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Abstract
We consider two broad families of non-additive loss functions covering a large number of

applications: rational losses and tropical losses. We give new algorithms extending the Follow-
the-Perturbed-Leader (FPL) algorithm to both of these families of loss functions and similarly give
new algorithms extending the Randomized Weighted Majority (RWM) algorithm to both of these
families. We prove that the time complexity of our extensions to rational losses of both FPL and
RWM is polynomial and present regret bounds for both. We further show that these algorithms can
play a critical role in improving performance in applications such as structured prediction.
Keywords: on-line learning, experts, non-additive losses, structured prediction

1. Introduction

On-line learning algorithms are increasingly adopted as the key solution to modern learning applica-
tions with very large data sets of several hundred million or billion points. These algorithms process
one sample at a time with an update per iteration that is often computationally cheap and easy to
implement. As a result, they are substantially more efficient both in time and space than standard
batch learning algorithms with optimization costs often prohibitive for large data sets. Furthermore,
on-line learning algorithms benefit from a rich theoretical analysis with regret bounds that are often
very tight (Cesa-Bianchi and Lugosi, 2006).

A standard learning paradigm in on-line learning is the expert setting. In this setting, the algo-
rithm maintains a distribution over a set of experts (or picks an expert from an implicitly maintained
distribution). At each round, the loss assigned to each expert is revealed. The algorithm incurs the
expected loss over the experts and then updates his distribution on the set of experts. The objective
of the learner is to minimize his expected regret, which is defined as the cumulative loss of the
algorithm minus the cumulative loss of the best expert chosen in hindsight.

There are several natural algorithms for this setting. One straightforward algorithm is the
so-called Follow-the-Leader (FL) algorithm which consists of selecting at each round the expert
with the smallest cumulative loss. However, this algorithm can be shown not to admit a favor-
able worst case regret. An alternative algorithm with good regret guarantees is the Randomized
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Weighted Majority (RWM) (Littlestone and Warmuth, 1994) (and the related Hedge algorithm (Fre-
und and Schapire, 1997)). This algorithm maintains one weight per expert i which is proportional
to exp(−ηLi), where Li is the current total loss of expert i and η a positive learning rate. Thus, in
the RWM algorithm, the minimum of the FL algorithm is replaced by a “softmin”. An alternative
algorithm with similar guarantees is the Follow-the-Perturbed-Leader (FPL) algorithm (Kalai and
Vempala, 2005) which first perturbs the total losses of the experts with a properly scaled additive
noise and then picks the expert with minimum total perturbed loss. Both of these algorithms have
a parameter (the learning rate or the scale factor of the additive noise). These parameters must
be tuned in hindsight for the algorithms to achieve the optimal regret bound. More recently, an
alternative perturbation was proposed which consists of dropping to zero the loss of each expert
with probability one half. When FL is applied to the total “dropout” losses, the resulting algorithm
achieves the optimum regret without tuning any parameter (van Erven et al., 2014).

Most learning problems arising in applications such as machine translation, automatic speech
recognition, optical character recognition, or computer vision admit some structure. In these prob-
lems, the experts can be viewed as paths in a directed graph with each edge representing a disjoint
sub-structure corresponding to a word, phoneme, character, or image patch. This motivates our
study of on-line learning with paths experts. Note that the number of path experts can be exponen-
tially larger than the number of edges in the graph. The learning guarantees of the best algorithms
just mentioned remain informative in this context since their dependency on the number of experts is
only logarithmic. However, the computational complexity of these algorithms also directly depends
on the number of experts, which makes them in general impractical in this context.

This problem has been extensively studied in the special case of additive losses where the loss
of a path expert is the sum of the losses of its constituent edges. The Expanded Hedge (EH) al-
gorithm of Takimoto and Warmuth (2003), an extension of RWM combined with weight pushing
(Mohri, 1997, 2009), and an adaptation of FPL (Kalai and Vempala, 2005) to this context both
provide efficient solutions to this problem with a polynomial-time complexity with respect to the
size of the expert graph. For these algorithms, the range of the loss appears in the regret guarantee.
The Component Hedge (CH) algorithm of Koolen, Warmuth, and Kivinen (2010) provides an alter-
native solution to this problem with somewhat worse polynomial complexity but regret guarantees
independent of the range of the loss that are further shown to be tight.

