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Abstract
Optimal information gathering is a central challenge in machine learning and science in general.
A common objective that quantifies the usefulness of observations is Shannon’s mutual informa-
tion, defined w.r.t. a probabilistic model. Greedily selecting observations that maximize the mutual
information is the method of choice in numerous applications, ranging from Bayesian experimen-
tal design to automated diagnosis, to active learning in Bayesian models. Despite its importance
and widespread use in applications, little is known about the theoretical properties of sequential
information maximization, in particular under noisy observations. In this paper, we analyze the
widely used greedy policy for this task, and identify problem instances where it provides provably
near-maximal utility, even in the challenging setting of persistent noise. Our results depend on a
natural separability condition associated with a channel injecting noise into the observations. We
also identify examples where this separability parameter is necessary in the bound: if it is too small,
then the greedy policy fails to select informative tests.
Keywords: Active learning, Information theory, Optimization

1. Introduction

Optimal information gathering, i.e., selectively acquiring most useful data, is a task of central impor-
tance in machine learning and science in general. Many such problems can be formalized as sequen-
tially selecting tests – variables to observe in a probabilistic model – in order to maximally reduce
the uncertainty about a target variable (often called hypothesis) of interest Y . This setting includes
Bayesian experimental design, as originally studied by Lindley (1956), where tests correspond to
experiments that can be carried out, and the target variable encodes model parameters of interest. It
naturally maps to applications such as medical diagnosis (performing medical tests that are most in-
formative about the patient’s condition (Berry et al., 2010)), sensor selection (selecting informative
sensors to query, e.g., for target detection (Williams et al., 2007) ), and numerous others. In ma-
chine learning, it is related to the task of active learning in Bayesian models (where tests correspond
to obtaining labels for data points, and the target variable corresponds to unknown model parame-
ters). In these applications, tests are usually expensive, and we seek maximal information subject
to a constraint on the cost. A widely used notion of informativeness is given by the reduction of
Shannon entropy (Shannon, 1948), also known as the mutual information, about the target variable.

Maximizing the mutual information between sets of random variables has a rich history in ma-
chine learning (Luttrell, 1985; MacKay, 1992). It is perhaps best understood in the a priori selection
(a.k.a. open loop, or non-adaptive) setting, where the set of all tests to be executed is determined
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ahead of time, i.e., before any observations have been made. It is known that the problem of se-
lecting a set of most informative variables of restricted cardinality is generally NP-hard (Ko et al.,
1995). By leveraging the theory of submodular functions (Nemhauser et al., 1978), Krause and
Guestrin (2005) showed that under some conditions, near-optimal solutions can be identified effi-
ciently. In particular, under the assumption that the test outcomes are conditionally independent
given the target variable Y , the mutual information between selected test sets and Y is submodular,
and therefore a simple greedy algorithm leads to a 1− 1/e approximation of the optimal solution.

However, in many applications, it is more natural to consider sequential (a.k.a. closed-loop, or
adaptive) selection. Here, one considers policies (decision trees, conditional plans) that select the
next test to carry out depending on observations made by previous tests. This sequentiality provides
an informational advantage, allowing in general to obtain more information than committing to all
tests ahead of time. A natural policy that finds widespread use in practice is the most informative
selection policy that in each step greedily picks the test that provides the maximal reduction in un-
certainty (quantified in terms of Shannon entropy) about the target variable. Despite its widespread
use, not much is known about the theoretical properties of this greedy policy, in particular in the
practically important setting where observations are noisy. A general framework to study the per-
formance of greedy policies is adaptive submodularity (Golovin and Krause, 2011). It is known that
if a sequential problem is adaptive submodular, then optimizing it greedily results in near-optimal
performance. Unfortunately, the mutual information criterion violates the adaptive submodularity
condition, and hence does not fall into this framework. In the case where tests are noise-free (i.e.,
their outcome is a deterministic function of Y ), it is known that greedily optimizing mutual infor-
mation is effective (Dasgupta, 2005; Zheng et al., 2005). If tests are noisy, but can be repeated with
i.i.d. outcomes, the problem can effectively be reduced to the noise-free setting at small increase in
cost1 (Kääriäinen, 2006; Naghshvar et al., 2013a).

However, in many applications, noise is persistent: Repeating a test is impossible, or will pro-
duce identical observations. Experiments, for example, might be systematically biased due to en-
vironmental conditions. Or experts, labeling examples in active learning make consistent mistakes.
For such practically highly relevant settings, to the best of our knowledge nothing is known about
the performance of the most informative selection policy.

Our contribution In this paper, we establish the first rigorous information-theoretic analysis of
the most informative selection policy that holds even under persistent noise. Specifically, we con-
sider a general probabilistic model, where the originally deterministic tests are corrupted by some
arbitrary noisy channel. We derive a lower bound on the utility achieved by the greedy policy in
terms of a channel separability condition (see, Definition 1), a simple measure that characterizes
the severity of noise. We further provide an example to show that such measure is important in the
bound. It follows from our results that under common assumptions made about the noise (e.g., bi-
nary symmetric channel), the sequential information maximization criterion behaves near-optimally.
Hence our results theoretically justify why the mutual information criterion has been found to be
effective in these settings. Our analysis also sheds light on cases where greedy information maxi-
mization may fail, and thus nonmyopic policies, e.g., using look-ahead, might be required.

1. Simply repeat the test O(log 1
δ
) times, until the most likely outcome is determined with probability 1− δ.
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2. Related Work

Optimal Information Gathering. The general problem of optimal information gathering has
been studied in diverse fields, including active learning (MacKay, 1992; Dasgupta and Langford,
2011; Settles, 2012), experimental design (Lindley, 1956; Fedorov, 1972), evaluation of (stochas-
tic) Boolean functions (Kaplan et al., 2005; Deshpande et al., 2014), channel coding with feedback
(Horstein, 1963; Burnashev, 1976), and active hypothesis testing (Chernoff, 1959; Nowak, 2009;
Naghshvar et al., 2013b). It has been theoretically studied in two settings 1) the information max-
imization problem, where the goal is to maximize utility under a budget constraint, and 2) the cost
minimization problem, where the aim is to achieve a target utility with minimal cost. In this paper
we focus our analysis on the first variant, and derive a lower bound on the utility achievable by the
most informative selection policy.

Active Learning in the Noise-free Setting. In machine learning, information gathering has been
mainly studied in active learning, where the goal is to (sequentially) query labels for data points that
most effectively reduce the uncertainty about an underlying hypothesis. Settings studied include the
stream-based setting, where unlabeled data points arrive one at a time; and the pool-based setting,
where a large collection of unlabeled data is available for querying.

The sequential information maximization problem we study is most closely related to pool-
based active learning with a Bayesian prior on a (finite) set of hypotheses. Assuming binary labels
that are noise free (i.e., the realizable setting), each observation eliminates all inconsistent hypothe-
ses, and one seeks to determine the correct hypothesis while minimizing the cost of testing. Finding
the optimal policy is NP-hard in this setting (Chakaravarthy et al., 2007), but a simple greedy al-
gorithm, generalized binary search (GBS), is guaranteed to be competitive with the optimal policy
(Freund et al., 1997; Kosaraju et al., 1999; Dasgupta, 2005; Golovin and Krause, 2011): at each
step, GBS chooses the test that splits the hypothesis space as evenly as possible, and the expected
number of tests is within a factor of O (log n) of the optimal policy’s cost. In fact, one can show
that under the noise-free setting, GBS is equivalent to the most informative selection policy.

Active Learning with Noisy Observations. Moving beyond the noise-free setting, active learning
has been analyzed under various noise models under the framework of statistical learning theory. In
the stream-based setting, policies are known that work even in the agnostic setting (Balcan et al.,
2006; Hanneke, 2007). The stream-based setting forfeits control over the sequence of examples
considered, which empirically can lead to worse performance compared to more aggressive pool-
based methods (Gonen et al., 2013). On the other hand, current theoretical results for the pool-based
setting are restricted to limited hypotheses classes (e.g., halfspaces as in Balcan et al. (2007); Gonen
et al. (2013)) and restricted noise assumptions (e.g., Tsybakov (2004); Hanneke and Yang (2014)).

