
JMLR: Workshop and Conference Proceedings vol 40:1–20, 2015

Efficient Representations for Lifelong Learning and Autoencoding

Maria-Florina Balcan NINAMF@CS.CMU.EDU
Carnegie Mellon University

Avrim Blum AVRIM@CS.CMU.EDU
Carnegie Mellon University

Santosh Vempala VEMPALA@GATECH.EDU

Georgia Tech

Abstract
It has been a long-standing goal in machine learning, as well as in AI more generally, to develop
life-long learning systems that learn many different tasks over time, and reuse insights from tasks
learned, “learning to learn” as they do so. In this work we pose and provide efficient algorithms
for several natural theoretical formulations of this goal. Specifically, we consider the problem of
learning many different target functions over time, that share certain commonalities that are initially
unknown to the learning algorithm. Our aim is to learn new internal representations as the algorithm
learns new target functions, that capture this commonality and allow subsequent learning tasks to be
solved more efficiently and from less data. We develop efficient algorithms for two very different
kinds of commonalities that target functions might share: one based on learning common low-
dimensional and unions of low-dimensional subspaces and one based on learning nonlinear Boolean
combinations of features. Our algorithms for learning Boolean feature combinations additionally
have a dual interpretation, and can be viewed as giving an efficient procedure for constructing
near-optimal sparse Boolean autoencoders under a natural “anchor-set” assumption.
Keywords: Life-long learning, multi-task learning, shared representations, auto-encoding.

1. Introduction

Machine learning has developed a deep mathematical understanding as well as powerful practical
methods for the problem of learning a single target function from large amounts of labeled data.
Yet if we wish to produce machine learning systems that persist in the world, we need methods
for continually learning many tasks over time and that, like humans (Gopnik et al., 2001), improve
their ability to learn as they do so, needing less data per task as they learn more. A natural ap-
proach for tackling this goal, called “life-long learning” (Thrun, 1996; Thrun and Mitchell, 1995a)
or “transfer learning” (Argyriou et al., 2008; Maurer and Pontil, 2013) or “learning to learn” (Bax-
ter, 1997; Thrun and Pratt, 1997), is to use information from previously-learned tasks to improve
the underlying representation of the learning algorithm, under the hope or belief that some kinds of
commonalities across tasks exist. These commonalities could be a single low-dimensional or sparse
representation, a collection of multiple low-dimensional or sparse representations, or some combi-
nation or hierarchy, such as in Deep Learning (Bengio, 2013; Bengio and Delalleau, 2011). In this
paper, we develop algorithms with provable efficiency and sample size guarantees for several inter-
esting categories of commonalities, considering both linear and Boolean transfer functions, under
natural distributions on the data points.

c© 2015 M.-F. Balcan, A. Blum & S. Vempala.

BALCAN BLUM VEMPALA

Specifically, we consider a setting where we are trying to solve a large number of binary classifi-
cation problems that arrive one at a time. Each classification problem will individually be learnable
from a polynomial-size sample,1 but our goal will be to learn new internal representations that will
allow us to learn new target functions faster and from less data. We will furthermore aim to do this
in a streaming setting in which we cannot keep the labeled data for problem t in memory when we
move on to problem t + 1, only the learned hypotheses (which will be required to have a compact
description) and the current internal representation.

We start by considering a conceptually simple case that each classification problem is a linear
separator, and their defining vectors lie in a common k dimensional subspace of the ambient space
<n, for k � n (equivalently, there exist k hidden linear metafeatures and each target is a linear
separator over these metafeatures). This case has been considered in the “batch” setting in which
one has data available for all target functions at the same time and therefore can solve a joint opti-
mization problem (Argyriou et al., 2008; Maurer and Pontil, 2013). However, for the online setting,
a key challenge is that we will not have perfectly learned the previous target functions when we set
out to learn the next one.2 For this problem we provide a polynomial time algorithm that, when
the underlying data distributions for our m learning problems are log-concave, has labeled sample
complexity much better than the Ω(nm/ε) sample complexity to learn the tasks separately.

We then consider scenarios where the commonalities involve more than one level of metafea-
tures and provide efficient algorithms for these settings as well. Specifically, for linear metafeatures,
we analyze a scenario where the target functions all lie in a k dimensional space and furthermore
within that k-dimensional space, each target lies in one of r different constant dimensional spaces,
where r could be large. This models situations where there are really r different types of learning
problems but they do share some commonalities across types (given by a k-dimensional subspace).

In Section 3 we develop algorithms for a scenario where the metafeatures are non-linear, in
particular where features are boolean and the metafeatures are products. We give an efficient algo-
rithm for finding the fewest product-based metafeatures for a given set of target monomials under an
“anchor-variable” assumption analogous to the anchor-word assumption of Arora et al. (2012), and
prove bounds on its performance for learning a series of target functions arriving online. We then
give an extension that learns an approximately-optimal overcomplete sparse representation (we may
have more metafeatures than input features, but each target should have a sparse representation) un-
der a weaker form of assumption we call the “anchor-set” assumption (anchor variables no longer
make sense in the overcomplete case). These results can be viewed as giving efficient algorithms
for a Boolean autoencoding where given a set of black-and-white pixel images (vectors in {0, 1}n)
we want to find either (a) the fewest “basic objects” (also vectors in {0, 1}n) such that each given
image can be reconstructed by superimposing some subset of them (taking their bitwise-OR), or (b)
a larger number of such objects such that each image has a sparse bitwise-OR reconstruction. In the
first case our algorithm finds the optimal solution under the anchor-variable assumption (this is NP-
hard in general) and in the second case it finds a bicriteria approximation (for a given sparsity level,
approximates both number and sparsity to log factors) under the weaker anchor-set assumption.

In Section 4 we show how our results can be applied to the case that target functions are poly-
nomials of low L1 norm whose terms share pieces in common (within and across polynomials),
a scenario that can be expressed via two levels of product-based metafeatures. As opposed to the

1. Except in Section 4 where we consider learning multivariate polynomials and allow membership queries.
2. In particular, because of this we will need to be particularly careful with which targets we use in constructing our

metafeatures, as well as in controlling the propagation of errors. See, e.g., Lemma 3 and Figure 1.

2

LIFELONG LEARNING AND AUTOENCODING

algorithms for linear metafeatures, this algorithm periodically re-compactifies its current represen-
tation, revisiting the previously-learned polynomials and optimally constructing the fewest number
of (possibly overlapping) conjunctive metafeatures that can be used to recreate all their monomials.

1.1. Related Work

Most related work in multi-task or transfer learning considers the case that all target functions are
present simultaneously or that target functions are drawn from some easily learnable distribution.
Baxter (1997, 2000) developed some of the earliest foundations for transfer learning, by providing
sample complexity results for achieving low average error in such settings. Other related sample
complexity results are given by Ben-David and Schuller (2003). Recent work of Maurer and Pontil
(2013) and Kumar and Daume (2012) considers the problem of learning multiple linear separators
that share a common low-dimensional subspace in the batch setting where all tasks are given up
front. They specifically provide guarantees for a natural ERM algorithm with trace norm regular-
ization. There has also been work on applying the Group Lasso method to batch multi-task learning
which solves a specific multi-task optimization problem (Roth and Vogt, 2012).

Cavallanti et al. (2010) consider multi-task learning where explicit known relationships among
tasks are exploited for faster learning. In their setting each learning problem is an online problem
but the collection of learning problems are all occurring simultaneously. Valiant, in presenting his
neuroidal model (Valiant, 2000), says, “the intention of our architecture is that each new function
that is learned or programmed be expressive in terms of old ones already represented in the system.”
Our algorithm in Section 2 is of this type, with formal analysis about how the error accumulation
affects the sample complexity (which, as we will see, is one of the central challenges in this setting).
In earlier work, Rivest and Sloan (1988) also considered a formal setting of learning multiple target
functions, where each builds on previously-learned rules. Work of Maurer (2005), building on
Edelman (1995), and of Fahlman and Lebiere (1989), is also of this flavor, where previously-learned
functions are viewed as features for new learning problems.

The problem of trying to learn invariants or other commonalities when faced with a series of
related learning tasks arriving over time also has a long history in applied machine learning dating
to work of Thrun (1996); Thrun and Mitchell (1995a,b).