Unfortunately the relevant losses in structured learning applications such as machine translation,
speech recognition, other natural language processing applications, or computational biology are
often not simply additive in the constituent edges of the path, they are non-additive. In machine
translation, the loss is based on the BLEU score similarity, which is essentially defined as the inner
product of the vectors of n-gram counts of two sequences typically with n = 4. The loss therefore
depends on overlapping path segments of typically four consecutive edges. In some computational
biology tasks, the losses are based on metrics such as gappy n-gram similarity and other measures
based on the sum of the product of the counts of common subsequences between two sequences.
In speech recognition and many other language processing applications, or in optical character
recognition, the loss is based on an edit-distance with non-uniform edit costs. These are the loss
functions used to measure the performance of these systems in practice and are therefore crucial
to be able to optimize for. None of the algorithms mentioned above can be applied using such
non-additive losses with a polynomial-time complexity.

This paper seeks precisely to address this problem. We introduce two broad classes of non-
additive losses that cover most applications encountered in practice: rational losses and tropical
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losses (Section 4). Rational losses are loss functions expressed in terms of sequence kernels, such
as the n-gram loss defining the BLEU score and other more complex losses based on rational kernels
(Cortes et al., 2004). They can be represented by weighted transducers over the probability semir-
ing. Tropical losses include the generalized edit-distance loss used in speech recognition and other
applications, where typically different costs are associated to insertions, deletions, and substitutions.
They can be represented by weighted transducers over the tropical semiring.

We describe a new polynomial-time algorithm, Follow-the-Perturbed-Rational Leader (FPRL),
extending the FPL algorithm to a broad class of rational losses, which includes n-gram losses and
most other kernel-based sequential loss functions used in natural language processing and computa-
tional biology (Section 5). Our algorithm is based on weighted automata and transducer algorithms
such as composition and weighted determinization (Mohri, 2009). Our proof that the time complex-
ity of the algorithm is polynomial is based on a detailed analysis of the weighted determinization
algorithm in this context and makes use of new string combinatorics arguments (Section 5.4). We
also prove new regret guarantees for our algorithm since existing bounds cannot be readily used
(Section 5.2). We further briefly describe a new algorithm, Follow-the-Perturbed-Tropical Leader
(FPTL), extending FPL to tropical losses (Appendix B). Remarkably, FPTL differs from FPRL only
by a change of semiring.

In Appendix C, we give a new efficient algorithm, Rational Randomized Weighted-Majority
(RRWM), extending RWM to rational loss functions by leveraging ideas from semiring theory and
weighted automata algorithms and prove that our algorithm admits a polynomial-time complexity.
We further briefly describe a new algorithm, Tropical Randomized Weighted-Majority (TRWM),
extending RWM to tropical losses (Appendix D). Remarkably, as for our extensions of FPL, TRWM
differs from RRWM only by a change of semiring.

We start with a description of the learning scenario (Section 2) and the introduction of some
background material on semirings and transducers (Section 3).

2. Learning scenario

Let X denote the input space and Y = Σ∗ the output space defined as the set of sequences over
a finite and non-empty alphabet Σ. We will denote by ε the empty string. We consider a standard
on-line learning scenario of prediction with expert advice. At each round t ∈ [1, T ], the learner
receives an input point xt ∈ X as well as the predictions made by N experts, which he uses to
define a probability distribution pt over Y . He then makes a prediction by drawing ŷt ∼ pt, thereby
incurring a loss L(yt, ŷt), where yt ∈ Y is the correct label of xt.

