct an ε-net for vectors u and v with ε = 1/n2. First, for
any fixed pair (u, v), we bound ‖T2(u, v, I)‖ where T2(u, v, I) is a sum of independent zero mean
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vectors. As introduced in Definition 58, consider partitioning on columns of EA and EB as

T2(u, v, I) =
1

n

n∑

i=1

ηi〈u, εiA〉〈v, εiB〉chi = SL + SLc ,

where SLc is the sum of small terms consisting of terms satisfying
{
|〈u, εiA〉| <

10 log d√
d
∧ |〈v, εiB〉| <

10 log d√
d

}
,

and SL is the sum of large terms including all the other terms.
Bounding ‖SL‖: This is bounded in a similar way to the argument for bounding SL in the

previous claim. From RIP property (RIP), we know that noise matrices EA := [ε1
A, . . . , ε

n
A] and

EB := [ε1
B, . . . , ε

n
B] satisfy the weak RIP condition with high probability. Let L be the set of large

terms in the proposed partitioning, and EA[L], EB[L] be the matrices EA, EB restricted to the
columns indexed by L. Applying Lemma 59, we have

|L| ≤ 2d

25 log2 d
.

Therefore, RIP property of EA and EB implies that EA[L] and EB[L] have spectral norm bounded
by 2. Applying triangle inequality, we have

‖SL‖ ≤
1

n

∑

i∈L
|〈u, εiA〉| · |〈v, εiB〉| ≤

1

n

∥∥∥EA[L]>u
∥∥∥ ·
∥∥∥EB[L]>v

∥∥∥ ≤ 4

n
,

where Cauchy-Schwartz inequality is exploited in the second inequality, and the bounds ‖EA[L]‖ ≤
2 and ‖EB[L]‖ ≤ 2 are used in the last inequality. Notice the two matrices are already sampled
before we do the ε-net argument, and therefore, we do not need to do union bound over all u, v for
this event.

Bounding ‖SLc‖: Similar to how we bounded |SLc | in the previous claim by applying Bern-
stein’s inequality, it is tempting to apply vector Bernstein’s inequality here. However, vector Bern-
stein’s inequality does not utilize the fact that the matrix C> has small 2 → 3 norm, and results in
a suboptimal bound. Here, we try to exploit this additional property to to get a better bound.

Let Lc denote the set of small terms in the proposed partitioning on columns of EA and EB .
Then, we have

〈SLc , w〉 =
1

n

∑

i∈Lc

ηi〈u, εiA〉〈v, εiB〉〈w, chi〉.

Now, we try to bound the above inner product 〈SLc , w〉 by considering an ε-net on w as well (Note
that the ε-net on u and v are already considered). To do that we partition the inner products 〈cj , w〉
into t+ 1 buckets (t := dlog2

√
de) as defined in Definition 60 where

K0 :=

{
j ∈ [k] : |〈cj , w〉| ≤

1√
d

}
,

Kl :=

{
j ∈ [k] : |〈cj , w〉| ∈

(
2l−1

√
d
,

2l√
d

]}
, l ∈ [t].
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Let Ql denote the sum of all terms that fall into bucket Kl as

Ql :=
1

n

∑

i∈Lc,hi∈Kl

ηi〈u, εiA〉〈v, εiB〉〈w, chi〉. (56)

Note that by construction of buckets, we have

〈SLc , w〉 =
t∑

l=0

Ql.

There are only O(log d) terms in this summation, and therefore, it suffices to show each term Ql is
small.

For Q0, it is a weighted sum of ηi’s with weights bounded by Õ(1/d3/2), so the situation is
exactly the same as Claim 5.

For Ql, l ∈ [t], the argument is as follows. Let pl := 2l−1. Applying Lemma 61, we have

|Kl| ≤ O
(
d3/2

p3
l

)
.

As stated in the beginning of proof, each hidden state hi ∈ [k] appears in at most O(2nwmax)
samples w.h.p. Hence, the total number of terms in the summation form (56) for Ql is w.h.p.
bounded as

|{i ∈ [n] : hi ∈ Kl}| ≤ O
(
nwmax

d3/2

p3
l

)
.