1.2. Preliminaries

We assume we have m learning (binary classification) problems that arrive online over time. The
learning problems are all over a common instance space X of dimension n (e.g., we will consider
X = <n and X = {0, 1}n) but each has its own target function and potentially its own distribution
Di over X . Formally, learning problem i is defined by a distribution Pi over X × Y where Y =
{−1, 1} is the label space andDi is the marginal overX of Pi, and the goal of the learning algorithm
on problem i is to produce a hypothesis function hi of small error over Pi.

2. Life-long Learning of Halfspaces

We consider here the case that X = <n and each target function is a linear separator through the
origin; that is, for all i there exists ai of unit length such that for all (x, y) drawn from Pi we have
sign(ai · x) = y. We assume the ai all lie in some common k-dimensional subspace of <n for
k � min(n,m). In particular, let A be a m by n matrix whose rows are a1, . . . , am; then our
assumption is that A has rank k. This implies that there exist a decomposition A = CW , where W

3

BALCAN BLUM VEMPALA

is a k × n matrix and C is a m × k matrix. The rows w1, . . . , wk of W can be viewed as k linear
metafeatures that are sufficient to describe allm learning problems, or equivalently we can view this
as a network with one middle layer of k hidden linear units. In fact, our algorithms will work under
a more robust condition that the ai are just “near” to a low-dimensional subspace (Theorem 4).

In this section we analyze the following natural online algorithm for this setting. Let εacc be a
quantity to be determined later. For the first learning problem we just learn it to error εacc using the
original input features and let the resulting weight vector be w̃1. Suppose now we have produced
weight vectors w̃1, . . . , w̃k′ and we are considering problem i. We will first see if we can learn
problem i well (to error ε) as a linear combination of the w̃j . If so, then we mark this as a success
and go on to problem i + 1. If not, then we will learn it to error εacc using the input features and
add the hypothesis weight vector as w̃k′+1. (See Algorithm 1 for formal details). The challenge is
how small εacc needs to be for this to succeed.

We show that if the Di are isotropic log-concave (which includes many distributions such as
Gaussian and uniform, see, e.g., Lovász and Vempala (2007)), the above procedure will be success-
ful and learn with much less labeled data in total than by learning each function separately. We start
with some useful facts and present a lemma (Lemma 3) that is crucial for our analysis.

Given two vectors a and b and a distribution D̃, let dD̃(a, b) = Px∼D̃(sign(a ·x) 6= sign(b ·x)).
Let θ(a, b) be the angle between two vectors a and b. For a vector a and a subspace V , let θ(a, V) =
minb∈V θ(a, b) be the angle between a and its closest vector in V (in angle). For subspaces U and
V , let θ(U, V) = maxu∈U θ(u, V). That is, θ(U, V) ≤ α iff for all u ∈ U there exists v ∈ V such
that θ(u, v) ≤ α. The proof of Lemma 1 below appears in Appendix A.

Lemma 1 Assume D is an isotropic log-concave distribution in Rn. Then there exist constants c
and c′ such that for any two unit vectors u and v in Rd we have cθ(v, u) ≤ dD(u, v) ≤ c′θ(v, u).

Lemma 1 implies that if we learn some target ai to error εacc, then the angle between our learned
vector and the target will be O(εacc). In the other direction, if the target lies in subspace W and
we have learned a subspace W̃ such that θ(W, W̃) is small, then there will exist a low-error weight
vector in W̃ . Ideally, we would therefore like to say that if we construct a subspace W̃ out of vectors
w̃i that individually are close to their associated targets wi, then W̃ is close to the span W of the wi.
Unfortunately, this is not in general true if the targets are close to each other, e.g., see Figure 1(a).
We will address this by using the fact that each w̃i was not learnable using the span of the previous
w̃j . We begin with a helper lemma (Lemma 2), which can be viewed as addressing the special case
that all previous targets have been learned perfectly, and then present our main lemma (Lemma 3).

Lemma 2 Let U = span{a1, . . . , ak−1}, V = span{a1, a2, . . . , ak−1, b} and Ṽ = span{a1, . . . ,
ak−1, b̃} be sets of vectors in <n. Then, θ(V, Ṽ) ≤ π

2
θ(b̃,b)

θ(b̃,U)
.

Proof (For intuition, see Figure 1(b).) First, we may assume b, b̃ 6∈ U because if b ∈ U then
θ(V, Ṽ) = 0 and if b̃ ∈ U then θ(b̃, U) = 0. Additionally we may assume b and b̃ are unit-length
vectors since we are interested only in angles. Next, let u ∈ V be the unit-length vector in V of
farthest angle from Ṽ , i.e., θ(u, Ṽ) = θ(V, Ṽ). We can write u as a linear combination of b and some
vector u1 ∈ U , and will prove the lemma by showing there must be some nearby vector in the span
of u1 and b̃. Specifically, using the fact that θ(V, Ṽ) = θ(u, Ṽ) ≤ θ(span(u1, b), span(u1, b̃)) and

the fact that θ(b̃, U) ≤ θ(b̃, u1), it is sufficient to prove that: θ(span(u1, b), span(u1, b̃)) ≤ π
2
θ(b,b̃)

θ(b̃,u1)
,

which is just a statement about 3-d space.

4

LIFELONG LEARNING AND AUTOENCODING

Figure 1: (a) Even though each w̃i is within angle 0.11 of its corresponding wi (θ(w2, w̃2) = 0, θ(w1, w̃1) ≤
θ(w1, w2) + θ(w2, w̃1) = 0.11), the two subspaces are orthogonal (span(w1, w2) is the x-y plane and
span(w̃1, w̃2) is the x-z plane). This example also shows that even adding the same vector to two different
subspaces can potentially increase their angle (θ(w1, w̃1) < θ(span(w1, w2), span(w̃1, w2)). (b) For intu-
ition for Lemma 2: now, the two subspaces V, Ṽ are close in angle, with angle at most π

2
times the ratio of

θ(b̃, b) = 0.01 to θ(b̃, a1) = 0.1.

Let α = θ(span(u1, b), span(u1, b̃)) and β = θ(b̃, u1). We can wlog write u1 = (1, 0, 0) and
assume span(u1, b) is the x-y plane. Since span(u1, b̃) has angle α with the x-y plane and intersects
the x-axis, we can write b̃ = cos(β)u1 + sin(β)u2 for u2 = (0, cos(α), sin(α)). Now, θ(b, b̃) is at
least sin−1 of the Euclidean distance of b̃ to the x-y plane, which is sin(α) sin(β). The lemma then
follows from the fact that αβ ≤ π

2 sin−1(sin(α) sin(β)) for 0 ≤ α, β ≤ π
2 .

The key point of the next lemma is that errors (angles between ai and ãi) only contribute addi-
tively to the overall angle gap between subspaces so long as each new learned vector is far from the
previously-learned subspace. In contrast, a difficulty with the usual matrix perturbation analysis is
that while we can assume each new ãi is far from the span of the previous ã1, . . . , ãi−1, we do not
have control over its distance to the span of the past and future vectors {ã1, . . . , ãi−1, ãi+1, . . . , ãk}
as in the definition of matrix height (e.g., Spielman (2002)). Note that even adding the same vector
to two different subspaces can potentially increase their angle (e.g., Figure 1(a)).

Lemma 3 Let Vk = span{a1, . . . , ak} and Ṽk = span{ã1, . . . , ãk}. Let εacc, γ ≥ 0 and εacc ≤
γ2/(10k). Assume for i = 2, . . . , k that θ(ãi, Ṽi−1) ≥ γ, and for i = 1, . . . , n, θ(ai, ãi) ≤ εacc.
Then θ(Vk, Ṽk) ≤ 2k εaccγ .