Note that our result is orthogonal to most existing theoretical results in active learning that estab-
lish label complexity bounds: in active learning one usually aims to minimize the cost, while guar-
anteeing prediction accuracy; whereas in this paper, we seek computationally-efficient approaches
that are provably competitive with the optimal policy in terms of maximizing the utility. In most ac-
tive learning literature (e.g., Dasgupta (2005); Hanneke (2007), Hanneke (2014); Balcan and Urner
(2015)), the results have been characterized in terms of the structure of the hypotheses class, as well
as additional distribution-dependent complexity measures. In contrast, we do not need to bound how
the optimal policy behaves, and hence we make no assumptions on the hypothesis class. Rather, our
(near-optimality) bound only depends on properties of the channel injecting the noise.
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Perhaps most similar to our approach is the recent work of Golovin et al. (2010) and Chen
et al. (2015), who have used the adaptive submodularity framework to obtain efficient greedy al-
gorithms with provable (logarithmic) approximation guarantees for active learning with persistent
noise. There, however, the problem is restricted to a bounded noise setting, i.e., it only allows a
bounded number of flips on the test outcomes, and the results degrade with the support of the noisy
channel (Golovin et al., 2010). We relax the bounded noise assumption, and show that a near-
optimal bound on the greedy algorithm holds for more general information maximization problems.

3. Preliminaries

We now introduce notation, our basic model and the formal problem statement.

3.1. Basic Model

The basic model that we consider is as follows: We are given a hidden random variable Y that ranges
among a set Y = {y1, · · · , yn} with some known distribution Y ∼ Pr(Y = y). The goal is to learn
the value of Y from (a subset of) observable discrete random variables X1, · · · , Xm statistically
dependent on Y . From now on, we think of the value of Y as representing a true “hypothesis”
among a set of possible n hypotheses and each of the Xe’s as a “test” that we could perform, whose
observation reveals some information about the true hypothesis. Here e is the indexing variable of
the test, i.e., e ∈ [m]. Denote the observed outcome of Xe as xe, and assume that each test has
unit cost. We further adopt the common assumption in Bayesian experimental design that the joint
probability distribution P (Y,X1, . . . , Xm) is known, and that we can perform efficient inference
(i.e., can compute marginal and conditional distributions). Our goal is to sequentially (adaptively)
choose a set of k′ tests that are maximally informative about Y . An important assumption we make
is that Xe’s are conditionally independent given Y (see Figure 1(a)). Equivalently, we assume that
the each test Xe depends on the hidden variable Y and another independent latent variable, called
the noise Ne, in the following way: First, Y goes through a deterministic mapping De := De(Y ),
i.e, each De is a function of Y . The output of De will then be perturbed by the noise Ne, and
produce the test (observable random variable) Xe (see Figure 1(b)). Hence Xe is a deterministic
function of the noise Ne and De.

Y

. . . XmX1 X2

(a)

Y

. . .

. . .D2D1 Dm

XmX1 X2

Nm
. . .N1 N2

(b)

Figure 1: (a) The Naı̈ve Bayes model. (b) An equivalent Bayes net representation

Example 1 An example for our setting is the generalized binary search (GBS) problem, where Y
represents a randomly chosen hypothesis and eachXe is a binary random variable, representing the
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binary label of example e under hypothesis Y . In the noise-free setting, Xe = De is a deterministic
function of Y . In the noisy setting, Xe results from flipping the (deterministic) outcome of De with
probability ε and the flipping events of the tests are independent. In other words, we can write
Xe = De⊕Ne, whereDe is the true label and a deterministic function of Y , Ne is a binary random
variable with Pr(Ne = 1) = ε, and⊕ denotes the addition in F2 = {0, 1} (i.e., the XOR operation).

3.2. Policies

We consider adaptive strategies for picking the tests. From now on, we encode an adaptive strategy
as a policy π. In words, a policy π specifies which test to pick2 next based on the the tests picked
so far and their corresponding outcomes. We consider policies of fixed length, say k. Hence,
upon completion, policy π returns a sequence of k test-outcome pairs denoted by ψπ, i.e., ψπ ,
{(eπ,1, xeπ,1), (eπ,2, xeπ,2), · · · , (eπ,k, xeπ,k)}. Note that what π returns in the end is itself random,
dependent on the (random) outcomes of the selected tests (as well as the decisions that π has made).
Once ψπ is observed, we obtain a new posterior of Y , and hence the associated entropy H (Y | ψπ).
We define the entropy of Y given the policy π as follows

H (Y | π) , Eψπ [H (Y | ψπ)] . (1)

In words, H (Y | π) is the expected entropy of the posterior of Y given the final outcome of π. Also,
the mutual information between π and Y is

I (π;Y ) = H (Y )−H (Y | π) , (2)

which indicates the expected amount of information that π provides about Y upon completion.
We then define the optimal policy πOPT[k] to be the policy that achieves the maximal expected

mutual information, i.e.,
πOPT[k] = argmax

π∈Π[k]

I (π;Y ) , (3)

where Π[k] is the set of all policies of length k. Note that computing the optimal policy is in-
tractable in general. A very well known, efficient and intuitive policy is the one that greedily picks
the test that reduces the current entropy of Y the most, or equivalently, has the maximum mutual
information w.r.t. the current distribution of Y . Denote this most informative selection policy of
length k by πGreedy[k]. Formally speaking, πGreedy[k] operates as follows: At any round ` + 1,
0 ≤ ` ≤ k − 1, a test Xe`+1

, will be picked according to what has previously been observed, i.e.,
ψ` , {(e1, xe1), . . . , (e`−1, xe`−1

)}. We have

e`+1 = argmax
e∈[m]

I (Xe;Y | ψ`) . (4)

3.3. Channel Induced by Noise

As explained above, for any e ∈ [m] the random variable De is a deterministic function of Y . The
value of De is then perturbed by the noise (Ne) to generate the test variable Xe. Note that the
perturbation of Ne is assumed to take place independently of Y and hence can be characterized
through a conditional probability distribution Pr(Xe = x | De = d) where x ∈ Xe, d ∈ De, and

2. We also allow randomized policies where the next test can be picked according to some probability distribution which
possibly depends on what has been observed so far.
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De XeY

deterministic perturbation by Ne

(a) The Channel

xd

P (x | d)
Y

De Xe

We

(b) Illustration of the noise channel

De Xe

✏

1� ✏

1� ✏
✏

(c) BSC

Figure 2: Illustration of the channel induced by noise. (a-b) show the data generation process. In
(c) we illustrate the binary symmetric channel for Example 1.

De, Xe are the support ofDe,Xe. We refer to this conditional probability distribution as the channel
induced by the noise and denote it by We (see Figure 2).

The test Xe depends on Y only through De, i.e., we have the Markov chain Y → De → Xe.
As a result,

I (Xe;Y ) = I (Xe;De) ,

and the latter is by definition less than the capacity of the channel We. We now introduce another
parameter for the channel We and will later establish its importance for sequential selection.

Definition 1 (Separability of a channel) Consider a channelW with associated conditional prob-
ability distribution {p(x | d)}d∈D,x∈X . Note that given each d ∈ D, p(· | d) is a probability
distribution over X . The separability of W , denoted by S(W ), is then defined by

S(W ) =

(
min

d,d′∈D:d6=d′

∣∣p(· | d)− p(· | d′)
∣∣
TV

)2

. (5)

Here, |·|TV denotes the total variation distance. Also, if |D| = 1 we let S(W ) = 1. Intu-
itively, for a channel W and two inputs d, d′, the value |p(· | d)− p(· | d′)|TV is an indicator of
how much the channel can differentiate between d and d′. E.g., if |p(· | d)− p(· | d′)|TV = 0 then
p(· | d) = p(· | d′), in which case it is impossible to distinguish d from d′ given the output of the
channel. On the other hand, if |p(· | d)− p(· | d′)|TV = 1 then from the output we can for sure
exclude either d or d′ (i.e., if we know that the input was either d or d′, then we can say from the
output which one is the input).