The experts we consider are accepting paths of a finite automaton and their predictions the labels
of those paths. For any t ∈ [1, T ], we denote by At = (Σ, Q, I, F,Et) a finite automaton over the
alphabet Σ, where Q is a finite set of states, I ⊆ Q the set of initial, F ⊆ Q the set of final states
and Et ⊆ Q × (Σ ∪ {ε}) × Q a finite set of (labeled) edges or transitions from state to state. For
two distinct rounds t and t′, At and At′ differ only (possibly) by the labels of the transitions. Thus,
we can define a path expert ξ as any sequence of edges from I to F and the prediction made by ξ at
round t as the label of path ξ in At, which we denote by ξ(t). The loss incurred by path expert ξ at
round t is L(yt, ξ(t)). We will consider the standard case in applications where the automata At are
acyclic, though many of our results apply in the general case of non-acyclic automata. Figure 1(a)
shows an example of path expert automaton where the transition labels help us identify path experts.
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Figure 1: (a) Example of an expert automaton. Each transition is labeled with a distinct symbol of
the form epq encoding the source p and destination state q. The automaton is thus deter-
ministic by construction and each path expert is identified by its sequence of transition
labels. For example, ξ = e02e23e34 denotes the path expert from 0 to 4 going through
states 2 and 3. (b) Example of an automaton At. As an example, the prediction of path
expert ξ = e02e23e34 is ξ(t) = baa. (c) Transducer Tt mapping path experts to their
At predictions. For each transition, a colon separates the input symbol from the output
predicted label.

Figure 1(b) shows an example of an automaton At defined by the predictions made by path experts.
Figure 1(c) shows the transducer Tt which maps path experts to their predictions in At.

In some familiar problems such as the online shortest-path problem, the loss function is simply
a sum of the losses over the constituent edges of ξ. But, as already mentioned, in several important
applications such as machine translation, speech recognition, pronunciation modeling, and many
other natural language processing applications, the loss function is not additive in the edges of the
path. We will study two broad families of non-additive losses that cover the loss functions used in
all of these applications: rational losses and tropical losses.

3. Semirings and weighted transducers

The families of non-additive loss functions we consider can be naturally described in terms of
weighted transducers where the weights are elements of a semiring. Thus, in this section, we briefly
introduce some basic notions and notation related to semirings and weighted transducers needed
for the discussion in the following sections. For a detailed presentation of weighted transducer
algorithms and their properties, we refer the reader to (Mohri, 2009).

3.1. Definitions and properties

A weighted finite automaton (WFA) A is a finite automaton whose transitions and final states carry
some weights. For various operations to be well defined, the weights must belong to a semiring,
that is a ring that may lack negation. More formally, (S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is
a commutative monoid with identity element 0, (S,⊗, 1) is a monoid with identity element 1, ⊗
distributes over ⊕, and 0 is an annihilator for ⊗, that is a⊗ 0 = 0⊗ a = 0 for all a ∈ S.

The second operation of a semiring is used to compute the weight of a path by taking the ⊗-
product of the weights of its constituent transitions. The first operation is used to compute the weight
of any string x, by taking the ⊕-sum of the weights of all paths labeled with x. As an example,
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(R+ ∪{+∞},+,×, 0, 1) is a semiring called the probability semiring. The semiring isomorphic to
the probability semiring via the negative log is the system (R∪{−∞,+∞},⊕log,+,+∞, 0), where
⊕log is defined by x⊕log y = − log(e−x + e−y); it is called the log semiring. The semiring derived
from the log semiring via the Viterbi approximation is the system (R∪{−∞,+∞},min,+,+∞, 0)
and is called the tropical semiring. It is the familiar semiring of shortest-paths algorithms. That is +
serves as the operation along a path and gives the length of a path, and min operates on path lengths
and determines the smallest one.

For a WFA A defined over a semiring (S,⊕,⊗, 0, 1), we denote by QA its finite set of states, by
IA ∈ QA its initial state, by FA ⊆ QA its set of final states, and by EA its finite set of transitions,
which are elements of QT × (Σ ∪ {ε}) × S × QT .1 We will also denote by ρA(q) ∈ S the weight
of a final state q ∈ FA and by wA[e] ∈ S the weight of a transition e. More generally, we denote by
wA[π] the weight of a path π = e1 · · · en of A which is defined by the ⊗-product of the transitions
weights: wA[π] = wA[e1]⊗ · · · ⊗wA[en]. For any path π, we also denote by orig[π] its origin state
and by dest[π] its destination state.