Proof Fixing εacc, the proof is by induction on k, on the stronger hypothesis that the conclusion
holds for Vk = span{W,a1, . . . , ak} and Ṽk = span{W, ã1, . . . , ãk} for any fixed subspace W .
Note that the base case (k = 1), follows directly from Lemma 2, using W = Ṽk−1 = U , ã1 = b̃,
and a1 = b. Now, let V ′k = span(Vk−1, ãk). Then we have:

θ(Vk, Ṽk) ≤ θ(Vk, V
′
k) + θ(V ′k, Ṽk) [by triangle inequality]

≤ π
2

θ(ãk,ak)
θ(ãk,Vk−1)

+ 2(k−1)εacc
γ

[the first term is by Lemma 2, and the second term is by induction using W = span(ãk)]

≤ π
2

εacc
θ(ãk,Ṽk−1)−θ(Vk−1,Ṽk−1)

+ 2(k−1)εacc
γ

[by triangle inequality: θ(ãk, Ṽk−1) ≤ θ(ãk, Vk−1) + θ(Vk−1, Ṽk−1)]

≤ π
2

εacc
γ− 2(k−1)εacc

γ

+ 2(k−1)εacc
γ [by assumption and by induction]

≤ εacc
γ

(
π
2

γ2

γ2−2(k−1)εacc + 2(k − 1)
)
≤ 2kεacc/γ,

5

BALCAN BLUM VEMPALA

where the last step comes from using εacc ≤ γ2/(10(k − 1)).

Algorithm 1 Life-long learning of halfspaces sharing a common low-dimensional subspace
Input: n,m,k, access to labeled examples for problems i ∈ {1, . . . ,m}, parameters ε and εacc.

1. Learn the first target to error εacc to get a vector α1 ∈ Rn. Set w̃1 = α1; k̃ = 1 and i1 = 1.

2. For the learning problem i = 2 to m
• Attempt to learn using the representation v → (w̃1 · v, ..., w̃k̃ · v). I.e., check if for

learning problem i there exists a hypothesis sign(αi,1(w̃1 · v) + · · · + αi,k̃(w̃k̃ · v)) of
error at most ε.

(a) If yes, set c̃i = (αi,1, . . . , αi,k̃, 0, . . . , 0).
(b) If not, learn a classifier αi for problem i of accuracy εacc by using the original

features. Set k̃ = k̃ + 1, ik̃ = i , w̃k̃ = αi, and c̃i = ek̃.

3. Let W̃ be an k̃ × n matrix whose rows are w̃1, . . . , w̃k̃ and let C̃ be the matrix m× k̃ matrix
whose rows are c̃1, . . . , c̃k̃. Compute Ã = C̃W̃ .

Output: m predictors; predictor i is v → sign(Ãi · v)

We now put these together to analyze Algorithm 1 when target functions lie on, or close to, a
low-dimensional subspace. Specifically, say that a subsequence of target functions ai1 , ai2 , . . . is γ-
separated if each aij has angle greater than γ from the span of the previous ai1 , . . . , aij−1 . Define the
γ-effective dimension of targets a1, a2, . . . , am as the size of the largest γ-separated subsequence.
Our assumption will be that the γ-effective dimension of the targets is at most k for γ = cε for some
absolute constant c > 0, where ε is our desired error rate per target. Note that for γ = 0, γ-effective
dimension equals the dimension of the subspace spanned, and for γ > 0 this allows the targets to
just be “near” to a low-dimensional subspace.

Theorem 4 Assume that all marginals Di are isotropic log-concave. Choose γ = c1ε and εacc s.t.
2k εaccγ + γ = c2ε for sufficiently small constants c1, c2 > 0. Consider running Algorithm 1 with
parameters ε and εacc on any sequence of targets whose γ-effective dimension is at most k. Then
k̃ ≤ k (the rank of Ã is at most k). Moreover the total number of labeled examples needed to learn
all the problems to error ε is Õ(nk/εacc + km/ε) = Õ(nk2/ε2 + km/ε).

Proof We divide problems in two types: problems of type (a) are those for which we can learn a
classifier of error at most ε by using the previously learnt problems; the rest are of type (b).

For problems of type (a) we achieve error ε by design. For each problem i of type (b) we open a
new row in W̃ , and set w̃k̂ = αi, where k̂ is such that ik̂ = i. We also set c̃i = ek̂, so ãi = αi. Since
αi has error at most εacc, we have θ(w̃k̂, aik̂) ≤ εacc/c for some absolute constant c (by Lemma 1).

We next show that k̃ ≤ k. We prove by induction that for each w̃k̂ we create for a prob-
lem i = ik̂, we have both (1) aik̂ is γ-far from span{ai1 , · · · , aik̂−1

} and (2) w̃k̂ is γ-far from

span(w̃1, ..., w̃k̂−1). Step k̂ = 1 follows immediately. For the inductive step k̂ > 1: if we cre-
ate w̃k̂ for a problem i = ik̂, this only happens if there is no vector in the span of the previous

6

LIFELONG LEARNING AND AUTOENCODING

metafeatures w̃j , j < i that has error less than ε for problem ik̂.3 That is aik̂ is at least ε/c′-far from
span{w̃1, ..., w̃k̂−1} for some constant c′ (by Lemma 1). We also have θ(w̃k̂, aik̂) ≤ εacc/c. So, by
triangle-inequality, θ(w̃k̂, span(w̃1, ...w̃k̂−1)) ≥

ε
c′ −

εacc
c ≥ γ, for c1 = 1

2c′ , c2 sufficiently small.
Thus w̃k̂ is γ-far from span{w̃1, ..., w̃k̂−1}. It remains to show that aik̂ is γ-far from the span

of {ai1 , · · · , aik̂−1
}. Suppose for contradiction that θ(aik̂ , {ai1 , · · · , aik̂−1

}) ≤ γ. By construc-

tion we have θ(aij , w̃j) ≤ εacc/c for j ∈ {1, . . . , k̂ − 1}; also by induction we have w̃j is
γ-far from the span of {w̃1, · · · , w̃j−1} for j ∈ {1, . . . , k̂ − 1}. By Lemma 3 we obtain that
θ(span{ai1 , · · · , aik̂−1

}, span{w̃1, · · · , w̃k̂−1}) ≤ 2kεacc/(cγ). These together with triangle in-
equality imply that θ(aik̂ , span{w̃1, · · · , w̃k̂−1}) ≤ γ + 2k εacccγ ≤ ε/c′. So by Lemma 1 there exist

b̃ik̂ ∈ span{w̃1, · · · , w̃k̂−1} of error at most ε, which contradicts our assumption. Therefore, our
induction is maintained (by condition (2)) and so we have k̃ ≤ k (by condition (1) and our assump-
tion on the γ-effective dimension of the targets).

By setting γ = O(ε) and εacc = O(ε
2

k) the total number of labeled examples needed to learn all
the problems to error ε is Õ(nk

2

ε2
+ km

ε), which could be significantly less than the Ω(mnε) needed
to learn each problem separately, even under log-concave distributions (Balcan and Long, 2013).

Note 1 As stated, Algorithm 1 is not efficient because it requires finding an optimal linear separator
in Step 2, which in general is hard. However, for log-concave distributions, there exist algorithms
running in time poly(k, 1/ε) that find a near-optimal linear separator: in particular, one of error ε
under the assumption that the optimal separator has error η = ε/ log2(1/ε) (Awasthi et al., 2014),
and with near-optimal sample complexity (Hanneke, 2013; Yang, 2013). Thus, by reducing εacc by
an O(log2(1/ε)) factor, one can achieve the bounds of Theorem 1 efficiently.

2.1. Halfspaces with more complex common structure

We now consider life-long learning of halfspaces with more complex common structure, corre-
sponding to a multi-layer network of linear metafeatures. It is at first not obvious how multiple
levels of linear nodes could help: if the target vectors span a k-dimensional subspace, then to rep-
resent them with a multi-layer linear network, each layer would need to have at least k nodes.
However, sample complexity of learning can also be reduced via sparsity.

Specifically, we assume now that the target functions all lie in a k dimensional space and that
furthermore within that k-dimensional space, each target lies in one of r different τ -dimensional
spaces. This naturally models settings where there are really r different types of learning problems
but they share some overall commonalities (given by the common k-dimensional subspace). We can
view this as a network with two hidden layers: the first layer given by vectors w1, w2, . . . , wk, and
the second given by r τ -tuples of vectors, u11, . . . , u

τ
1 , ..., u1r , . . . , u

τ
r , where u1i , . . . , u

τ
i span one of

τ -dimensional spaces. In other words, the first hidden layer captures the overall low dimensionality
and the second captures sparsity. We assume r � m, k � n and that τ is a constant.

Algorithmically, given a new problem we first try to learn well via a sparse linear combination
of only τ second level metafeatures. If we fail, we try to learn based on the first level metafeatures
and if successful we add a new second level metafeature corresponding to this target. If that fails,

3. Technically, since we are learning over a finite sample, we can only be confident that there is no vector in the span of
error at most ε/2. However, we can absorb these factors of 2 into the constants c, c′.