Now the sum Ql in (56) is a weighted sum of ηi’s and the Bernstein’s inequality is exploited to
bound it. Each term in the summation is bounded as

Õ
( pl
nd3/2

)
,

where the bound on the small terms and the bound on terms in bucketKl are exploited. The variance
term is also bounded as

O

(
wmax

npld3/2

)
.

Applying Bernstein’s inequality, with probability at least 1 − e−Cd logn for large enough constant
C, we have

Ql ≤ Õ
(

pl√
dn

+

√
wmax

npl
√
d

)
≤ Õ

(
1

n
+

√
wmax

n
√
d

)
.

At this point, we have bounds on ‖SL‖ and ‖SLc‖ for a fixed pair of vectors (u, v) in the ε-net.
By applying union bound on all vectors in the ε-net, the bound holds for every pair (u, v) in the
ε-net. The argument for other (u, v)’s which are not in the ε-net follows from their closest pairs in
the ε-net. �

Now we are ready to bound the last term (52c).

Claim 7 (Bounding norm of (52c)) With high probability over εiA’s and hi’s, we have
∥∥∥∥∥

1

n

n∑

i=1

εiA ⊗ bhi ⊗ chi

∥∥∥∥∥ ≤ Õ
(

1

n
+

√
wmax

n

)
.
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Proof: Again, rewrite the tensor as

T3 =
1

n

n∑

i=1

ηiε
i
A ⊗ bhi ⊗ chi , (57)

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2. First sample εiA and
hi’s, and therefore, the remaining random variables are just the ηi’s. In addition, assume EA :=
[ε1
A, ε

2
A, . . . , ε

n
A] satisfies the RIP property (RIP) and each hi ∈ [k] appears between nwmin/2 and

2nwmax times where both events happen with high probability.
The goal is to bound norm of T3 in (57) which is defined as

‖T3‖ := sup
‖u‖=‖v‖=‖w‖=1

|T3(u, v, w)| = sup
‖u‖=‖v‖=‖w‖=1

∣∣∣∣∣
1

n

n∑

i=1

〈u, εiA〉〈v, bhi〉〈w, chi〉
∣∣∣∣∣ . (58)

In order to bound the above, we provide an ε-net argument similar to what we did for bounding
SLc in the previous claim with the difference that here we apply bucketing to all three matrices EA,
B and C. First, for any fixed triple (u, v, w), we partition the inner products in (58) into buckets
as defined in Definition 60. Let Ka

l , Kb
l and Kc

l denote the bucketing of matrices EA, B and C,
respectively.

In addition, we merge the buckets Ka
0 , Ka

1 , . . . ,K
a
4 log log d into Ka

0 . This means Ka
0 now con-

tains all i’s with inner product

|〈εiA, u〉| ≤
16 log d√

d
,

and Ka
l ’s for 1 ≤ l ≤ 4 log log d are empty. Let

Jl1,l2,l3 :=
{
i ∈ [n] : i ∈ Ka

l1 ∧ hi ∈ Kb
l2 ∧ hi ∈ Kc

l3

}
,

and Ql1,l2,l3 be the sum of terms in summation (58) on this set, i.e.,

Ql1,l2,l3 :=
1

n

∑

i∈Jl1,l2,l3

〈u, εiA〉〈v, bhi〉〈w, chi〉. (59)

Note that by construction of buckets, the summation in (58) is expanded as

1

n

n∑

i=1

〈u, εiA〉〈v, bhi〉〈w, chi〉 =

t∑

l1,l2,l3=0

Ql1,l2,l3 .

There are only O(t3) = O(log3 d) terms in this summation, and therefore, it suffices to show each
term Ql1,l2,l3 is small.

For Q0,0,0, it is a weighted sum of ηi’s with weights bounded by Õ(1/d3/2), and therefore, it
follows from the same arguments as Claim 5.