A WFA A over an alphabet Σ defines a function mapping the set of strings Σ∗ to S that is
abusively denoted by A and defined as follows:

∀x ∈ Σ∗, A(x) =
⊕

π∈P (IA,x,FA)

(
wA[π]⊗ ρA(dest[π])

)
, (1)

where P (IA, x, FA) is the set of paths labeled with x from the initial state to a final state; by
convention, A(x) = 0 when P (IA, x, FA) = ∅. Note that the sum runs over a finite set in the
absence of ε-cycles. More generally, for all the semirings we consider, the order of the terms in this
⊕-sum does not matter, thus the quantity is well defined. The size of a WFA is denoted by |A| and
defined as the sum of the number of states and the number of transitions of A: |A| = |QA|+ |EA|.

A weighted finite-state transducer (WFST) T is a weighted automaton whose transitions are
augmented with some output labels which are elements of an output finite alphabet ∆. We will use
the same notation and definitions for WFSTs as for WFAs. As for WFAs, a WFST T over an input
alphabet Σ and output alphabet ∆ defines a function mapping the pairs of strings in Σ∗ × δ∗ to S
that is abusively denoted by T and defined as follows:

∀x ∈ Σ∗,∀y ∈ ∆∗, T(x, y) =
⊕

π∈P (IT ,x,y,FT)

(
wT[π]⊗ ρT(dest[π])

)
, (2)

where P (IT, x, y, FT) is the set of paths from an initial state to a final state with input label x and
output label y; T(x, y) = 0 if P (IT, x, y, FT) = ∅. The size of a WFST is defined in the same way
as for WFAs. Figure 2 shows some examples.

3.2. Weighted transducer operations

The following are some standard operations defined over WFSTs.
The inverse of a WFST T is denoted by T−1 and defined as the transducer obtained by swapping

the input and output labels of every transition of T, thus T−1(x, y) = T(y, x) for all (x, y).

1. To simplify the presentation, we are assuming a unique initial state with no weight. This, however, does not represent
a restriction since any weighted automaton admits an equivalent weighted automaton of this form. All of our results
can be straightforwardly extended to the case of multiple initial states with initial weights and also to the case where
EA is a multiset, thereby allowing multiple transitions between the same two states with the same labels.
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The projection of a WFST T is the weighted automaton denoted by Π(T) obtained from T by
omitting the input label of each transition and keeping only the output label.

The ⊕-sum of two WFSTs T1 and T2 with the same input and output alphabets is a weighted
transducer denoted by T1 ⊕ T2 and defined by (T1 ⊕ T2)(x, y) = T1(x, y)⊕ T2(x, y) for all (x, y).
T1⊕T2 can be computed from T1 and T2 in linear time, that is O(|T1|+ |T2|) where |T1| is the sum
of the number of states and transitions in the size of T1 and T2, simply by merging the initial states
of T1 and T2. The sum can be similarly defined for WFAs.

The composition of two WFSTs T1 with output alphabet ∆ and T2 with a matching input al-
phabet ∆ is a weighted transducer defined for all x, y by (Pereira and Riley, 1997; Mohri et al.,
1996):

(T1 ◦ T2)(x, y) =
⊕
z∈∆∗

(
T1(x, z)⊗ T2(z, y)

)
. (3)

The sum runs over all strings z labeling a path of T1 on the output side and a path of T2 on input label
z. The worst case complexity of computing (T1 ◦ T2) is quadratic, that is O(|T1||T2|), assuming
that the ⊗-operation can be computed in constant time (Mohri, 2009). The composition operation
can also be used with WFAs by viewing a WFA as a WFST with equal input and output labels at
every transition. Thus, for two WFAs A1 and A2, (A1 ◦A2) is a WFA defined for all x by

(A1 ◦A2)(x) = A1(x)⊗A2(x). (4)

As for (unweighted) finite automata, there exists a determinization algorithm for WFAs. The
algorithm returns a deterministic WFA equivalent to its input WFA (Mohri, 1997). Unlike the
unweighted case, weighted determinization is not defined for all input WFAs but it can be applied
in particular to any acyclic WFA, which is the case of interest for us. When it can be applied to A,
we will denote by Det(A) the deterministic WFA returned by determinization. In Section E.1, we
give a brief description of a version of the weighted determinization algorithm.