7

BALCAN BLUM VEMPALA

we learn using the input features and then we add both a first and second level metafeature corre-
sponding to this target. For log-concave distributions, by using the subspace lemma and an error
analysis similar to that for Theorem 4 we can show we have k̃ ≤ k and r̃ ≤ τr. Formally:

Theorem 5 Assume all marginals Di are isotropic log-concave and the target functions satisfy the
above conditions. Consider γ̃ ≤ cε, ε̃acc ≤ c γ̃ετ , γ ≤ cε̃acc, and εacc ≤ cγε̃acck for (sufficiently small)
constant c > 0. Consider running Algorithm 4 (see appendix) with parameters ε, εacc, and ε̃acc.
Then k̃ ≤ k and r̃ ≤ τr. Moreover the total number of examples needed to learn all the problems
to error ε is Õ(nk/εacc + kr/ε̃acc +m log(r)/ε).

(Proof in Appendix B). By setting γ̃ = ε/2, ε̃acc = Θ(ε2/τ), γ = Θ(ε2/τ), εacc = Θ(ε4/τ2k)
we get that the total number of labeled examples needed to learn all the problems to error ε is
Õ(nk2τ2/ε4 +krτ2/ε2 +mτ log(r)/ε). This could be significantly lower than learning each prob-
lem separately or by learning the problems together but only using one layer of metafeatures. Specif-
ically, if we used one layer of metafeatures as in Theorem 4 (corresponding to the k-dimensional
subspace) the sample complexity would be O(nk2/ε2 + mk/ε). Alternatively we could have just
one middle layer of size rτ and learn sparsely within that, but this would also give worse bounds if
r is large. As a concrete example, if ε is constant, k =

√
n, r = n2 and m = n2.5, we get that the

two-layer algorithm requires only O(τ2/ε2 + τ log(r)/ε) examples per target. On the other hand,
the other two options require at least O(k/ε) examples per target, which could be much worse.

3. Life-long Learning of Monomials

We now consider a nonlinear case where the metafeatures are products and combined via products.
Specifically, we assume an instance spaceX = {0, 1}n, that them target functions are conjunctions
(i.e., products) of features, and that there exist k monomial metafeatures such that all the target
functions can be expressed as products over them. Our goal will be to learn them efficiently.

If the metafeatures do not overlap, then this can be viewed as an instance of the linear case. Each
target function can be described by an indicator vector with coefficients in {0, 1} (plus a threshold)
that all lie in a space of rank k with basis given by the indicator vectors of the metafeatures.

So, the interesting case is when metafeatures may overlap. Unfortunately, without any additional
assumptions, even just the consistency problem is now NP-hard. That is, given a collection of
conjunctions, it is NP-hard to determine whether there exist k monomials such that each can be
written as a product of subsets of those monomials (the “set-basis problem” (Garey and Johnson,
1979)). For this reason, we will make a natural anchor-variable assumption that each metafeature
mi has at least one “anchor” variable (call it yi) that is not in any other metafeature mj . So this is a
generalization of the disjoint case where every variable in mi is not inside any other mj .

We now show how with this assumption we can efficiently solve the consistency problem (and
find the smallest set of monomials for which one can reconstruct each target). Using this as a sub-
routine, we then show how to solve an abstract online learning problem where at each stage we must
propose a set of at most k monomial metafeatures and then pay a cost of 1 if the next target cannot
be written as a product over them. This can then be applied to give efficient life-long learning of re-
lated conjunctions over product distributions. In Section 3.3 we give an application to constructing
Boolean superimposition-based autoencoders. We then relax the anchor-variable assumption and
show how under this relaxed condition we can solve for near-optimal sparse autoencoders as well
as life-long learning of conjunctions under relaxed conditions. In Section 4, we build on some of
these results to give an algorithm for life-long learning of polynomials.

8

LIFELONG LEARNING AND AUTOENCODING

3.1. Solving the Consistency Problem

We now show how given a collection of conjunctions, we can efficiently find the fewest mono-
mial metafeatures needed to reconstruct all of them as products of metafeatures, under the anchor
variable assumption. First, given a conjunction T , let vars(T) denote the variables appearing in
T . Given a variable z and a set of conjunctions TS, let S(TS, z) denote the set of conjunctions in
TS that contain z, and let conj(TS, z) denote the conjunction of all variables that appear in every
conjunction in S(TS, z); that is, vars(conj(TS, z)) =

⋂
T∈S(TS,z) vars(T). For intuition, suppose

the true metafeatures are m1,m2,m3 and the conjunctions observed are T1 = m1m2, T2 = m2m3,
and T3 = m2. In this case, variables z whose sets S(TS, z) are minimal will be anchors for m1 and
m3; however, only after “pulling them out” will we be able to identify an anchor for m2.

Algorithm 2 Consistency problem for monomial metafeatures with anchor variables
Input: set TS = {T1, . . . , Tr} of conjunctions.

1. Let i = 0.
2. Let h(T) denote the conjunction of all metafeatures m̃j produced so far that are fully con-

tained in T . I.e., vars(h(T)) = ∪{vars(m̃j) : vars(m̃j) ⊆ vars(T)}.
3. While there exists T ∈ TS s.t. vars(T) 6= vars(h(T)) do:

(1) Let T be the target of least index in TS s.t. vars(T) 6= vars(h(T)).

(2) Choose zi+1 to be a minimal variable in vars(T) \ vars(h(T)); that is, there is no other
variable z′ ∈ vars(T) \ vars(h(T)) s.t. S(TS, z′) ⊂ S(TS, z). If there are multiple
options, choose zi+1 to be the option of least index.

(3) Let m̃i+1 = conj(TS, zi+1). Let i = i+ 1.

Output: Conjunctions m̃1, . . . , m̃i s.t. each Tj is a conjunction of a subset of them.

Lemma 6 Let TS be a set of conjunctions each of which is a conjunction of some subset of metafea-
turesm1, . . . ,mk satisfying the anchor variable condition with anchor variables y1, . . . , yk. We can
use Algorithm 2 to find m̃1, . . . , m̃i, i ≤ k s.t. each Tj ∈ TS is a conjunction of a subset of them.
Moreover each m̃i is associated to a distinct metafeature mti such that:

(a) vars(mti) ⊆ vars(m̃i); that is, m̃i is more specific than mti .
(b) For all targets T in TS such that vars(mti) ⊆ vars(T) we have vars(m̃i) ⊆ vars(T); that

is, m̃i is not too specific.
(c) For any j, if yj ∈ vars(m̃i) then vars(mj) ⊆ vars(m̃i).

Proof We prove the desired statement by induction. Assume inductively that m̃1, . . . , m̃i satisfy
conditions (a),(b),(c). We show that m̃i+1 satisfies these conditions as well.

Consider the target T we choose in step 3(1) in round i + 1. We know zi+1 ∈ vars(T) \
vars(h(T)) and that T is a conjunction of the true metafeatures. So zi+1 belongs to some metafea-
ture mti+1 s.t. vars(mti+1) ⊆ vars(T) . From the induction hypothesis, by conditions (a),(b) we
know that mti+1 6= mti′ for i′ ≤ i. Now, consider T ∈ TS such that vars(mti+1) ⊆ vars(T). Since
zi+1 ∈ vars(mti+1) and we create m̃i+1 by intersecting the variables in every target T containing
zi+1, we clearly have vars(m̃i+1) ⊆ vars(T), satisfying condition (b). Also if any target T contains
an anchor variable yj , then it must contain mj , so condition (c) is satisfied as well.

9

BALCAN BLUM VEMPALA

We now show that (a) is satisfied, namely that vars(mti+1) ⊆ vars(m̃i+1). This could only
fail if zi+1 is not an anchor for mti+1 , so in step 2 of the algorithm we intersected some target T
that contains zi+1 but does not contain mti+1 . This can only happen if zi+1 also belongs to some
other mj . But then zi+1 is not minimal since yti+1 (the true anchor variable for mti+1 , which is also
contained in vars(T) \vars(h(T)) by (c)) satisfies S(TS, yti+1) ⊂ S(TS, zi+1), and so would have
been chosen instead of zi+1 in step 3(1).