As mentioned above, for any e ∈ [m] we have an associated channel We which is induced by
the noise N . We denote by Smin the minimum value of separability over all the channels We, i.e.,

Smin = min
e∈[m]

S(We).

In the noisy GBS example (Example 1), it is easy to see that the separability of the binary symmetric
channel (see Figure 2-(c)) is Smin = (1− 2ε)2.

4. Main Result

We are now ready to state our main result, which provides the first approximation bound on the
performance of the most informative selection policy under persistent noise.
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Theorem 2 Consider the sequential information maximization problem, where we run the most
informative selection policy πGreedy till length k′. For any δ > 0 and k ∈ N, we have3

I
(
πGreedy[k′];Y

)
≥
(
I
(
πOPT[k];Y

)
− δ
) (

1− exp(− k′

kγmax{log n, log 1
δ}

)
)
, (6)

where n = |Y| is the number of possible values of Y , and γ is a constant that only depends on the
noise N , concretely: γ = 7

Smin
.

We present the proof of the Theorem in Section 5. Here, we list a few noteworthy observations re-
garding Theorem 2. First, suppose that for some fixed 0 < α < 1 we have that δ = αI

(
πOPT[k];Y

)
.

Thus, δ is expressed as a fraction of the maximum mutual information obtainable by any policy.
Then the RHS of Inequality (6) turns into a multiplicative bound in terms of α:

I
(
πGreedy[k′];Y

)
≥ I

(
πOPT[k];Y

) (
1− α

)(
1− exp

(
− k′

kγmax{log n, log 1
αI(πOPT[k];Y ))}

)
.

We note that for many reasonable scenarios, I
(
πOPT[k];Y

)
is typically at least a few bits, oth-

erwise arguably the information gathering task is ill-posed / infeasible. In this case, if we assume
I
(
πOPT[k];Y

)
≥ 1, then we obtain a lower bound where the multiplicative factor only depends on

the noise channel:

I
(
πGreedy[k′];Y

)
≥ I

(
πOPT[k];Y

) (
1− α

)(
1− exp

(
− k′

kγmax{log n, log 1
α}

)
)
.

Another way to interpret the result is to use the fact that I(πOPT[k];Y ) ≤ log n. From (6) we obtain

I
(
πGreedy[k′];Y

)
≥ I

(
πOPT[k];Y

)
− δ − log n

(
1− exp(− k′

kγmax{log n, log 1
δ}

)
)
,

As a consequence, if we choose k′ ≥ kγmax{log n, log 1
δ} ln( logn

δ ), then we have

I
(
πGreedy[k′];Y

)
≥ I

(
πOPT[k];Y

)
− 2δ.

Hence, we can get arbitrarily close – up to δ in absolute terms – to the optimal mutual information
achievable within k tests by greedily selecting k′ tests, which is within a logarithmic factor (in terms
of log n and log 1

δ ) of k.

Discussion. A few comments are in order. First, as an example, for the GBS problem in Exam-
ple 1, γ = 7

(1−2ε)2
, and the lower bound we get for the greedy algorithm is I

(
πGreedy[k′];Y

)
≥

(
I
(
πOPT[k];Y

)
− δ
) (

1− exp( k′(1−2ε)2

7kmax{logn,log 1
δ
})
)

.

Second, in Appendix C, we construct an example, where the ratio between the gain of πGreedy[k]

and the optimal policy πOPT[k] is at most c0Smin , where c0 is some constant. However, for our
example to hold, we actually require that Smin to be at least Ω (1/ log n). On the other hand, both
Smin and 1/ log n are involved in the lower bound in Theorem 2. It remains an open problem to
decide which combination of Smin and 1/ log n is indeed necessary in the lower bound.

Third, the Smin involved in our bound is defined over all the possible tests picked by πGreedy
or πOPT. Therefore, if there are some tests which are “purely noisy”, i.e., the separability of their
associated noise channels have S(W ) = 0, then clearly both πGreedy and πOPT will disregard those
tests, and hence their S(W )’s don’t affect our lower bound.

3. In this paper all the log’s are in base 2
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5. Proofs

In this section we prove Theorem 2. A key lemma in proving the theorem is as follows.

Lemma 3 Consider the probabilistic model of Figure 1 with an arbitrary probability distribution
Pr(·). Also, consider any adaptive policy π which chooses k tests among {Xe}e∈[m] and gains
mutual information I (π;Y ). Then, we must have

max
e∈[m]

I (Xe;Y ) ≥ I (π;Y )

kγmax
{

log n, log 1
I(π;Y )

} . (7)

We relegate the proof of this lemma to the the next section. Let us now see how the result of
Theorem 2 follows from this lemma.
Proof [Proof of Theorem 2] Now, we show that Eq. (6) holds for any for any policy π[k] of length k.
Let Ψ` be a random variable representing the first ` tests (and their associated outcomes) that have
been selected by the greedy policy πGreedy, and ψ` be a specific realization of Ψ`. In the decision
tree representation of πGreedy, ψ` represents a path from the root to a node at level ` (see Figure 3).
Now suppose we have run the greedy policy πGreedy till level `, and have observed the realized path
ψ` (thus ψ` is a sequence of ` chosen tests and their observed outcomes). At this point, the greedy
algorithm picks a new test according to the rule (4). Therefore, the expected gain of the greedy
algorithm at time `+ 1 is maxe∈[m] I (Xe;Y | ψ`).

. . .

. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

 `

⇡[k]

Figure 3: The decision tree representation of policies (i) πGreedy of length `, and (ii) π[k] of length k.
After πGreedy has selected ` tests (observed ψ`), we run policy π[k], as if from fresh start.

Let us now consider the following thought experiment. Assume the same setting as above (i.e.,
we have observed ψ`) and we run the policy π[k] of length k as if from a fresh start4 (Figure 3), i.e.,
π[k] is run by totally neglecting the observation ψ`. The policy π[k] then outputs a realization ψπ.
The expected information we obtain by using the aforementioned version of π (that totally neglects
the observation ψ`) is H (Y | ψ`) − H

(
Y | ψ`, π[k]

)
or equivalently I

(
π[k];Y | ψ`

)
. We can now

use the result of Lemma 3 to relate the gain of the greedy to the gain of π[k]. An important point
to note here is that the result of Lemma (3) holds for any probability distribution on the Bayesian
network of Figure 1. In particular, by conditioning all our distributions on the observation ψ`, and

4. This is indeed known as the concatenation of the two policies πGreedy and π, see Golovin and Krause (2011).
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by using Lemma 3, we obtain

max
e∈[m]

I (Xe;Y | ψ`) ≥ Eψ`

[ I
(
π[k];Y | ψ`

)

kγmax{log n, log 1
I(π[k];Y |ψ`)

}

]
. (8)

Now, by further averaging over ψ`, the expected entropy reduction by running π[k] after πGreedy[`] is

Eψ`
[
I
(
π[k];Y | ψ`

)]
= Eψ`

[
H (Y | ψ`)−H

(
Y | π[k], ψ`

)]

= H
(
Y | πGreedy[`]

)
−H

(
Y | π[k], πGreedy[`]

)

≥ H
(
Y | πGreedy[`]

)
−H

(
Y | π[k]

)

= I
(
π[k];Y

)
− I
(
πGreedy[`];Y

)
(9)

Note here that I
(
π[k];Y

)
is the total information gain of the policy π[k] about Y . Fix δ > 0, and

denote α := kγmax{log n, log 1
δ}. We can resume (8) as follows

Eψ`

[
max
e∈E

I (Xe;Y | ψ`)
]
≥ Eψ`

[ I
(
π[k];Y | ψ`

)

kγmax{log n, log 1
I(π[k];Y |ψ`)

}

]

≥ Eψ`

[I
(
π[k];Y | ψ

)
· 1
{
I
(
π[k];Y | ψ`

)
> δ
}

kγmax{log n, log 1
I(π[k];Y |ψ`)

}

]

≥ 1

α

(
Eψ`
[
I
(
π[k];Y | ψ`

)
· 1
{
I
(
π[k];Y | ψ`

)
> δ
}

+ δ
]
− δ
)

≥ 1

α

(
Eψ`
[
I
(
π[k];Y | ψ`

)]
− δ
)

(inequality (9))
≥ 1

α

(
I
(
π[k];Y

)
− I
(
πGreedy[`];Y

)
− δ
)

Rearranging the terms, we have

I
(
π[k];Y

)
− δ − I

(
πGreedy[`];Y

)
≤ αEψ`

[
max
e∈E

I (Xe;Y | ψ`)
]

= α

(
H
(
Y | πGreedy[`]

)
− Eψ`

[
min
e∈E

H (Y | Xe, ψ`)

])

= α
(
I
(
πGreedy[`+1];Y

)
− I
(
πGreedy[`];Y

))
(10)

Let ∆` := I
(
π[k];Y

)
−δ−I

(
πGreedy[`];Y

)
, so that Inequality (10) implies ∆` ≤ α×(∆` −∆`+1).