For Ql1,l2,l3 with max{l1, l2, l3} > 0, let pl := 2max{l1,l2,l3}−1. By Lemma 61 and Lemma 62,
the total number of terms in the summation form (59) for Ql1,l2,l3 is w.h.p. bounded as

|Jl1,l2,l3 | ≤ O
(
nwmax

d3/2

p3
l

)
,
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and there exists an ε-net of size

exp

(
O

(
d3/2

p3
l

log n

))

with ε < 1/n2. For every u, v, w in the ε-net, this term n · Ql1,l2,l3 is a weighted sum of ηi’s, and

the Bernstein’s inequality is exploited to bound it. Each term in the summation is bounded as 8p3l
d3/2

,
where the bound on the terms in buckets are exploited. The variance term is also bounded as

O

(
nwmax

p3
l

d3/2

)
.

Applying Bernstein’s inequality, with probability at least 1− exp
(
−C d3/2

p3l
log n

)
for large enough

constant C, we have
nQl1,l2,l3 ≤ Õ (1 +

√
nwmax) .

Taking the union bound over all triples in ε-net, this bound holds for all such triples. For u, v, w
which are not in the ε-net, the bound follows from the closest point in the ε-net.

�

N.2. ICA

For ICA, the tensor we are considering is given in Equation (17).

Lemma 63 Suppose entries of h are independent subgaussian variables with E[hi] = 1. Given n
samples xi = Ahi where ‖A‖ ≤ O(

√
k/d), letW = 1

n

∑n
i=1 x

i(xi)>, T̂i1,i2,i3,i4 = Wi1,i2Wi3,i4 +

Wi1,i3Wi2,i4 + Wi1,i4Wi2,i3 and M̂4 = 1
n

∑n
i=1(xi)⊗4 − T̂ . Let M4 be defined as Equation (17),

then when n ≥ d with high probability ‖M̂4 −M4‖ ≤ Õ
(
k2

n +
√

k4

d3n

)
.

The proof directly follows from Claims 9 and 10, which bound the perturbation of the two terms
separately.

Before bounding the 4-th order term we first give the following claim which bounds a sum of
subgaussian variables raised to the 4-th power.

Claim 8 Suppose xi’s are independent q-subgaussian variables, then for any d > 10, |∑n
i=1 x

4
i −

E[
∑n

i=1 x
4
i ]| ≤ Õ(q4d2/n+

√
q8d/n) with probability exp(−d).

Proof: We shall prove Pr[|∑n
i=1 x

4
i−med(

∑n
i=1 x

4
i )|] ≤ Õ(q4d2/n+

√
q8d/n) ≤ exp(−ω(d log n)),

where med is the median of the distribution. This (stronger) concentration implies E[|∑n
i=1 x

4
i −

med(
∑n

i=1 x
4
i )|] ≤ Õ(q4/n) (by simple integration), therefore we get the desired bound in the

claim.
For the deviation from the median, we use the standard symmetrization argument: it is good

enough to take two independent samples x1, x2, ..., xn and y1, y2, ..., yn with the same distribution,
and bound | 1n

∑
i∈[n] x

4
i − y4

i |. In order to bound the sum, we rewrite it in the following form

Q =
1

n

∑

i∈[n]

ηi|x4
i − y4

i |.
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Now we divide the sum into multiple buckets according to the magnitude of x4
i − y4

i . Let
t := dlog2 d

2 + 10 log2 log2 ne (where C ′ is a large enough constant), then the buckets are defined
as

K0 :=
{
i ∈ [n] : |x4

i − y4
i | ≤ q4

}
,

Kl :=
{
i ∈ [n] : |x4

i − y4
i | ∈

(
2l−1q4, 2lq4

]}
, l ∈ [t].

Kt+1 :=
{
i ∈ [n] : |x4

i − y4
i | > 2tq4

}

Let Ql denote the sum of all terms that fall into bucket Kl, use 1Kl
as the indicator variable for Kl,

then Ql can be written as

Ql :=
1

n

∑

i∈[n]

1Kl
|x4
i − y4

i |ηi. (60)

Note that by construction of buckets, the original summation is equal to
∑t+1

l=0 Ql. There are only
O(log d) terms in this summation. Therefore it suffices to show each term Ql is small.