3.2. Solving the Lifelong Learning Problem

Building on Algorithm 2 and Lemma 6, we now consider the lifelong-learning setting. We begin
with an abstract setting where at each time-step r we propose a set M̃ of at most k hypothesized
metafeatures and are provided with a target conjunction Tr. If Tr can be written as a conjunction of
metafeatures in M̃ then we pay 0. If not, then we pay 1 and may update our set M̃ using Tr (this
corresponds to the case of learning Tr from scratch). Our goal is to bound our total cost, under the
assumption that there exists a set of k metafeatures for all targets.

Algorithm 3 Lifelong Learning of Conjunctions with Monomial Metafeatures
Input: Targets T1, T2, . . . , Tm provided online.

1. Initialize TS = ∅ and M̃ = ∅.
2. For r = 1 to m do:

• If we cannot represent Tr as conjunction of hypothesized metafeatures M̃ then add Tr
to TS and run Algorithm 2 with input TS to produce hypothesized metafeatures M̃ .

Output: Hypothesized metafeatures M̃ .

Theorem 7 The number of targets learned from scratch in Algorithm 3 is at most n2 + k.

(Proof in Appendix C.) Since conjunctions over {0, 1}n can be exactly learned in the Equivalence
Query model with at most n equivalence queries (and conjunctions over {0, 1}k can be learned from
at most k equivalence queries), we immediately have the following:

Corollary 8 Let TS be a sequence of m conjunctions such that each is a conjunction of some
subset of metafeatures m1, . . . ,mk satisfying the anchor variable condition. Then this sequence
can be learned using only O(mk + n3) equivalence queries total.

We can also use Theorem 7 to learn with good sample complexity over any product distribution D.

Theorem 9 Assume that all Dr are the same product distribution D, the metafeatures satisfy the
anchor variable assumption, and all the target functions cr are balanced. We can learn hypotheses
h1, . . . , hm of error at most ε by using Algorithm 5 with parameters s1(n, ε, δ) = O(nε log(n/δ)),
s2(n, ε, δ) = k

ε log(m/δ), and s3(n, ε, δ) = n
ε log(nk/δ). The total number of labeled examples

needed is Õ((n2 + k)nε log(n/δ) + km
ε). (Algorithm and Proof in Appendix C.)

3.3. Sparse Boolean Autoencoders and Relaxing the Anchor-Variable Assumption

The above results (in particular, Lemma 6) can be interpreted as constructing a minimal feature
space for AND/OR autoencoding. Specifically, consider a collection of black-and-while pixel im-
ages {Tr} where each Tr ∈ {0, 1}n. Our goal is to contruct a 2-level auto-encoder A (for each r,
we want A(Tr) = Tr) with as few nodes in the middle (hidden) level as possible, such that nodes

10

LIFELONG LEARNING AND AUTOENCODING

in the hidden level compute the AND of their inputs, and nodes in the output level compute the OR
of their inputs. We can view each hidden node in such a network as representing a “piece” of an
image, with the autoencoding property requiring that each Tr should be equal to the bitwise-OR of
all pieces contained within it (i.e., superimposing them together). Formally, for each hidden node j,
let mj ∈ {0, 1}n denote the indicator vector for the set of inputs to that node (which without loss of
generality will also be the set of outputs of that node), and say thatmj � Tr if each bit set to 1 inmj

is also set to 1 in Tr; we then require Tr to be the bitwise-OR of all mj � Tr. Lemma 6 implies that
given a collection of images {Tr}, Algorithm 2 finds the fewest hidden nodes needed to perform
this autoencoding, under the assumption that each metafeature mj contains some anchor-variable.

We now consider the problem of sparse Boolean autoencoding. That is, given a set TS = {Tr},
with each Tr ∈ {0, 1}n, our goal is to find a collection of metafeatures m̃j (perhaps more than n
of them) such that each Tr ∈ TS can be written as the bitwise-OR of at most k of the m̃j (where
k � n). Clearly this is trivial by having one metafeature m̃j for each Tr, so our goal will be to
have the (approximately) fewest of them subject to this condition. Additionally, because we want
sparse reconstruction, we want for each Tr that |{j : m̃j � Tr}| should be small as well. This
problem has two motivations. From the perspective of autoencoding, this corresponds to finding a
sparse autoencoder (viewing the Tr as pixel images). From the perspective of life-long learning, if
this can be done online then (viewing the Tr as conjunctions) it will allow for fast learning, since
conjunctions of k out of N variables can be learned with sample complexity only O(k logN); in
this case we would actually not need the additional “sparse reconstruction” property above.

To solve this problem, we make a relaxed version of the anchor-variable assumption (anchor-
variables no longer make sense when there are more than n metafeatures) which is that each
metafeature should have a set of≤ c variables (for some constant c) such that any Tr containing that
set should have the metafeature as one of its k “relevant metafeatures”. We call this the c-anchor-set
assumption. Note that metafeatures satisfying the anchor-variable assumption will also satisfy this
condition for c = 1. Note also that in general the c-anchor-set assumption is a requirement on both
the metafeatures and on the set TS. Formally, we make the following definition:

Definition 10 A set of metafeatures M = {mj} and set of targets TS = {Tr} satisfy the c-anchor-
set assumption at sparsity level k if

1. for each Tr ∈ TS there exists a set Rr of at most k “relevant” metafeatures in M such that
Tr is the bitwise-OR of the metafeatures in Rr, and

2. For each mj ∈ M there exists yj � mj of Hamming weight at most c such that for all r, if
yj � Tr then mj ∈ Rr. Note that in particular this implies that |{j : mj � Tr}| ≤ k.

Under this assumption, we can solve for a near-optimal set of metafeatures (proofs in Appendix D).

Theorem 11 Given a set of targets TS = {Tr} in {0, 1}n, suppose there exists a set of metafeatures
M satisfying the c-anchor-set assumption at sparsity level k. Then in time poly(nc) we can:

1. Find a set of O(nc) metafeatures such that each Tr ∈ TS can be written as the bitwise-OR of
at most k of them, and

2. Find a set of O(|M | log(n|TS|)) metafeatures that satisfy the c-anchor-set assumption with
respect to TS at sparsity level O(k log(n|TS|)).

Corollary 12 Let TS be a sequence ofm conjunctions for which there exists a setM of conjunctive
metafeatures satisfying the c-anchor-set assumption at sparsity-level k for some constant c. Then
this sequence can be efficiently learned using O(mk log(n) + n2|M |) equivalence queries total.

11

BALCAN BLUM VEMPALA

4. Life-long Learning of Polynomials

We now show an application of the results in Section 3 to the case where the target functions
are polynomials from {0, 1}n to R, whose terms “share” a small number of pieces. Specifically,
we assume there exist k product metafeatures (which might overlap) such that each monomial
in each target polynomial can be written as a product of some subset of them. For example, if
our metafeatures are {x1x2x3, x3x4x5, x5x6x7, x7x8x1} then we might have polynomials such as
4x3x4x5x6x7 − 2x5x6x7x8x1 and 3x1x2x3x4x5 + 3x1x2x3x7x8. If the target polynomials use r
distinct monomials in total, then viewed as a network we have k nodes in a first hidden layer, where
each is a product of some of the inputs, r nodes in a second hidden layer, where each is a product
of outputs of the first hidden layer, and then the final outputs (our target functions) are weighted
linear functions of the second hidden layer. Efficiently learning polynomials requires membership
queries (under the assumption that juntas are hard to learn) even in the single task setting (Schapire
and Sellie, 1993). So we will assume access to membership queries as well. However, our goal will
be to use these sparingly, only when we need to learn a new function from scratch. When learning
from scratch we use an algorithm of Schapire and Sellie (1993) that learns polynomials exactly.

We assume that each target polynomial has L1 norm bounded by B. If the monomials in such
a target can indeed be written as products of our metafeatures, then by considering all products
of metafeatures and running an L1-based algorithm for learning linear functions (Littlestone et al.,
1995), we can achieve low mean squared error using only O(B2 log(2k)) = O(B2k) examples.

Theorem 13 Assume target functions are polynomials satisfying the above assumptions. Run-
ning Algorithm 6 (Appendix E), the total number of targets learned from scratch using membership
queries is at most n2 + k. For the rest of the targets—learned from random examples only—sample
complexity is O(B2k) per problem and running time is polynomial in n and 2k.