From here we get ∆`+1 ≤
(
1− 1

α

)
∆`, and hence ∆[k′] ≤

(
1− 1

α

)k′
∆0 ≤ exp

(
−k′

α

)
∆0. Thus,

I
(
π[k];Y

)
− δ − I

(
πGreedy[k′];Y

)
< exp

(
−k′

α

)
∆0 ≤ exp

(
−k′

α

) (
I
(
π[k];Y

)
− δ
)
. This gives

us I
(
πGreedy[k′];Y

)
≥
(
I
(
π[k];Y

)
− δ
) (

1− exp
(
− k′

kγmax{logn,log 1
δ
}

))
.

5.1. Proof of Lemma 3

We first show a sufficient condition for Lemma 3 as follows.

9
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Lemma 4 Fix any α ∈ [0, log n]. If we assume maxe∈E I (Xe;Y ) is sufficiently small, i.e.,

max
e∈E

I (Xe;Y ) ≤ α

kγmax{log n, log 1
α}

, I0(α). (11)

then no policy of length k is able to achieve a mutual information α, i.e., ∀π[k], I
(
π[k];Y

)
< α.

The sufficiency is immediate: suppose Lemma 4 holds. Now, if there exists a policy π of length k
with mutual information I (π;Y ), then by lettingα = I

(
π[k];Y

)
, it must hold that maxe∈[m] I (Xe;Y ) >

I(π[k];Y )
kγmax{logn,log 1

I(π[k];Y )
} , which gives us Lemma 3. So for the rest of the proof, we focus on prov-

ing Lemma 4. We assume that (11) holds. We consider a policy5 π of length k and show that
I (π, Y ) < α. We divide the proof into three steps.

Step 1: Recall that each r.v. De, as a deterministic function of Y , takes values over its support
De with distribution Pr(De = de) (and these distributions are possibly different for each e ∈ [m]).
Denote pe,max = maxde∈De Pr(De = de) to be the probability of the most-likely outcome for De.
Let us first see how the value I (Xe;Y ) can be expressed in terms of pe,max and S(We). We first
argue that for any e ∈ [m] we have that I (Xe;Y ) = I (Xe;De). This is because De is a function
of Y , and Xe is a function of noise N (which is independent of Y ) and De (i.e., Y → De → Xe

forms a Markov chain).

Lemma 5 Fix θ ∈ (0, 1/4]. If I (Xe;De) ≤ θS(We), then we have pe,max ≥ (1 +
√

1− 4θ)/2.

We relegate the proof of this Lemma to the appendices. By combining Lemma 5 with Inequality
(11) and the fact that I (Xe;Y ) = I (Xe;De), we obtain that for any e ∈ [m] (note the fact that
I0/Smin ≤ 1

4 ),

pe,max ≥
1

2

(
1 +
√

1− 4θ
)
≥ 1

2

(
1 +

√
1− 4

I0

Smin

)
, β (12)

Step 2: This is the situation at level 0. In order to investigate how the values pe,max change as
we perform more tests and observe their outcomes, we have to take into account how the the noise
affects the prior and so on. However, we intend to avoid such an analysis. For this purpose, we
first prove that the performance of the system would only become better if we were given full
information about the noise N . Formally speaking, as mentioned above, a policy π which has
length k can also be thought of as a random object which outputs a set of k test-outcome pairs ψπ ,
{(eπ,1, xeπ,1), . . . , (eπ,k, xeπ,k)}. Such a policy starts from a root node (with only the knowledge
about the probabilistic model of Y and Xe’s) and performs its tests sequentially and adaptively
according to what it has observed. Now, consider an other random variable G defined as follows:

G = {(eπ,1, deπ,1), (eπ,2, deπ,2), . . . , (eπ,k, deπ,k)}. (13)

One can think ofG as an oracle sitting besides the system π and observing its actions. Furthermore,
at each time whatever test e that π picks, G has access to the outcome of De, i.e., de. Note that G
does not know the true value of Y . But we expect that G has a better idea about Y than π has. This
is because G knows the deterministic outcomes of the tests that π has picked while π only knows

5. To simplify notation, from now on we use π instead of π[k].

10
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a noisy version of these deterministic outcomes (i.e., what π observes is a noisy version of what G
observes). Let N be a random vector concatenating all Ne. Indeed, we can write

I (G;Y ) = H (Y )−H (Y | G)
(a)
= H (Y )−H (Y | G,N)

(b)

≥ H (Y )−H (Y | π) = I (π;Y ) , (14)

where (a) follows from the fact that Y is independent from N , and (b) is because the output of π
is a deterministic function of the the noise N and the output of G. The idea now is to analyze G.
Note that: (i) Since G has access to the deterministic values de of the tests that π picks, its posterior
about Y is decoupled from the noise N . (ii) Any upper bound on I (G;Y ) would also be an upper
bound on I (π;Y ) by (14).

Step 3: Let us now find an upper bound on I (G;Y ). For this, we start from the root node of π.
Recall that in Step 1 we proved that any of the tests Xe satisfies the relation (12). In other words, at
time 0 (before performing any tests by π), if we define for e ∈ [m]

be = argmax
b∈D

{Pr(De = b)}, and Ye = {y ∈ Y : De(y) = be}, (15)

then by (12) we have that

Pr(y ∈ Y{
e ) = Pr(De(Y ) 6= be) = 1− pe,max ≤ 1− β, (16)

where by Y{
e we mean the complement of the set Ye. The policy π has length k, i.e., it sequentially

and adaptively performs tests which we denote by eπ,1, · · · , eπ,k and the choice of eπ,i is based on
the full observation of the outcomes of eπ,1, · · · , eπ,i−1. We now consider the following event

A = {(Deπ,1 = beπ,1) ∧ (Deπ,2 = beπ,2) ∧ · · · ∧ (Deπ,k = beπ,k)}, (17)

I.e., A is the event that whatever test e that π picks, its deterministic part De outputs its most likely
outcome be. We establish a lower bound on the probability of A through the following lemma:

Lemma 6 If for every test e ∈ [m] we have pe,max ≥ β, then Pr(A) ≥ 1− k(1− β).

We relegate the proof of this lemma to the appendices. In other words, the random variable G
has observations compatible with the event A with probability at least as the lower bound provided
in Lemma 6. We can now write

H (Y | G)
(a)
= Pr(A)H (Y | G,A) + (1− Pr(A))H

(
Y | G,A{

)

(b)

≥ Pr(A)H (Y | G,A) . (18)

Here, (a) follows from the fact that the event A is a function of what G observes. Also, (b) follows
from entropy function being positive. It remains to find a lower bound on H (Y | G,A). For this,
note that if we end up being in the eventA, then all the hypotheses in the set∩kj=1Yeπ,j would remain
compatible with the observations thatG has had. Let us assume thatG has observed {eπ,1, . . . , eπ,k}
and the corresponding outcomes {Deπ,1 = beπ,1 , . . . , Deπ,k = beπ,k} (so that event A has taken
place). To simplify notation, let us define U , ∩kj=1Yeπ,j . By the union bound and (12) we have

Pr(U) = 1− Pr(U{) ≥ 1−
k∑

j=1

(1− Pr(Yeπ,j )) ≥ 1− k(1− β). (19)

Now, the posterior that G has about Y , Pr(Y | y ∈ U), would become as follows:

11
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If y ∈ U, then Pr(y | y ∈ U) =
Pr(y)

Pr(U)
, and If y /∈ U, then Pr(y | y ∈ U) = 0.