4. Non-additive losses

4.1. Rational losses

A rational kernel over Σ∗ × Σ∗ is a kernel defined by a weighted transducer U whose input and
output alphabets are both Σ. Thus, U(x, x′) is the value of that kernel for two strings x, x′ ∈ Σ∗.
It was shown by Cortes, Haffner, and Mohri (2004) that any U of the form U = T ◦ T−1, where
T is an arbitrary weighted transducer over the probability semiring with matching input and output
alphabets, is positive definite symmetric (PDS). Furthermore, the sequence kernels commonly found
in computational biology and natural language processing have precisely this form. As an example,
Figure 2(a) shows the weighted transducer Tbigram used to define the bigram kernel Ubigram, which
associates to two strings x and x′ over the alphabet Σ = {a, b} the sum over all bigrams of the
product of the count of each bigram in x and x′.

Let U be a weighted transducer over the probability semiring admitting Σ as both the input and
output alphabet. Then, we define the rational loss associated to U as the function LU : Σ∗ × Σ∗ →
R ∪ {−∞,+∞} defined for all x, y ∈ Σ∗ by2

LU(x, y) = − log
(
U(x, y)

)
. (5)

2. The definition of a rational loss in an earlier version of this paper did not include a logarithm. This new definition is
more natural, in particular for kernels based on counts, and, further, leads to a simpler presentation.
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Figure 2: The weight of each transition (or that of a final state) is indicated after the slash separator.
(a) Bigram transducer Tbigram over the probability semiring. A bigram is a sequence of
two consecutive symbols, thus aa, ab, ba, or bb for the alphabet Σ = {a, b}. For example,
for any string x, Tbigram(x, ab) is equal to the number of occurrences of ab in x. (a) Edit-
distance transducer Uedit over the tropical semiring, in the case where the substitution cost
is 1, the deletion cost 2, the insertion cost 3, and the alphabet Σ = {a, b}.

4.2. Tropical losses

The general edit-distance of two sequences is the minimal cost of a series of edit operations trans-
forming one sequence into the other, where the edit operations are insertion, deletion, and substitu-
tion, with non-negative costs not necessarily equal. It is known that the general edit-distance of two
sequences x and y can be computed using a weighted transducer Uedit over the tropical semiring
in time O(|x||y|) (Mohri, 2003). Figure 2(b) shows that transducer for an alphabet of size two and
some particular edit costs. The edit-distance of two sequences x, y ∈ Σ∗ is Uedit(x, y).

Let U be a weighted transducer over the tropical semiring admitting Σ as both the input and
output alphabet and with U(x, y) ≥ 0 for all x, y ∈ Σ∗. Then, we define the tropical loss associated
to U as the function LU : Σ∗ × Σ∗ → R coinciding with U; thus, for all x, y ∈ Σ∗,

LU(x, y) = U(x, y). (6)

5. Follow-the-Perturbed-Rational-Leader (FPRL) algorithm

This section describes an on-line learning algorithm for path experts with a rational loss that can
be viewed as an extension of FPL (Kalai and Vempala, 2005). We first introduce the definition of
several WFSTs and WFA needed for the presentation of the algorithm.

5.1. Description

To any WFST U over the probability semiring, we associate a corresponding WFST Ũ over the log
semiring by replacing every transition weight or final weight x of U with − log(x). Observe that,
by definition, for any x, y ∈ Σ∗, we can then write

Ũ(x, y) =
⊕

log

π∈P (I
Ũ
,x,y,F

Ũ
)

w
Ũ

[π] =
⊕

log

π∈P (IU,x,y,FU)

− log(wU[π]) =− log

[ ∑
π∈P (IU,x,y,FU)

wU[π]

]
=− log

(
U(x, y)

)
.

For any t ∈ [1, T ], we augment the finite automaton At with output labels to help us explicitly keep
track of edges and paths. That is, each transition (p, a, q) ∈ EAt of At is replaced with (p, a, epq, q),
where epq represents the transition between p and q, as illustrated by Figure 1(c). We further assign
the weight 0 to every transition and final weights. This results in a WFST Tt which we interpret
over the log semiring and which assigns weight 0 to every pair (ξ(t), ξ).
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For any t ∈ [1, T ], let Yt denote a simple finite automaton accepting only the sequence yt. We
assign weight 0 to every transition of Yt and its final weight. In this way, Yt is a WFA over the log
semiring which assigns weight 0 to the sequence yt, the only sequence it accepts (and weight +∞
to all other sequences).