Since the variables xi’s and yi’s are independent 1-subgaussian random variables, we have

Pr
[
|x4
i − y4

i | ≥ λq4
]
≤ 2 Pr

[
|x4
i | ≥ (λq/2)1/4

]
≤ 4 exp

(
−
√
λ

8

)
, (61)

Where the last inequality uses q-subgausian property.
For Ql(0 ≤ l ≤ 2 log log n), we apply Bernstein’s inequality directly. Each term in the summa-

tion is bounded as Õ(q4), and the variance term is bounded as Õ(q8/n). By Bernstein’s inequality
with probability at least 1− exp(−ωd log n), we have

Q0 ≤ Õ
(
q4d

n
+

√
q8d

n

)
.

For Ql, 2 log log n < l ≤ t, we bound the number of terms in bucket Kl. By the bound in
Equation (61), we know the probability that there are more than Õ(d2−l/2) items in Kl is bounded
by exp(−ωd log n). Each term in Ql is bounded by 2lq4/n, therefore the sum Ql is bounded by

nQl ≤ Õ(d2−l/2)2lq4 ≤ Õ(q4d2l/2) ≤ Õ(q4d2).

Here the last inequality uses the fact that l ≤ t, which implies 2l/2 = Õ(d).
For the last term Qt+1, again by Equation (61, we know with probability 1 − exp(−ωd log n),

there is only one term in the sum and that particular term is smaller than Õ(q4d2/n).
Now by union bound, with probability 1−exp(−ωd log n) all the terms are bounded by Õ(q4d2/n+√
q8d/n), which implies the whole sum is bounded by Õ(q4d2/n+

√
q8d/n). �

Now we are ready bound the 4-th order term.

Claim 9 Suppose entries of h are independent subgaussian variables with E[hi] = 1, given n
samples xi = Ahi where ‖A‖ ≤ O(

√
k/d), with high probability

∥∥∥∥∥∥
1

n

∑

i∈[n]

(xi)⊗4 − E[x⊗4]

∥∥∥∥∥∥
≤ Õ

(
k2

n
+

√
k4

d3n

)
.
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Proof: The goal is to bound the deviation of

1

n

∑

i∈[n]

(xi)⊗4 =
1

n

∑

i∈[n]

(Ahi)⊗4

from its mean. We bound this by an ε-net argument.
Construct an ε-net for the unit ball in Rd with ε = 1/n2, the size of the ε-net is exp(O(d log n)).

For any fixed u in the ε-net, let v = A>u, we know 〈u, xi〉 = 〈u,Ahi〉 = 〈v, hi〉. Therefore, for
any u in the ε-net, we would like to bound

Q =
1

n

∑

i∈[n]

(〈v, hi〉4 − E[〈v, hi〉4]).

Notice that ‖v‖ is bounded by ‖A‖‖u‖ = O(
√
k/d), and hi’s have subgaussian entries. Therefore

〈v, hi〉 is a O(
√
k/d)-subgaussian random variable. By Claim 8, we know |Q| ≤ Õ(k2/n +√

k3/d3n) with probability exp(−Cd log n) for large enough constant C. Taking union bound
over every u in the ε-net, we know the bound is true for any vector u in the net.

The argument for other vectors u’s which are not in the ε-net follows from their closest vector
in the ε-net. �

For the extra term T in Equation (17), it can be decomposed into the sum of three terms, each
of which is an outerproduct of two matrices. Therefore it is good enough to apply a matrix concen-
tration bound.

Claim 10 Suppose entries of h are independent subgaussian variables with E[hi] = 1. Given n
samples xi = Ahi where ‖A‖ ≤ O(

√
k/d), letW = 1

n

∑n
i=1 x

i(xi)> ,T̂i1,i2,i3,i4 = Wi1,i2Wi3,i4 +
Wi1,i3Wi2,i4 + Wi1,i4Wi2,i3 . Let T be defined as in Equation 17), then with high probability when

n ≥ d ‖T̂ − T‖ ≤ Õ
(√

k4

d3n

)
.

Proof: For simplicity we consider one of the terms T̂1[i1, i2, i3, i4] = Wi1,i2Wi3,i4 := W ⊗W ,
all the terms follow from symmetry.