The entropy of the posterior then becomes

H (Y | y ∈ U) =
∑

y∈U

Pr(y)

Pr(U)
log

Pr(U)

Pr(y)
=

1

Pr(U)

∑

y∈X
Pr(y) log

1

Pr(y)
+ log Pr(U)

(a)

≥ H (Y )

Pr(U)
− 1− Pr(U)

Pr(U)
log

n

1− Pr(U)
+ log Pr(U)

(b)

≥ H (Y )− 1− ρ
ρ

log
n

1− ρ + log(ρ). (20)

Here, step (a) follows Lemma 8 as stated in Appendix A. In step (b) we have assumed that ρ ,
1 − k(1 − β). We thus have from (19) that Pr(U) ≥ ρ, and step (b) follows from simple calculus.
We also note from Lemma 6 that Pr(A) ≥ ρ. Hence, given event A, the entropy of the posterior
that G has about Y is always lower bounded by (20). We thus obtain from (18) that

H (Y | G) ≥ Pr(A)H (Y | G,A) ≥ ρH (Y )− (1− ρ) log
n

1− ρ + ρ log ρ.

Finally, we obtain

I (G;Y ) = H (Y )−H (Y | G) ≤ H (Y )− ρH (Y ) + (1− ρ) log
n

1− ρ + ρ log
1

ρ

= (1− ρ)(H (Y ) + log n) + (1− ρ) log
1

1− ρ + ρ log
1

ρ
. (21)

From now on, we assume that k ≥ 2 (this is because the result of Lemma 4 is clear when k = 1).
By the definition I0 in (21), we have I0

Smin
= α

7kmax{logn,log 1
α
} ≤

1
14 due to the fact that α ≤ log n.

By the definition of β in (12), we have 1− ρ = k(1−β) = k
(

1
2 − 1

2

√
1− 4 I0

Smin

)
< 11kI0

10Smin
when

I0
Smin

≤ 1
14 .6 Using (11) we get 1− ρ < 11

10
α

7 max{logn,log 1
α
} <

11α
70 logn . Now, from (21) we have

I (G;Y ) <
11α

70

H (Y ) + log n

log n
+ (1− ρ) log

1

1− ρ + (1− (1− ρ)) log
1

1− (1− ρ)

(a)
<

11α

35
+ (1− ρ)

(
log

1

1− ρ +
1

ln 2

)

<
11α

35
+

11α

70

log 70
11 + log (max{log n, log(1/α)}) + log 1

α + 1
ln 2

max{log n, log(1/α)}
(b)

≤ 11α

35
+

11α

70

(
log 70

11 + log log n+ 1
ln 2

log n
+ 1

)
(c)
< α.

Here, (a) follows from the fact that H (Y ) is less than log n (because |Y| = n), and the inequality
−(1− x) log(1− x) < x/(ln 2) for x ∈ (0, 1). Also, (b) follows from simple calculus steps which
we omit for the sake of space, and (c) simply follows when n ≥ 3. For n = 2, the proof of Lemma 3
can be done in a simpler way as above and we relegate it to Appendix B.

6. To prove this, one can show that the function f(x) =
(
1/2− (1/2)

√
1− 4x

)
/x is monotone increasing for x ∈

(0, 1/14]. By plugging in x = 1/14 we obtain f(1/14) ≤ 11/10.
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Appendix A. Supplemental Proofs

Lemma 7 (Long version of Lemma 5) Consider random variables U and V where U takes val-
ues over the set [t] with distributions p and V takes values over [t′] with distribution p′. We think of
p (resp. p′) as a row vector with size t (resp. t′) which sums up to one. Furthermore, assume that
p′ = pQ where Q = [qi,j ]t×t′ is a stochastic matrix and qi,j = Pr(V = j | U = i), for i ∈ [t] and
j ∈ [t′]. Let Q1, Q2, · · · , Qt denote the rows of Q and define the minimum distance of Q as

S =
(

min
i,j∈[t]:i 6=j

|Qi −Qj |TV

)2
.

Also, define pmax = maxi∈[t] pi and umax = maxi∈[t] pi(1− pi). Then, we have

1. I (U ;V ) ≥ Sumax.

2. I (U ;V ) ≥ 1
2S(1− pmax).

3. If I (U ;V ) ≤ θS, then we have pmax ≥ 1− 2θ. Also, if θ ≤ 1
4 , then pmax ≥ 1+

√
1−4θ
2 .

Proof Let p = [pi] and p′ = [p′i]. Using the introduced notation, we have Pr(U = i, V = j) =
piqi,j . We thus can write

I (U ;V ) =
t∑

i=1

t′∑

j=1

piqi,j log
piqi,j
pip′j

=
t∑

i=1

pi

t′∑

j=1

qi,j log
qi,j
p′j

15
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=
t∑

i=1

piDKL(Qi||p′)

≥ 2
t∑

i=1

pi|Qi − p′|2TV, (22)

where the last step is due to Pinsker’s inequality (Csiszar and Körner, 2011, p 44). For any j ∈ [t]
we can write

t∑

i=1

pi|Qi − p′|2TV = pj |Qj − p′|2TV +
∑

i:i 6=j
pi|Qi − p′|2TV

≥ (1− pj)pj |Qj − p′|2TV + pj
∑

i:i 6=j
pi|Qi − p′|2TV

=
∑

i:i 6=j
pjpi|Qj − p′|2TV +

∑

i:i 6=j
pjpi|Qi − p′|2TV

=
∑

i:i 6=j
pjpi(|Qj − p′|2TV + |Qi − p′|2TV)

≥
∑

i:i 6=j
pjpi

(|Qj − p′|TV + |Qi − p′|TV)2

2

(a)

≥
∑

i:i 6=j
pjpi
|Qj −Qj |2TV

2

≥
∑

i:i 6=j
pjpi

S

2

= pj(1− pj)
S

2
. (23)

Here, step (a) follows from the triangular inequality for total variation distances. The proof of part
(1) is then complete by combining (22) and (23).

For the second part of the lemma, assume w.l.o.g that t = 2s + 1 and p1 ≥ p2 ≥ · · · ≥ pt (if t
is even we can always let t← t+ 1 and let pt = 0). We can then write

t∑

i=1

pi|Qi − p′|2TV ≥
s∑

j=1

{
p2j−1|Q2j−1 − p′|2TV + p2j |Q2j − p′|2TV

}

≥
s∑

j=1

p2j

(
|Q2j−1 − p′|2TV + |Q2j − p′|2TV

)

≥
s∑

j=1

p2j

(
|Q2j−1 − p′|TV + |Q2j − p′|TV)

)2

2

(a)

≥
s∑

j=1

p2j
|Q2j−1 −Q2j |2TV

2
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≥ S

2

s∑

j=1

p2j

(b)

≥ S

4
(1− p1).

Here, step (a) follows from the triangle inequality for total variation distances and (b) follows from
the fact that when pi’s are decreasing we have

∑s
j=1 p2j ≥ 1−p1

2 . Part 2 is now proven by using the
above derivation and (22).

Part 3 simply follows from the fact that in the assumption I (U ;V ) ≤ θS
4 holds, then by part 2 we

have pmax ≥ 1−2θ. Also, if θ ≤ 1/4, then pmax ≥ 1/2 and from part 1 we get pmax(1−pmax) ≤ θ
and putting the two together we get the result.