Note that while the sample complexity is linear in k for problems learned from random ex-
amples only, the running time is exponential in k. However, a poly(k) bound seems unachievable
because it would require solving the junta learning problem. In particular, the problem of learning
polynomials over k metafeatures is at least as hard as learning polynomials over {0, 1}k (because
the metafeatures could just be x1, . . . , xk). Thus, for this problem one should think of k as small.

5. Discussion and Open Problems
In this work we present algorithms for learning new internal representations when presented with
a series of learning problems arriving online that share different types of commonalities. For the
case of linear threshold functions sharing linear subspaces, we require log-concave distributions to
ensure that error can be both upper-bounded and lower-bounded by some “nice” function of angle:
the lower bound helps to ensure that the span of accurate hypotheses is close to the span of their
corresponding true targets (though one must be careful with error accumulation), and the upper-
bound ensures that a sufficiently-close approximation to the span of the true targets is nearly as good
as the span itself. It is an interesting question whether one can extend these results to distributions
that do not have such properties while still maintaining the streaming nature of the algorithms (i.e.,
remembering only the learned rules and not the data from which they were generated). For product
metafeatures, our results have natural interpretations as autoencoders, which interestingly do not
require the metafeatures to be incoherent or a generative model, only the anchor-variable or anchor-
set assumption. It would be interesting to see whether an analog of the anchor-set assumption could
be applied to dictionary learning problems such as in Arora et al. (2014); Bansal et al. (2014).

12

LIFELONG LEARNING AND AUTOENCODING

References

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning
Journal, 2008.

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models - going beyond SVD. In 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 1–10, 2012.

Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcom-
plete dictionaries. In Proceedings of The 27th Conference on Learning Theory (COLT), pages
779–806, 2014.

Pranjal Awasthi, Maria-Florina Balcan, and Philip M. Long. The power of localization for efficiently
learning linear separators with noise. In Symposium on Theory of Computing (STOC), pages 449–
458, 2014.

M.-F. Balcan and P. M. Long. Active and passive learning of linear separators under log-concave
distributions. In Proceedings of the 26th Annual Conference on Learning Theory, 2013.

T. Bansal, C. Bhattacharyya, and R. Kannan. A provable SVD-based algorithm for learning topics
in dominant admixture corpus. ArXiv e-prints, October 2014.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 2000.

Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task
sampling. Machine Learning, 28(1):7–39, 1997.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In COLT,
2003.

Y. Bengio. Deep learning of representations: Looking forward, 2013. arXiv report 1305.0445.

Y. Bengio and O. Delalleau. On the expressive power of deep architectures. In ALT, 2011.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear algorithms for online multitask classification.
Journal of Machine Learning Research, 2010.

Shimon Edelman. Representation, similarity, and the chorus of prototypes. Minds and Machines, 5
(1):45–68, 1995. URL http://dx.doi.org/10.1007/BF00974189.

Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In Ad-
vances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA,
November 27-30, 1989], pages 524–532, 1989. URL http://papers.nips.cc/paper/
207-the-cascade-correlation-learning-architecture.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN 0716710447.

A. Gopnik, A. Meltzoff, and P. Kuhl. How babies think. Orion, 2001.

S. Hanneke. Personal communication. 2013.

13

http://dx.doi.org/10.1007/BF00974189
http://papers.nips.cc/paper/207-the-cascade-correlation-learning-architecture
http://papers.nips.cc/paper/207-the-cascade-correlation-learning-architecture

BALCAN BLUM VEMPALA

A. R. Klivans, P. M. Long, and A. Tang. Baum’s algorithm learns intersections of halfspaces with
respect to log-concave distributions. In RANDOM, 2009.

A. Kumar and H. Daume. Learning task grouping and overlap in multi-task learning. In NIPS,
2012.

Nick Littlestone, Philip M. Long, and Manfred K. Warmuth. On-line learning of linear functions.
Computational Complexity, 5(1):1–23, 1995.

László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling algo-
rithms. Random Structures & Algorithms, 30(3):307–358, 2007.

A. Maurer and M. Pontil. Excess risk bounds for multitask learning with trace norm regularization.
In Proceedings of the 26th Annual Conference on Learning Theory, 2013.

Andreas Maurer. Algorithmic stability and meta-learning. Journal of Machine Learning Research,
6:967–994, 2005. URL http://www.jmlr.org/papers/v6/maurer05a.html.

Ronald L. Rivest and Robert H. Sloan. Learning complicated concepts reliably and usefully. In
COLT, pages 69–79, 1988.

Volker Roth and Julia E Vogt. A complete analysis of the l 1, p group-lasso. In Proceedings of the
29th International Conference on Machine Learning (ICML-12), pages 185–192, 2012.

R. E. Schapire and L. M. Sellie. Learning sparse multivariate polynomials over a field with queries
and counterexamples. In Proceedings of the 6th Annual Conference on Computational Learning
Theory, 1993.

D. Spielman. Lecture notes for 18.409: The behavior of algorithms in practice. Lecture 2: On the
condition number. 2002.

S. Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Kluwer
Academic Publishers, Boston, MA, 1996.

S. Thrun and L.Y. Pratt, editors. Learning To Learn. Kluwer Academic Publishers, Boston, MA,
1997.

Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and Autonomous Systems,
15(1-2):25–46, 1995a.

Sebastian Thrun and Tom M. Mitchell. Learning one more thing. In Proc. 14th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1217–1225, 1995b.

L. G. Valiant. A neuroidal architecture for cognitive computation. Journal of the ACM, 2000.

S. Vempala. A random-sampling-based algorithm for learning intersections of halfspaces. JACM,
57(6), 2010.

L. Yang. Mathematical Theories of Interaction with Oracles. PhD thesis, CMU Dept. Machine
Learning, 2013.

14

http://www.jmlr.org/papers/v6/maurer05a.html

LIFELONG LEARNING AND AUTOENCODING

Acknowledgments

This work was supported in part by NSF grants CCF-0953192, CCF-1451177, CCF-1422910, CCF-
1217793, EAGER-1415498, IIS-1065251, AFOSR grant FA9550-09-1-0538, ONR grant N00014-
09-1-0751, and a Microsoft Research Faculty Fellowship.

Appendix A. Proof of Lemma 1

Proof The proof of the lower bound appears in Balcan and Long (2013). The proof of the upper
bound is implicit in the earlier work of Vempala (2010) – we provide it here for completeness. The
key idea is to project the region of disagreement in the space given by the two normal vectors, and
then using properties of log-concave distributions in 2-dimensions. Specifically, consider the plane
determined by u and v, and let g be the 2-dimensional marginal of the density function over this
plane. Then g is an isotropic and log-concave density function over R2.

It is known Klivans et al. (2009) that for some constants k3, k4 we have g(z) ≤ k3e
−k4||z||.

Given this fact, we just need to show that the integral of k3e−k4||z|| over the region {z : u · z ≥
0, v · z ≤ 0} is at most c′α for some constant c′, where α is the angle between u and v (the integral
over {z : u · z ≤ 0, v · z ≥ 0} is analogous). In particular, using polar coordinates, we can write the
integral as: ∫ α

θ=0

∫ ∞
r=0

f(r cos θ, r sin θ) r drdθ ≤
∫ α

θ=0

∫ ∞
r=0

rk3e
−k4rdrdθ.

The inner integral evaluates to a constant and therefore the entire integral is bounded by c′α for
some constant c′ as desired.

Appendix B. Proofs for halfspaces with more complex common structure

We now provide the algorithm and proof for Theorem 5.

Theorem 5 Assume all marginals Di are isotropic log-concave and the target functions satisfy the
above conditions. Consider γ̃ ≤ cε, ε̃acc ≤ c γ̃ετ , γ ≤ cε̃acc, and εacc ≤ cγε̃acck for (sufficiently
small) constant c > 0. Consider running Algorithm 4 with parameters ε, εacc, and ε̃acc. Then k̃ ≤ k
and r̃ ≤ τr. Moreover the total number of examples needed to learn all the problems to error ε is
Õ(nk/εacc + kr/ε̃acc +m log(r)/ε).

Proof We divide problems in two types: problems of type (a) are those for which we can learn a
classifier of desired error at most ε by using the previously learnt metafeatures at the second middle
level; the rest are of type (b).