Let T1 = E[xx>] ⊗ E[xx>] = E[W ] ⊗ E[W ]. For T̂1, we know T̂1 − T1 = (W − E[W ]) ⊗
E[W ] +E[W ]⊗ (W −E[W ]) + (W −E[W ])⊗ (W −E[W ]). By property of the outerproduct we
know ‖A⊗B‖ ≤ ‖A‖‖B‖ for all matrices A,B, therefore

‖T̂1 − T1‖ ≤ 2‖W − E[W ]‖‖E[W ]‖+ ‖W − E[W ]‖2. (62)

We bound ‖W − E[W ]‖ by Matrix Bernstein’s inequality. For technical reasons we first construct
W ′ = 1

n

∑n
i=1 x

i(xi)>1‖xi‖≤O(
√
klogn) where 1‖xi‖≤O(

√
k logn) is an indicator variable. Since x =

Ah and entries of h are subgaussian, these variables are 1 with probability 1−n− logn, therefore W
and W ′ are equal with high probability at it suffices to apply Matrix Bernstein’s bound on W ′.

For W ′, each term has norm bounded by Õ(k), and the variance term E[W ′(W ′)>] is equal to

1

n
E[‖xi‖2xi(xi)>1‖xi‖≤O(

√
k logn)] �

1

n
Õ(k)E[xi(xi)>] =

1

n
Õ(k)AA>.

Also, we know ‖A‖ ≤ O(
√
k/d), therefore the variance is bounded by Õ(k2/dn). Matrix

Bernstein’s inequality implies ‖W ′ − E[W ′]‖ ≤ Õ(k/n + k/
√
dn). Since W is equal to W ′ with
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high probability and ‖E[W ] − E[W ′]‖ is negligible, we also know ‖W − E[W ]‖ ≤ Õ(k/
√
dn)

(when n ≥ d).
On the other hand, E[W ] = AA> which has spectral norm k/d. By Equation (62) we know

‖T̂1 − T1‖ ≤ Õ
(√

k4

d3n

)
. �

N.3. Sparse ICA

In this part we prove concentration bounds for sparse coding in the sparse ICA setting (where hi’s
are independent and sparse). The proof can be generalized to the case when hi’s are negatively
correlated or more generally when concentration bounds hold for hi’s.

Lemma 64 Suppose hi = siwi where si’s are i.i.d. 0/1 variables with probability s/k of being 1,
wi’s are independent 1-subgaussian random variables. Given n independent samples of the form
xi = Ahi (each hi is distributed as h), if A satisfy RIP -property (RIP) then ‖ 1

n

∑n
i=1(xi)⊗4 −

E[(xi)⊗4]‖ ≤ Õ(s2/n+
√
s4/d3n).

Proof: The proof uses ideas from both Claim 7 and 8 . Without loss of generality we assume
s/k < 1/2 (otherwise hi’s are 2-subgaussian) so Claim 9 implies the desired bound).

Here, we first partition the entries of vector v = A>u ∈ Rk into different vectors vl according
to the magnitude of entries (this is very similar to Claim 7). In particular, we partition entries (inner
products) vj = 〈u, aj〉, j ∈ [k], into t+ 1 buckets (t := dlog2

√
de) where (similar to Definition 60)

K0 :=

{
j ∈ [k] : |〈u, aj〉| ≤

1√
d

}
,

Kl :=

{
j ∈ [k] : |〈u, aj〉| ∈

(
2l−1

√
d
,

2l√
d

]}
, l ∈ [t].

In addition, we merge the buckets K0, K1, . . . ,K 1
2

log log d into K0. This means K0 now contains
all j’s with inner product

|〈u, aj〉| ≤
√

log d√
d

,

and Kl’s for 1 ≤ l ≤ 1
2 log log d are empty. Now, let vl denote the restriction of vector v to entries

indexed by Kl, i.e.,

vl(j) :=

{
v(j), j ∈ Kl,
0, j /∈ Kl.

Let pl := 2l−1. By RIP property of matrix A, and exploiting Lemma 62, the number of nonzero
entries in vl is bounded as

‖vl‖0 = |Kl| ≤ O
(
d

p2
l

)
, l >

1

2
log log d.