Proof [Proof of Lemma 6] Let us illustrate the idea by first assuming that π has length two (see

level 1

p⇡1 p⇡m

level 2

e1

De1
= be1

p⇡1,1
p⇡1,m

em

p⇡2

;

e1,1
e1,m

e2

e1,2

p⇡1,2

De1,1
= be1,1

. . .

. . .

. . .

. . .

bem,1
be1,m

be2
bem

p⇡m,1

A

Figure 4: A two-stage decision tree representation for (stochastic) policy π(2)

Figure 4). Afterwards, we prove the statement for π with an arbitrary length k. Recall that we
consider randomised policies too. In the very beginning, when no observations have been made, π
can possibly choose any of the possible m tests e1, · · · , em ∈ [m]. We thus assume that π chooses
ei with probability pπi . Furthermore, the choice of ei clearly does not reveal any information about
Y (because we only talk about the choice and hence no observations have been done so far). Let us
define

Ar = {(De1 = be1) ∧ (De2 = be2) ∧ · · · ∧ (Der = ber)},
to be the event that the deterministic part of the first r tests that π has picked all have the most-likely
outcome. Once π chooses its first test (let’s say e1), the event A1 takes place only if the output of
De1 is precisely equal to be1 . Hence, in Figure 4, in order to find Pr(A1) we need to add up the
probabilities of the blue paths up to level 1. As a result,

Pr(A1) =
m∑

i=1

pπi Pr(Dei = bei)

17



CHEN HASSANI KARBASI KRAUSE

≥
m∑

i=1

pπi β = β.

Now, let us see what happens when π selects its second test. For this, assume for simplicity that the
first choice of π was e1 and the output of De1 is indeed be1 (i.e., we are standing at point A on the
tree depicted in Figure 4). At this moment, the noise affects the deterministic outcome of e1 (which
we have assumed to be be1) and hence π observes a noisy version of be1 . Based on this observation,
π selects a new test (which might be a randomised selection). Let us assume that this time π selects
the i-th test with probability pπ1,i. An important point to note here is that conditioned on the fact that
De1 = be1 (i.e. point A on the tree), the new choice of π does not give any new information about
Y . This is because conditioned on De1 = be1 , the choice of π is only a function of be1 and the noise
and possibly some other random variables (used to randomise the policy) that are independent of Y
given De1 = be1 . Hence, we can write

Pr(A2 | De1 = be1) =
m∑

i=1

pπ1,i Pr(Dei = bei | De1 = be1)

Indeed, the above argument is valid if π had chosen any generic test ei (instead of e1) as its first
test. The value Pr(A2) can now be found by summing up the probabilities of all the points at level
2 that are the end-point of a blue path. We have

Pr(A2) =

m∑

i=1

pπi Pr(Dei = bei)Pr(A2 | Dei = bei)

=

m∑

i,j=1

pπi p
π
i,j Pr(Dei = bei)Pr(Dej = bej | Dei = bei)

=
m∑

i,j=1

pπi p
π
i,jPr(Dej = bej , Dei = bei)

(a)

≥
m∑

i,j=1

pπi p
π
i,j(1− 2(1− β))

≥ (1− 2(1− β))
m∑

i=1

pπi

m∑

j=1

pπi,j

= 1− 2(1− β),

where (a) follows from the Union bound.
Now consider the general case where π has length k. As explained before, the event A happens

only on the “good paths” (i.e., the paths that event A happens, as depicted in blue in Figure 5) of
the policy tree. Define path ψi :=

{
(eπ,1, Deπ,1 = beπ,1), . . . , (eπ,i, Deπ,i = beπ,i)

}
. We then have

Pr(Ak) =
∑

ψk

Pr
(
(eπ,1, Deπ,1 = beπ,1), . . . , (eπ,k, Deπ,k = beπ,k)

)

=
∑

ψk

Pr (eπ,1) Pr
(
Deπ,1 = beπ,1

) k−1∏

i=1

Pr(eπ,i+1 | ψi)×
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level 1

p⇡2

⇡
level k

...

;

p⇡1

e⇡,1

e⇡,2

e⇡,k

b⇡,1

be⇡,k

path  k :=
�
(e⇡,1, De⇡,1

= be⇡,1
), . . . , (e⇡,1, De⇡,k

= be⇡,k
)
 

Figure 5: Event A in the policy tree

k−1∏

i=1

Pr
(
Deπ,i+1 = beπ,i+1 | Deπ,1 = beπ,1 , . . . , Deπ,i = beπ,i

)

=
∑

ψk

Pr
(
Deπ,1 = beπ,1 , . . . , Deπ,k = beπ,k

)
× Pr (eπ,1)

k−1∏

i=1

Pr (eπ,i+1 | ψi)

Since for each eπ,i it holds that Pr(Deπ,i = beπ,i) ≥ β, applying the union bound we obtain

Pr
(
Deπ,1 = beπ,1 , . . . , Deπ,k = beπ,k

)
≥ 1− k(1− β).

Thus,

Pr(Ak) ≥ (1− k(1− β))
∑

ψk

Pr (eπ,1)

k−1∏

i=1

Pr (eπ,i+1 | ψi)

= (1− k(1− β))
∑

ψk−1

Pr (eπ,1)

k−2∏

i=1

Pr (eπ,i+1 | ψi)
��

���
���

���
��:1∑

e∈[m]

Pr (eπ,k = e | ψk−1)

= (1− k(1− β))
∑

ψk−2

Pr (eπ,1)
k−3∏

i=1

Pr (eπ,i+1 | ψi)
��

���
���

���
���:1∑

e∈[m]

Pr (eπ,k−1 = e | ψk−2)

...

= (1− k(1− β))
∑

ψ2

Pr (eπ,1) Pr (eπ,2 | ψ1)

���
���

���
��:1∑

e∈[m]

Pr (eπ,3 = e | ψ2)

= (1− k(1− β))
∑

ψ1

Pr (eπ,1)

���
���

���
��:1∑

e∈[m]

Pr (eπ,2 = e | ψ1)

19



CHEN HASSANI KARBASI KRAUSE

= (1− k(1− β))

Lemma 8 Consider a distribution p(·) a set Y with |Y| = n. For a subset X ⊆ Y we have
∑

y∈X
py log

1

py
≥ H (p)− (1− p(X)) log n+ (1− p(X)) log(1− p(X)). (24)

Proof We have

H (p)−
∑

y∈X
py log

1

py
=
∑

y∈Xc

py log
1

py

= p(Xc)
∑

y∈Xc

py
p(Xc)

log
p(Xc)

py
− p(X{) log p(X{)

(a)

≤ p(X{) log n− p(X{) log p(X{)

= (1− p(X)) log n− (1− p(X)) log(1− p(X)),

where step (a) is due to the fact that the cardinality of the set X{ is at most n and thus the entropy
of any distribution on this set is less than log n.

Appendix B. Proof of Lemma 3 for n = 2

For n = 2 we have Y = Bernoulli(p). Assume w.l.o.g that p ≤ 1/2. Each De is a deterministic
function of Y . So De is itself a binary random variable. Now, there exists e′ ∈ [m] such that
I (De′ ;Y ) > 0, otherwise any policy gains zero mutual information and the result of Lemma 3 is
trivial. We assume w.l.o.g that De′ = Y . By using part 2 of Lemma 7 we get that I (Xe′ ;Y ) ≥
pSmin

2 . Note that H(Y ) = h2(p), where h2(x) , −x log x − (1 − x) log(1 − x). Also, it is easy
to verify that for p ≤ 1/2 we have h2(p) ≤ −2p log p and also − log(h2(p)) ≥ − log p

3 . We thus get
that

I (Xe′ ;Y ) ≥ Smin

12

h2(p)

log 1/h2(p)
. (25)

Now, note that any policy can have at most I (π, Y ) ≤ H(Y ) = h2(p). Thus, log 1/I (π, Y ) ≥
log 1/h2(p). As a result,

I (π, Y )

log 1/I (π, Y )
≤ h2(p)

log 1/h2(p)
. (26)

To get the result of Lemma 3, we assume two cases: (i) I (π, Y ) ≤ 1
2 : in this case log 1/I (π, Y ) ≥ 1

and by (25) and (26) we obtain that I (Xe′ ;Y ) ≥ SminI(π,Y )
12 log 1/I(π,Y ) (ii) I (π, Y ) > 1

2 which, by using
h2(p) > 1

2 , means that p > 0.1102 and thus p
h2(p) ≥ 1/6. In this case, we have I (Xe′ ;Y ) ≥

pSmin
2 ≥ h2(p)Smin

p
2h2(p) ≥

Sminh2(p)
12 ≥ SminI(π;Y )

12 . Thus, form the two cases, we have proven

that I (Xe′ ;Y ) ≥ SminI(π;Y )
12 max{logn,log 1/I(π,Y )} for any policy π. This proves Lemma 3 for k ≥ 2. Note

that the result of Lemma 3 is trivially valid when k = 1.
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Appendix C. An example where Smin is necessary

In this section, we introduce an example to show an upper bound on the ratio between the greedy
policy and the optimal policy, which involves Smin. We first describe the high-level intuition behind
the example in Section C.1, and then present details in Section C.2.