For problems of type (a) we achieve error at most ε by design. For each problem i of type (b)
we have either opened a new row in Ũ , and we have set w̃r̂ = αi, where r̂ is such that jr̂ = i or
we have opened both a new row in r̂ in Ũ and a new row k̂ in W̃ , and set jr̂ = i and ik̂ = i. In
both cases, by design and Lemma 1 (and the fact that εacc ≤ ε̃acc) we have θ(ũr̂W̃ , ajr̂) = O(ε̃acc);
furthermore since c̃i = er̂ we also have θ(ãi, ai) = O(ε̃acc). Furthermore, for each ũr̂ we create
for a problem jr̂ we have that ũr̂W̃ is γ̃-far from the span of those vectors in {ũ1, ..., ũjr̂−1

} whose
corresponding targets lie in space Us, where Us is one of the r τ -dimensional subspaces that ajr̂

15

BALCAN BLUM VEMPALA

Algorithm 4 Life-long Learning with two levels of linear shared metafeatures
Input: n,m,k, access to labeled examples for problems i ∈ {1, . . . ,m}, parameters ε, εacc, ε̃acc.

1. Learn the first target to error εacc to get a an n-dimensional vector α1.
2. Set w̃1 = α1, k̃ = 1, ũ1 = (1), r̃ = 1, c̃1 = (1), and i1 = 1.
3. For the learning problem i = 2 to m

• Try to learn τ -sparsely by using the r̃ dimensional representation given by the second
level meta-features v → ŨW̃ v. I.e., check whether for the learning problem i there
exists a τ -sparse hypothesis sign(αi,1(ũ1W̃v) + · · ·+ αi,r̃(ũr̃W̃v)) of error at most ε.

(a) If yes, set c̃i = (αi,1, . . . , αi,k̃).

(b) Otherwise, check whether for learning problem i there exists a hypothesis in the k̃
dimensional representation given by the first level meta-features v → W̃v of error
at most ε̃acc, i.e., a hypothesis sign(αi,1(w̃1 ·v)+ · · ·+αi,k̃(w̃k̃ ·v)) of error≤ ε̃acc.
(a) If yes, set r̃ = r̃ + 1, ũr̃ = (αi,1, . . . , αi,k̃), jr̃ = i. Extend all rows of C̃ with

one zero, set c̃i = er̃.
(b) If not, learn a classifier αi for problem i of accuracy εacc by using the original

features. Set k̃ = k̃ + 1, ik̃ = i , w̃k̃ = αi. Extend all rows of Ũ by one zero,
set r̃ = r̃+1, ũr̃ = ek̃. Extend all rows of C̃ with one zero, set c̃i = er̃, jr̃ = i.

4. Let W̃ be an k̃ × n matrix whose rows are w̃1, . . . , w̃k̃; let Ũ be an r̃ × k̃ matrix whose rows
are ũ1, . . . , ũr̃; and let C̃ be the matrix m × k̃ matrix whose rows are c̃1, . . . , c̃k̃. Compute
Ã = C̃ŨW̃ .

Output: m predictors; predictor i is v → sign(Ãi · v)

belongs to. (Otherwise if ũr̂ is γ̃-close we would have been able to learn sparsely to error ε based
on the second level metafeatures.)

Using this together with the fact that ε̃acc = O(γ̃ετ), we obtain (by Lemma 3) that once we have
τ second level meta-features ũjl1 , . . . , ũjlτ whose corresponding targets al1 , . . . , alτ lie in the same
τ -dimensional space Us, we have

θ(Us, span(ũjl1W̃ , . . . , ũjlτ W̃)) = O(τ ε̃acc/γ̃) ≤ ε.

Therefore we will be able to learn based on second level metafeatures any future target belonging
to that subspace. This implies r̃ ≤ τr.

Using the fact that εacc ≤ cγε̃acck , as in the proof of Theorem 4, we can prove by induction that
for each w̃k̂ we create for a problem ik̂, we have aik̂ is γ-far from span{ai1 , · · · , aik̂−1

} and w̃k̂ is

γ-far from span(w̃1, ..., w̃k̂−1); this implies k̃ ≤ k.

16

LIFELONG LEARNING AND AUTOENCODING

Appendix C. Proofs for Lifelong Learning of Conjunctions (Theorems 7 and 9)

C.1. Proof of Theorem 7

Proof For any given set of targets TS learnt from scratch, we define a directed graph GTS on the
variables, by adding an edge (xi, xj) if every target in TS that has xi also has xj . Note that if
TS ⊆ T̃S we have E(GTS) ⊆ E(GT̃S). We start with the complete directed graph (corresponding
to TS = ∅), and then we argue that each time we are forced to learn a new target from scratch
and increase TS we either delete at least one edge from the graph or we increment the number of
hypothesized metafeatures by 1.

Suppose the new target Tr cannot be represented using the current hypothesis metafeatures. So
we add Tr into TS and re-run Algorithm 2 . Let us look at the first time the new run differs from
the old run. There are three possibilities for this difference.

(1) It could be that we choose a different zi+1 in step 3(2) of Algorithm 2. There are two ways
this can happen: (a) the old zi+1 is not minimal any more or (b) it could be some z′ (of lower index
than the old zi+1) was not minimal before but is minimal now. In case (a) we have some z′ is now in
a strict subset of the targets in TS that contain zi+1 but this was not the case before adding Tr. This
means the new target Tr must contain the old zi+1 but not z′, and all previous targets that contained
either z′ or zi+1 contained both of them. That means we cut the edge (zi+1, z

′). In case (b), some
z′ (of lower index than the old zi+1) was not minimal before but is minimal now. This means that
before there was some z′′ that was in a strict subset of the targets as z′, but it is not anymore. Now,
z′ is minimal, z′′ is no longer in a strict subset of the targets containing z′; so the new target contains
z′′ but not z′. So we cut the edge (z′′, z′).

(2) It could be that we get the same zi+1 but different m̃i+1 in step 3(3); this means vars(m̃i+1)
is smaller. Thus we cut the edges between zi+1 and all the variables in the old m̃i+1 that are not in
the new m̃i+1.

(3) It could be that we use the new target Tr in step 3(1). Since we go through the targets in
order, the only way that the first difference can be when the new target is used in 3(1) is if every
previous metafeature is created the same as before. Therefore, in this case we create a new metafea-
ture. So, the number of metafeatures is increasing and we make progress as desired.

C.2. Proof of Theorem 9

Proof Let us call a variable i insignificant if over a sample of size Θ((n/ε) log(n/δ)) appears set
to 0 less than ε/4n fraction of the time. Let I be the set of insignificant variables and let S be the set
of significant variables. Let DS be the distribution D restricted to examples that are set to 1 on all
variables in I . We can show that error at most ε/2 over DS implies error at most ε over D. This is
true, since by Chernoff bounds for every variable i we have Px∼D[xi = 0] ≤ ε/2n if i appears set
to 0 less than ε/4n fraction of the time over a sample of size Θ(n log(n)/δ) . So, by union bound
Px∼D[∃i ∈ I, xi = 0] ≤ ε/2.

It remains to show that hypotheses h1, . . . , hm have error at most ε/2 over DS . First note that
for any label r if xi /∈ cr and i ∈ S, then Px∼DS [xi = 0|cr(x) = 1] = Px∼DS [xi = 0]. This
follows from two facts. First, since the target cr is a conjunction we have Px∼DS [xi = 0|cr(x) =
1] = Px∼DS [xi = 0|xj = 1∀xj ∈ cr]. Second, because D is a product distribution and DS be the
distribution D restricted to examples that are set to 1 on all variables in I , we have Px∼DS [xi =

17

BALCAN BLUM VEMPALA

0|xj = 1∀xj ∈ cr] = Px∼DS [xi = 0]. Furthermore since cr is balanced over D and so over DS we
get Px∼DS [xi = 0, cr(x) = 1] ≥ cε/n.

Note that every time we learn we learn a problem from scratch (by using the original variables),
we get n/ε log(n/δ) labeled examples from DS . Therefore significant variables that are not in the
target will appear set to 0 in at least one positive example. Therefore for every problem i learned
based on the original features (via case 1 or 3(b)), we learn the target, that is hi = ci.

These together with the argument in the Theorem 7 gives the desired result.