Now, we follow the ideas of Claim 8, and apply the symmetrization trick to see that it is good
enough to bound the ‖ 1

n

∑n
i=1(xi)⊗4 − (yi)⊗4‖ where yi is an independent copy of xi (the differ-

ence between mean and median here is negligible because our distributions have first and second
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moments polynomial in parameters, and strong exponential concentration). For any vector u (and
the corresponding v), we would like to bound the sum

Q =
1

n

n∑

i=1

ηi|〈v, xi〉4 − 〈v, yi〉4|.

The techniques we used to prove bounds on
∑n

i=1 ηiwi (either Bernstein’s inequality, or bounding
the number of terms and use triangle inequality) all works if we just know an upperbound of wi.
Therefore we can safely replace Q by Q′:

Q′ =
1

n

n∑

i=1

ηi(t+ 1)3
t∑

l=0

|〈vl, xi〉4 + 〈vl, yi〉4|.

Here the corresponding coefficient (t + 1)3
∑t

l=0 |〈vl, xi〉4 + 〈vl, yi〉4| is larger than |〈v, xi〉4 +
〈v, yi〉4| because (

∑n
i=1 ai)

4 ≤ (n
∑n

i=1 a
2
i )

2 ≤ n3(
∑n

i=1 a
4
i ) (the two steps are Cauchy-Schwartz).

We then break Q′ into the sum of t+ 1 terms Q′0, Q
′
1, ..., Q

′
l, where

Q′l = (t+ 1)3 1

n

n∑

i=1

ηi|〈vl, xi〉4 + 〈vl, yi〉4|.

All these terms can be bounded in the same way as Claim 8. Especially,Q′0 ≤ Õ(s2+
√
s4/d3n)

directly from Claim 8. For the other terms, we need the tail behavior of 〈vl, xi〉4. The tail behavior
of this variable comes from two phenomena: the first is how large is the intersection of the supports
of vl and xi, the second is given the intersection the tail behavior of the sum of subgaussian variables∑

j vl[j]w
i[j] (recall that xi[j] = si[j]wi[j] where si[j] specifies support). The first part (the inter-

section of support) can be bounded by Chernoff bound Pr[
∑

j sj ≥ (1+δ)µ] ≤ (eδ/(1+δ)(1+δ))µ;
the second part would just follow from subgaussian bounds. Suppose we are interested in a bucket
Q′l where vl has entries in (θ/2, θ], we discuss the tail behavior in cases where 1/θ2 ≥ s and
1/θ2 ≤ s.

In the first case (1/θ2 ≥ s) most of 〈vl, xi〉4 are of size s2/k2 which is very small. For any
q ∈ [

√
s/kθ2 poly log n, s], the probability that 〈vl, xi〉4 ∈ (q4θ4/2, q4θ4] is exp(−Ω̃(q)). In this

range with probability exp(−Õ(1/θ2)), the sum of all terms is bounded by 1
nÕ(q4θ4 · (1/θ2q)) =

Õ(q3θ2/n) ≤ Õ(s2/n) (the last inequality uses the fact that θ2 ≤ 1/s). For q ∈ (s,
√
s/θ2 log2 n],

the probability that 〈vl, xi〉4 ∈ (q4θ4/2, q4θ4] is exp(−Ω̃(q2/s)). In this range exp(−Õ(1/θ2)),
the sum of all terms is bounded by 1

nÕ(q4θ4 · (1/θ2)/(q2/s)) = Õ(q2θ2s/n) ≤ Õ(s2/n) (where
the last inequality uses the fact that q2 = Õ(s/θ2)). When q >

√
s/θ2 log2 n with high probability

there are no terms in this range. Therefore, in the first case, by union bound Q′l is always bounded
by Õ(s2/n) + o(s4/d3n).