C.1. The construction strategy

In our example, we first design T+1 sets of testsX1,X2, . . . ,XT+1 (the value of T will be specified
later). Tests in these sets have low information gain on their own, as in the beginning, all these tests
have 0 outcome with high probability. However, if one test X(i) ∈ Xi from set i is observed to
have positive outcome, then one can always find a test X(i+1) ∈ Xi+1, that is very informative
about the remaining hypotheses that are consistent with the outcome of X(i). A smart policy will
(sequentially) pick tests among these sets, and one can show that with at most 2T tests, this policy
will reduce H(Y ) by at least (log n)/T bits.

To “confuse” the greedy policy, we design another set of tests Z , with infinitely many identical
tests, and the deterministic outcome of each test takes value among {0, 1} with equal probability.
As in Example 1, we assume that observed outcome of each test Z ∈ Z is perturbed by a binary
symmetric channel with flip over probability ε. If Smin = (1 − 2ε)2 is sufficiently large (in fact,
in our example, Smin ≥ Ω (1/ log n)), one can show that with high probability, the greedy policy
always picks among this set of tests, and within 2T tests, the gain of the greedy policy is at most
O(SminT ) Bits. Setting T = 2

√
log n, the ratio between the gain of greedy and the smarter policy

is at most c0Smin, where c0 is some constant (note that when Smin is small we have c0Smin ≈
(1− exp (c0Smin))).

C.2. Details of the example

Consider the following treasure hunt example. Assume that the hidden variable Y takes value
among set Y = {y1, · · · , yn}with uniform distribution. Define T , 2

√
log n, and let k′ = k = 2T ,

i.e., the greedy policy πGreedy and the optimal policy πOPT have the same budget. We hereby
design a problem with 2(10+2 log logn)

logn ≤ Smin ≤ 1
256
√

logn(log logn)2
, such that πGreedy performs

considerably worse w.r.t. πOPT (indeed, the ratio is a factor of Smin). Finally, note that we choose
n sufficiently large so that the bounds provided are meaningful.

We first define T+1 types of tests, namely Type 1, Type 2, . . . , Type T+1. The first type of tests
contains a total number of T tests, all of which have binary outcomes. We denote them by X1 =

{X(1)
1 , X

(1)
2 , . . . X

(1)
T }. We partition the set Y into T equal-size groups, denoted by Y1,Y2, . . . ,YT ,

each containing n/T values (assume n is such that this partition is possible). Each test of Type 1
can be thought to be informative about only a small fraction of Y1. Specifically, imagine that we
further partition the set Y1 into T groups of equal size, denoted by Y1,1,Y1,2, · · · ,Y1,T . For each
i ∈ {1, . . . , T}, we define

X
(1)
i =

{
1, if y ∈ Y1,i;
0, o.w.

The mutual information between each test X(1)
i and Y is

I
(
X

(1)
i ;Y

)
= H

(
X

(1)
i

)
−H

(
X

(1)
i | Y

)
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=
1

T 2
log T 2 +

(
1− 1

T 2

)
log

(
T 2

T 2 − 1

)

≤ log T 2

T 2
+

2

T 2

=
4 + log log n

4 log n
. (27)

The second set of tests also contains T tests, denoted by X2 = {X(2)
1 , X

(2)
2 , . . . , X

(2)
T }. Each

test in X2 has three outcomes. When y ∈ Y1,i, X
(2)
i takes values among {1, 2} with equal proba-

bility 1/2; when y /∈ Y1,i, X
(2)
i = 0. For each i ∈ {1, . . . , T}, we denote Y1,i,1 and Y1,i,2 to be the

set of values of y on which X(2)
i = 1 and X(2)

i = 2, then

X
(2)
i =





2, if y ∈ Y1,i,2;
1, if y ∈ Y1,i,1;
0, o.w.

The mutual information between each test X(2)
i and Y is

I
(
X

(2)
i ;Y

)
= H

(
X

(2)
i

)
−H

(
X

(2)
i | Y

)

=
1

2T 2
log 2T 2 +

1

2T 2
log 2T 2 +

(
1− 1

T 2

)
log

(
T 2

T 2 − 1

)

≤ log 2T 2

T 2
+

2

T 2

=
5 + log log n

4 log n
. (28)

Further, there are a total number of 2T tests of Type 3, i.e., X3 = {X(3)
1 , X

(3)
2 , . . . X

(3)
2T }. Each

of the tests has 5 outcomes. Intuitively, we design these tests to further refine the set of values Y
can take based on the outcome of tests in X2: if one of the tests in X2 has non-zero realization, then
there exists a test X(3)

i ∈ X3 that will help us identify a much smaller subset of Y . Formally, for
i ∈ {1, . . . , T}, j ∈ {1, 2}, and l ∈ {1, 2, 3, 4}, we denote Y1,i,j,l to be the set of values of y on
which X(3)

2i+1−j = l, and each Y1,i,j,l contains n
4×2T 2 values. We define

X
(3)
2i+1−j =





4, if y ∈ Y1,i,j,4;
3, if y ∈ Y1,i,j,3;
2, if y ∈ Y1,i,j,2;
1, if y ∈ Y1,i,j,1;
0, o.w.

For i ∈ {1, . . . , 2T}, the mutual information between each test X(3)
i and Y is

I
(
X

(3)
i ;Y

)
= 4× 1

4× 2T 2
log (4× 2T 2) +

(
1− 1

2T 2

)
log

(
2T 2

2T 2 − 1

)

≤ log(4× 2T 2)

2T 2
+

2

2T 2
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=
7 + log log n

8 log n
. (29)

Similarly with the above construction, we define tests of Type t, t ∈ {2, . . . , T + 1} to be Xt,
with |Xt| =

∏t−2
i=1 2i. Those tests, if sequentially performed, behave as follows: If one of the tests

in Xt−1 has non-zero realization, then one can perform a test in X(t)
i ∈ Xt, and the outcome of this

test can reduce the number of consistent hypotheses to a factor of 1
2t−1 .

Suppose there is a “smart” policy, denoted by πs, which works as follows. It first performs all
the T tests in X1, and the probability that one of them has non-zero outcome is 1/T . If this happens,
then πs sequentially picks T more tests from each of the sets X2,X3, . . . ,XT+1. Test X ∈ Xi will
reduce the number of valid values of Y by a factor of 1

2i−1 . Hence, by noting that,

n

T 2

(
1

2
× 1

4
× · · · × 1

2T+1

)
< 1

we can see that, if y ∈ Y1, then after 2T tests, we get the right hypothesis (i.e., the policy πs

reduces H (Y | π) to 0). Since y ∈ Y1 occurs with probability 1/T , we can bound the gain of πs by
I (πs;Y ) ≥ (log n)/T .