Algorithm 5 Transfer Learning of Conjunctions with Monomial Metafeatures
Input: parameters n,m,k, ε, δ; s1(n, ε, δ), s2(n, ε, δ), s3(n, ε, δ), access to unlabeled examples
from Di and label oracles for problems r ∈ {1, . . . ,m}, .

1. Draw s1(n, ε, δ) unlabeled examples and identify the set of variables I that are set to 0 less
than ε/4n fraction of the times.

2. Draw a set S1 of s1(n, ε, δ) examples from D1, remove from S1 those examples for which
not all features in I are set to 1. Label S1 according to problem 1. Find a conjunction h1
consistent with S1. Initialize TS = {h1}.

3. Run Algorithm 2 with input TS to produce hypothesized metafeatures M̃ .

4. For the learning problem r = 2 to m

• Draw a set Sr of s2(n, ε, δ), examples from Dr, remove from Sr those examples in Sr
for which not all features in I is set to 1; re-represent each example in Sr using meta-
features in M̃ and check if we can find a conjunction consistent with Sr,

(a) If yes, let hr be its representation over the original features and record it.
(b) If not, draw a set Sr of s3(n, ε, δ), examples from Dr, remove from Sr those ex-

amples for which a feature in I is set to 1; find a conjunction mhr consistent with
Sr.
• Add hr to TS.
• Run Algorithm 2 with input TS to produce hypothesized metafeatures M̃ .

Output: Conjunctions h1, . . . , hm.

Appendix D. Proofs for Sparse Boolean Autoencoding (Theorem 11, Corollary 12)

D.1. Proof of Theorem 11

Proof Item (1) is the easier of the two. For each y ∈ {0, 1}n of Hamming weight at most c,
define m̃y to be the bitwise-AND of all Tr ∈ TS such that y � Tr. By definition of the anchor-set
assumption, for each mj ∈ M there exists yj � mj of Hamming weight at most c such that for all
r, if yj � Tr then mj ∈ Rr. Therefore we have both (a) mj � m̃yj and (b) m̃yj � Tr for all r such
that mj ∈ Rr. Therefore each Tr is the bitwise-OR of the (at most k) metafeatures m̃yj such that
mj ∈ Rr.

18

LIFELONG LEARNING AND AUTOENCODING

For item (2), we begin by creating O(nc) metafeatures m̃y as above. We next set up a linear
program to find an optimal fractional subset of these metafeatures, and then round this fractional
solution to a set of metafeatures M̃ satisfying (2). Specifically, the LP has one variable Zy for each
m̃y with objective

Minimize:
∑
y

Zy,

Subject to : (1) for all y: 0 ≤ Zy ≤ 1

(2) for all r, i:
∑

y:ei�m̃y�Tr Zy ≥ 1 (ei is the unit vector in coordinate i)

(3) for all r:
∑

y:m̃y�Tr Zy ≤ k

Here, constraint (2) ensures that each Tr is fractionally covered by all the metafeatures contained
inside it, and constraint (3) ensures that each Tr fractionally contains at most k metafeatures. Note
also that setting Zyj = 1 for each mj ∈M (and setting all other Zy = 0) satisfies all constraints at
objective value |M |.

We now produce our output set of metafeatures M̃ by independently rounding each Zy to 1
with probability min[1, Zy ln(n2|TS|)]. Clearly E[|M̃ |] = O(|M | log(n|TS|)) so the key issue is
the coverage of each Tr and the size of the set R̃r = {m̃y ∈ M̃ : m̃y � Tr}. Note that item
(2) of Definition 10 will be satisfied by how the m̃y were constructed (taking the bitwise-AND
of all Tr such that y � Tr). First, for coverage, for each r and i such that variable i is set to 1
by Tr, the probability that M̃ does not contain some m̃y such that ei � m̃y � Tr is maximized
when constraint (2) is satisfied at equality and all associated Zy are equal (by concavity). This in
turn is at most limε→0(1 − ε ln(n2|TS|))1/ε = 1/(n2|TS|). Thus, by the union bound, the prob-
ability that any Tr fails to be completely covered by R̃r is at most 1/n. Now, to address the size
of the sets R̃r, the expected size of each R̃r by constraint (3) and the rounding step is at most
k ln(n2|TS|) ≤ max[k, 3] ln(n2|TS|). By Chernoff bounds, the probability any given R̃r has size
more than twice this value is at most e−max[k,3] ln(n2|TS|)/3 ≤ 1/(n2|TS|). So, by the union bound,
the probability that any R̃r is too large is at most 1/n2.

D.2. Proof of Corollary 12

Proof We instantiateO(nc) metafeatures m̃y, one for each y ∈ {0, 1}n of Hamming weight at most
c, setting each m̃y initially to the conjunction of all variables. Given a new target Tr, we try to learn
it as a conjunction of at most k of these metafeatures using at most O(k log nc) equivalence queries
using the Winnow algorithm. If we are unsuccessful, we learn Tr from scratch using at most n
equivalence queries. We then (viewing Tr and the m̃y as their indicator vectors) let m̃y ← m̃y & Tr
(where “&” denotes bitwise-AND) for all m̃y such that y � Tr. This maintains the invariant that
for each mj ∈M , we have mj � m̃yj , which implies that each time we learn some Tr from scratch
we shrink at least one m̃yj by at least one variable. This can happen at most n|M | times.

19

BALCAN BLUM VEMPALA

Algorithm 6 Multi-task learning for polynomial target functions
Input: n,m.

1. Let M̃ = ∅. M̃ is the set of hypothesized metafeatures for the first hidden layer.
Let TS = ∅. TS is the set of terms used to create the hypothesized metafeatures in M̃ .

2. For the learning problem r = 1 to m

(a) Create the set prod(M̃) of terms obtained by taking all possible products of subsets of
the hypothesized metafeatures in M̃ .

(b) Attempt to learn problem r as a linear function over the terms in prod(M̃) to low mean
squared error (quadratic loss) using O(B2k) examples.

• If we succeed, record the hypothesis.
• Otherwise, run the algorithm of Schapire and Sellie (1993) to learn the target Tr

for problem r exactly based on the original feature representation with equivalence
and membership queries.

i. Expand TS by adding any term in Tr that was not in TS.
ii. Run Algorithm 2 with input TS to “compactify” it into the fewest number of

(possibly overlapping) conjunctive metafeatures that can be used to recreate all
the terms in TS. Let M̃ be the resulting metafeatures.

Output: Hypothesis functions of low error for each learning task.

Appendix E. Algorithm and Proofs for Life-Long Learning of Polynomials

Proof of Theorem 13. In Algorithm 6, M̃ represents the set of hypothesized metafeatures for the
first hidden layer – they are learned using Algorithm 2; let k′ = |M̃ |. Let prod(M̃)=all possible
products of hypothesized metafeatures in M̃ ; so TS ⊆ prod(M̃), |prod(M̃)| = 2k

′
.

We know that in the true underlying network the metafeatures in the first middle layer are
monomials satisfying the anchor assumption and the metafeatures in the second middle layer are
monomials of meta-features in the first layer. Note that every time we fail to learn in Step 2(b)
we know that at least one of the monomials that can make up the target polynomial (which is a
metafeature second level of the true network) cannot be written as a product of hypothesized first
level metafeatures M̃ . Since we create M̃ by using Algorithm 2, by Theorem 7 we only need to
learn at most n2 + k problems from from scratch (that is |TS| ≤ n2 + k), and furthermore, k′ ≤ k.

20

	Introduction
	Related Work
	Preliminaries

	Life-long Learning of Halfspaces
	Halfspaces with more complex common structure

	Life-long Learning of Monomials
	Solving the Consistency Problem
	Solving the Lifelong Learning Problem
	Sparse Boolean Autoencoders and Relaxing the Anchor-Variable Assumption

	Life-long Learning of Polynomials
	Discussion and Open Problems
	Proof of Lemma 1
	Proofs for halfspaces with more complex common structure
	Proofs for Lifelong Learning of Conjunctions (Theorems 7 and 9)
	Proof of Theorem 7
	Proof of Theorem 9

	Proofs for Sparse Boolean Autoencoding (Theorem 11, Corollary 12)
	Proof of Theorem 11
	Proof of Corollary 12

	Algorithm and Proofs for Life-Long Learning of Polynomials