In the second case (1/θ2 ≤ s) again most of 〈vl, xi〉4 are of size s2/k2 which is very small.
The only difference in this case is the two ranges: instead of separated at s they are separated at
1/θ2 because there are at most Õ(1/θ2) entries in vl. For any q ∈ [

√
s/kθ2 poly log n, 1/θ2],

the probability that 〈vl, xi〉4 ∈ (q4θ4/2, q4θ4] is exp(−Ω̃(q)). In this range with probability
exp(−Õ(1/θ2)), the sum of all terms is bounded by 1

nÕ(q4θ4 · (1/θ2q)) = Õ(q3θ2/n) ≤ Õ(s2/n)

(the final inequality uses the fact that 1/θ2 ≤ s ). For q ∈ (1/θ2,
√
s/θ2 log2 n], the probability

that 〈vl, xi〉4 ∈ (q4θ4/2, q4θ4] is exp(−Ω̃(q2θ2)). In this range exp(−Õ(1/θ2)), the sum of all
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terms is bounded by 1
nÕ(q4θ4 · (1/θ2)/(q2θ2)) = Õ(q2/n) ≤ Õ(s2/n) (where the last inequality

uses the fact that q2 = Õ(s/θ2) = Õ(s2)). When q >
√
s/θ2 log2 n with high probability there

are no terms in this range. Therefore, in the first case, by union bound Q′l is always bounded by
Õ(s2/n) + o(s4/d3n).

Combining all the terms, we know the sum is bounded by Õ(s2/n+
√
s4/d3n) as desired. �

Remark 65 It may seem counter-intuitive that the bound in Lemma 64 does not depend on k. The
dependency on k is actually in the expectation: the expected tensor will be close to s

k

∑k
i=1 a

⊗4
i .

Therefore we need the error to be much smaller than s
k even in the semi-supervised setting. The

number of samples required is roughlyO(sk) for small s which agrees with our intuition in the mix-
ture model. The number of samples when s is roughly k also matches the ICA bound in Lemma 63

When the hidden variables are really independent, we are in the sparse ICA model instead of
sparse coding. In this case we can use the same formula as Equation (17) to get a low rank tensor.
In the next claim we bound the perturbation of the T term.

Claim 11 Suppose hi = siwi where si’s are i.i.d. 0/1 variables with probability s/k of being 1,
wi’s are independent 1-subgaussian random variables. Given n samples xi = Ahi where ‖A‖ ≤
O(
√
k/d), let W = 1

n

∑n
i=1 x

i(xi)> ,T̂i1,i2,i3,i4 = Wi1,i2Wi3,i4 +Wi1,i3Wi2,i4 +Wi1,i4Wi2,i3 . Let

T be defined as in Equation 17), then with high probability when n ≥ d ‖T̂ − T‖ ≤ Õ
(√

s4

d3n

)
.

Proof: The proof is very similar to Claim 10.
Using the same idea, we consider one of the terms T̂1[i1, i2, i3, i4] = Wi1,i2Wi3,i4 := W ⊗W ,

all the terms follow from symmetry. Similar to Equation 62, we have the following fact

‖T̂1 − T1‖ ≤ 2‖W − E[W ]‖‖E[W ]‖+ ‖W − E[W ]‖2.

We bound ‖W − E[W ]‖ by Matrix Bernstein’s inequality. For technical reasons we first con-
structW ′ = 1

n

∑n
i=1 x

i(xi)>1‖xi‖≤O(
√
slogn) where 1‖xi‖≤O(

√
s logn) is an indicator variable. Since

x = Ah and entries of h are subgaussian, these variables are 1 with probability 1− n− logn, there-
fore W and W ′ are equal with high probability at it suffices to apply Matrix Bernstein’s bound on
W ′.

For W ′, each term has norm bounded by Õ(s), and the variance term E[W ′(W ′)>] is equal to

1

n
E[‖xi‖2xi(xi)>1‖xi‖≤O(

√
s logn)] �

1

n
Õ(s)E[xi(xi)>] =

1

n
Õ(s2/k)AA>.

Also, we know ‖A‖ ≤ O(
√
k/d), therefore the variance is bounded by Õ(s2/dn). Matrix

Bernstein’s inequality implies ‖W ′ − E[W ′]‖ ≤ Õ(s/n + s/
√
dn). Since W is equal to W ′ with

high probability and ‖E[W ] − E[W ′]‖ is negligible, we also know ‖W − E[W ]‖ ≤ Õ(s/
√
dn)

(when n ≥ d).
On the other hand, E[W ] = s

kAA
> which has spectral norm s/d. By Equation (62) we know

‖T̂1 − T1‖ ≤ Õ
(√

s4

d3n

)
. �
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