The Greedy Policy We now define another set of tests, and show that with high probability, the
greedy policy prefers this set, but performing tests in this set gives a relatively low gain in terms of
entropy reduction. Denote this set of tests by Z . There are infinitely many identical tests in Z . For
each testZi ∈ Z , the observed outcome is flipped from the (deterministic) outcomeDi given Y with
probability ε (so that Smin = (1−2ε)2), and the flipping events of the tests are independent (i.e., each
test is associated with a binary symmetric noise channel). Assume that initially, the deterministic
outcome Di of Zi is uniformly distributed among {0, 1}. In particular, let Y1 , Y1 ∪ · · · ∪ YT/2,
and Y0 , YT/2+1 ∪ · · · ∪ YT , we define for each i,

Di =

{
1, if y ∈ Y1;
0, if y ∈ Y0;

and the observed outcome Zi = Di ⊕Ni, with Pr(Ni = 1) = ε.
Then, it is easy to check that in the very beginning (where Y has a uniform distribution) we

have I (Zi;Y ) = 1 − h2(ε). We prove that the greedy policy πGreedy picks these tests with high
probability. The following lemma characterizes such behavior of πGreedy.

Lemma 9 Assume that 2(10+2 log logn)
logn ≤ Smin ≤ 1

256
√

logn(log logn)2
. With probability at least

1− 4
√

log n exp
(
−2(log logn)2

)
, πGreedy[2T ] will pick 2T tests in Z .

The proof of this lemma will appear shortly. Now, note that H (Y ) can at most be log n under any
distribution. So the gain of πGreedy can be bounded from above as follows.

I
(
πGreedy;Y

)
≤ I (Z1, . . . , Z2T ;Y ) +

(
4
√

log n exp
(
−2(log log n)2

))
log n.

Let us now bound the mutual information term. We have

I (Z1, Z2 . . . , Z2T ;Y ) = H (Z1, Z2 . . . , Z2T )−H (Z1, Z2 . . . , Z2T | Y )

23



CHEN HASSANI KARBASI KRAUSE

≤
2T∑

i=1

(H (Zi)−H (Zi | Y ))

=
2T∑

i=1

I (Zi;Di)

= 2T (1− h2(ε))

As a result, we can write

I
(
πGreedy;Y

)
≤ 2T (1− h2(ε)) + 4

√
log n exp

(
−2(log log n)2

)
log n

≤ 4TSmin + 4
√

log n exp
(
−2(log log n)2

)
log n

Hence,

I
(
πGreedy;Y

)

I (πs;Y )
≤ 4TSmin + 4

√
log n exp

(
−2(log logn)2

)
log n

logn
T

= 16Smin + 8 log ne(−2(log logn)2)

< 32Smin.

Hence, the gain of the greedy algorithm (when allowed to choose 2T tests) can be at most a fraction
32Smin of the optimal algorithm which is allowed to choose also 2T tests. It remains to prove
Lemma 9.
Proof [Proof of Lemma 9.] The proof goes through the following steps:

Step 1. Consider 2T tests Z1, Z2, . . . Z2T from set Z . If Smin = (1− 2ε)2 ≤ 1
256
√

logn(log logn)2
,

for all m ≤ 2T , we claim

Pr

[
1

e
≤
(

1− ε
ε

)m−2
∑m
i=1 zi

≤ e
]
≥ 1− 2 exp

(
−2(log logn)2

)
(30)

In the following, we prove the above inequality. By Hoeffding’s inequality, we have

Pr

(∣∣∣∣∣
m∑

i=1

(1− 2zi)−m(1− 2ε)

∣∣∣∣∣ ≥
√
m log log n

)
≤ 2 exp

(
−2(log log n)2

)

Therefore, with probability at least 1− 2 exp
(
−2(log log n)2

)
, we have

(
1− ε
ε

)m−2
∑m
i=1 zi

≤
(

1− ε
ε

)m(1−2ε)+
√
m log logn

= e(ln 1−ε
ε
·m·(1−2ε)+

√
m ln 1−ε

ε
·log logn)

≤ e
(

4(1−2ε)2m+4
√
m(1−2ε)2 log logn

)
≤ e(4×2TSmin+4

√
2TSmin log logn)
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In order for inequality
(

1−ε
ε

)m−2
∑m
i=1 zi ≤ e to hold, it suffices to ensure that
{

8TSmin ≤ 1
2

4
√

2TSmin log log n ≤ 1
2

From the first inequality we get Smin ≤ 1
32
√

logn
; from the second we get Smin ≤ 1

256
√

logn(log logn)2
.

To show
(

1−ε
ε

)m−2
∑m
i=1 zi ≥ 1

e , we use

(
1− ε
ε

)m−2
∑m
i=1 zi

≥
(

1− ε
ε

)m(1−2ε)−
√
m log logn

= e(ln 1−ε
ε
·m·(1−2ε)−

√
m ln 1−ε

ε
·log logn),

and it suffices to ensure that
√
m ln 1−ε

ε ·log logn ≤ 1, which clearly holds when Smin ≤ 1
256
√

logn(log logn)2
.

From (30) and the union bound we get that

Pr

[
∀m ≤ 2T :

1

e
≤
(

1− ε
ε

)m−2
∑m
i=1 zi

≤ e
]
≥ 1− 4

√
log n exp

(
−2(log log n)2

)

Step 2. We now prove Lemma 9 by induction. Assume that Smin ≥ 2(10+2 log logn)
logn . By equa-

tions (27),(28),(29), we know that the gain of any tests in Xt, t ∈ {1, . . . , T + 1} is less that Smin.
In the very beginning, I (Zi;Y ) = (1− h2(ε)) ≥ Smin, so πGreedy[2T ] chooses a test from Z .

Step 3. Consider an integerm ≤ 2T and assume that greedy has so far picked tests Z1, . . . , Zm ∈
Z with outputs z1, . . . , zm such that 1

e ≤
(

1−ε
ε

)m−2
∑m
i=1 zi ≤ e.

We denote the probability of the event y ∈ Y1 by p1 = Pr
(
y ∈ Y1 | z1, . . . , zm

)
, and similarly

p0 = Pr
(
y ∈ Y0 | z1, . . . , zm

)
. Then we have p1 + p0 = 1 and p1

p0
=

Pr(z1,...,zm|y∈Y1) Pr(y∈Y1)
Pr(z1,...,zm|y∈Y0) Pr(y∈Y0)

=

(1−ε)
∑m
i=1 ziεm−

∑m
i=1 zi

ε
∑m
i=1

zi (1−ε)m−
∑m
i=1

zi
=
(

ε
1−ε

)m−2
∑m
i=1 zi

. Therefore, if 1
e ≤

(
1−ε
ε

)m−2
∑m
i=1 zi ≤ e, then p1, p0 ∈

[1
4 ,

3
4 ]. Consider a test Zi ∈ Z , and assume the distribution on Di is a Bernoulli(p) with p ∈

[
1
4 ,

1
2

]
,

then

I (Zi;Y ) = I (Zi;Di) = h2(p(1− ε) + (1− p)ε)− h2(ε)

=

∫ p(1−ε)+(1−p)ε

ε
h2(x)′dx

≥ h′2(ε) + h′2(p(1− ε) + (1− p)ε)
2

(p(1− ε) + (1− p)ε− ε)

= p(1− 2ε)
log 1−ε

ε + log 1−p(1−2ε)−ε
p(1−2ε)+ε

2

≥ 1− 2ε

4

log 1−ε
ε + log

(
1 + 2(1−2ε)

1+2ε

)

2

≥ 1− 2ε

8

(
1− 2ε

1− ε + (1− 2ε)

)

≥ 3

8
(1− 2ε)2.
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That is, when p ∈ [1/4, 1/2], we have I (Zi;Y ) ≥ 3
8(1− 2ε)2 > 1

4Smin >
10+2 log logn

2 logn .
Also, given the assumptions of step 3, we note that the hypotheses in the set Y1 will always

have equal probability. Therefore, the tests of other types have at most information twice as their
gain in the very beginning where we have uniform distribution on Y . Therefore, the greedy policy
will certainly choose a test among Z .

Finally, by combining Step 1-3, we finish the proof.
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