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Abstract

The restricted eigenvalue (RE) condition characterizes the sample complexity of accurate recovery
in the context of high-dimensional estimators such as Lasso and Dantzig selector (Bickel et al.,
2009). Recent work has shown that random design matrices drawn from any thin-tailed (sub-
Gaussian) distributions satisfy the RE condition with high probability, when the number of sam-
ples scale as the square of the Gaussian width of the restricted set (Banerjee et al., 2014; Tropp,
2015). We pose the equivalent question for heavy-tailed distributions: Given a random design ma-
trix drawn from a heavy-tailed distribution satisfying the small-ball property (Mendelson, 2015),
does the design matrix satisfy the RE condition with the same order of sample complexity as sub-
Gaussian distributions? An answer to the question will guide the design of high-dimensional esti-
mators for heavy tailed problems.

1. Introduction

Progress has been made over the last decade in characterizing conditions under which high-dimensional
structured estimation, i.e., methods such as Lasso (Tibshirani, 1996), Dantzig Selector (Candes and
Tao, 2007), etc., yields accurate results. Typically, one assumes a linear random measurement mod-
el: y; = (x;,0%) + €, = 1,...,n, where * is assumed to be structured (Negahban et al., 2012;
Chandrasekaran et al., 2012). While the true structure in 8* may be complex, e.g., needing a combi-
natorial or non-convex specification, one considers the tightest convex relaxation of the structure, in
terms of the gauge function of the convex hull, yielding a norm R(-) (Chandrasekaran et al., 2012;
Banerjee et al., 2014).

The literature has considered various forms of estimators for such problems. Two common
forms are (i) Lasso-type estimators, which consider norm regularized regression (Tibshirani, 1996;
Negahban et al., 2012; Banerjee et al., 2014), and (ii) Dantzig-type estimators, which consider a
constrained form of the problem (Candes and Tao, 2007; Chatterjee et al., 2014). Let y € R"
denote the vector of observations and X = [z1 --- x,]7 € R™*? denote the random design ma-
trix. Then, lasso-type estimators take the form élrfsso = argmingcpy ﬁ”y — X0%|12 + MR(0),
where R(-) is the norm encoding the structure, and A, > 0 is a regularization constant. In-
stead of squared loss, one can use general convex losses corresponding to generalized linear mod-
els (Negahban et al., 2012; Banerjee et al., 2014). The Dantzig-type estimators take the form
gamntrie — argmingegy R(0) s.t. R*(XT(y — X0)) < ¢,,, where R*(-) is the dual norm of R(-),
and ¢, > 0 is a suitable constant for the constraint (Candes and Tao, 2007; Chatterjee et al., 2014).
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There are other related estimators which have been considered in the literature, which have similar
requirements for recovery (Chandrasekaran et al., 2012; Tropp, 2015).

A key requirement for accurate recovery relies on a certain restricted eigenvalue (RE) condition
associated with the design matrix X (Bickel et al., 2009). Let A C SP~1 be a spherical cap, i.e., a
subset of the unit sphere, which characterizes a set of directions. For the estimators discussed above,
A gets determined by the norm R(-), e.g., for Dantzig-type estimators, we have A = cone{A €
RP : R(6* + A) < R(6*)} N SP~!. Given a random design matrix X, the RE condition boils down
to showing that the following uniform lower bound holds with high probability: inf,c4 || Xul*> >
cin — cow?(A) for suitable constants c1,c2 > 0, where w(A) = Eg[sup,c4(g, u)], where g ~
N(0,I,%p) is a p-dimensional isotropic normal vector. The quantity w(A) is referred to as the
Gaussian width of the spherical cap A (Chandrasekaran et al., 2012; Banerjee et al., 2014). While
earlier analysis had illustrated the RE condition to hold only for special design matrices and special
sets A, recent results have shown the RE condition is satisfied by all sub-Gaussian design matrices
and all spherical caps A (Banerjee et al., 2014; Tropp, 2015). In the sequel, constants are denoted
by ¢, c1, 2, etc, whose value may change from line to line.

2. Open Problem: Restricted Eigenvalue Condition for Heavy Tails

Let X € R™*P be a random design matrix with heavy tailed entries. For simplicity, we assume that
each row X;. is independent. The heavy tail of each row Z = X;. is characterized by the so-called
‘small-ball’ property (Mendelson, 2015; Tropp, 2015): for some set £ C RP, there exists some
«, 8 > 0 such that

inf P([(Z,v)] > afvll2) = 5. (D
veE
The small-ball property characterizes the tail probability along directions IL without making any

[[oll2
restrictive assumptions regarding the existence of moments of a certain order.

Open Problem: Let X € R™ P be a random matrix with independent rows, where each row
sampled identically from a heavy-tailed distribution satisfying the small-ball property in (1). Given
any spherical cap A C SP~!, can we show that the following uniform lower bound

inf || Xul2 = inf )2 > en — cw?(A 2
inf 10l = it 3 (e 2 e - exn(4) @

holds with high probability? An affirmative answer will imply that the RE condition holds for heavy
tailed distributions for arbitrary spherical caps A.

3. Related Work: Existing Approaches and Results

In recent work, Banerjee et al. (2014),Tropp (2015) proved the RE condition for sub-Gaussian
X. Banerjee et al. (2014) illustrate exponential concentration for a single u € A, and obtain-
s the uniform bound based on generic chaining (Talagrand, 2005). Tropp (2015) builds on the
arguments in Mendelson (2015), considers a lower bound  for the sum of indicator functions
infucad iy I (z; u))>2 implying infye 4 | Xul3 > %27, and bounds v using standard tools from
empirical processes and generic chaining. However, both arguments yield a dependency on the
Gaussian width only for sub-Gaussian designs.
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In addition to the results for sub-Gaussian X and general A, the RE condition for some special A
has been established when X is heavy tailed. Oliveira (2013) makes the observation that for a given
u € A, || Xull3 = Y.°(x;,u)? has sub-Gaussian lower tails under weak moment assumptions
on X. In order to turn this into a uniform bound for all v € A, tools like generic chaining or
covering arguments require upper bounds on || Xu||3, thus fail for heavy tailed X. But in the special
case when A is the unit sphere SP~!, PAC Bayesian based arguments show a result similar to the

following with high probability:

inf || Xul|3 > cin—csp . 3)
ucA

Since w?(SP~1) = O(p), the RE condition holds for the special case of A = SP~L. The result
in Koltchinskii and Mendelson (2013) relies on the small-ball property of A and the VC dimension
of the class of functions, T¢ = {I}(; 4y>¢ : v € A}. Using empirical process theory, they prove that
with high probability,

;gg | Xul|3 > cin — esVC(Ty) , 4)

where VC(+) denote VC dimension. When A is the unit sphere SP~! it can be shown that VC(T¢) =
O(p) = O(w?(SP~1)), and the result coincides with Oliveira (2013). Based on this VC dimension
argument, Lecué and Mendelson (2014) show that the RE condition is also true when A is the set
of all unit s-sparse vectors. While these results illustrate that RE condition for heavy tails is true for
certain special cases of A, the result for general A C SP~! under the small-ball property remains
open.
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