The following proposition helps guide the design of our algorithm. Its proof is given in Ap-
pendix A.

Proposition 1 Let LU be a rational loss associated to the WFST U over the probability semiring.
For any t ∈ [1, T ], let Vt denote the WFA over the log semiring defined by Vt = Det(Π(Yt ◦Ũ◦Tt))
and Wt the WFA over the log semiring defined by Wt = V1 ◦ · · · ◦ Vt. Then, for any t ∈ [1, T ] and
any path expert ξ, the following equality holds:

Wt(ξ) =
t∑

s=1

LU(ys, ξ(s)). (7)

Figure 3 gives the pseudocode of our FPRL algorithm. At each round t ∈ [1, T ] the learner receives
the input point xt as well as the predictions made by the path experts, which are represented by the
transducer Tt mapping each path expert ξ to its prediction ξ(t). The deterministic WFA Vt com-
puted at line 5 gives the loss incurred at time t by each path expert ξ: Vt(ξ) = U(yt, ξ(t)), as seen in
the proof of Proposition 1. By Proposition 1, the WFA Wt obtained by composition of Wt−1 and Vt
(line 6) gives the cumulative loss up to time t for each path expert ξ: Wt(ξ) =

∑t
s=1 LU(ys, ξ(s)).

Furthermore, by induction, Wt is deterministic: W0 is deterministic; assume that Wt−1 is de-
terministic, then Wt is deterministic as the result of the composition of two deterministic WFAs
(Lemma 9).

Now, as with the FPL algorithm, our algorithm adds some perturbation to the cumulative loss
of each expert. To do so, we define a noise WFA Nt by starting with the graph expert automaton
A1 and augmenting each of its transitions with a weight obtained by sampling from a standard
Laplacian distribution scaled by 1

ε , where ε is a parameter of the algorithm (lines 7-9), and by
setting the final weights to 0. By construction, Nt is deterministic since A1 is deterministic. The
perturbations are added simply by composing Wt with Nt since by definition of composition in the
log semiring, (Wt ◦ Nt)(ξ) = Wt(ξ) + Nt(ξ) =

∑t
s=1 LU(ys, ξ(s)) + Nt(ξ), where Nt(ξ) is the

sum of the random Laplacian noises along path ξ in Nt. Since both Wt and Nt are deterministic,
their composition is also deterministic (Lemma 9). Thus, to determine the expert ξ minimizing
(Wt ◦ Nt)(ξ) =

∑t
s=1 LU(ys, ξ(s)) + Nt(ξ), it suffices to find the shortest path of W = Wt ◦ Nt

and returns its label ŷt+1.
Note that our use of weighted determinization in the computation of Vt is key since it ensures

that Vt and thereby Wt and W = Wt ◦ Nt are deterministic. Otherwise, if multiple paths were
labeled by the same path expert in W, then, the problem of determining the path expert with the
minimal weight in W would be hard. Of course, instead of determinizing the WFA defining Vt,
we could simply determinize W. But, we will later prove that, while the worst-case complexity of
weighted determinization is exponential, its complexity is only polynomial in the context where we
are using it. It is not clear if the same property would hold for W.

An alternative method improving our algorithm consists of using, instead of determinization, a
recent disambiguation algorithm for WFAs (Mohri and Riley, 2015), which returns an equivalent
WFA with no two accepting paths sharing the same label.
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FPRL(T )

1 W0 ← 0 . deterministic one-state WFA over log semiring mapping all strings to 0.
2 for t← 1 to T do
3 xt ← RECEIVE()
4 Tt ← PATHEXPERTPREDICTIONTRANSDUCER(xt)

5 Vt ← Det(Π(Yt ◦ Ũ ◦ Tt))
6 Wt ←Wt−1 ◦ Vt
7 Nt ← A1

8 for e ∈ ENt do
9 wNt [e]← SAMPLE(1

εL) . standard Laplacian distribution scaled by 1
ε .

10 W←Wt ◦Nt

11 ŷt+1 ← SHORTESTPATH(W, (min,+))
12 return WT

Figure 3: Pseudocode of FPRL.

5.2. Regret guarantees

In this section, we present a regret guarantee for the FPRL algorithm. This will require new proofs
since the analysis of Kalai and Vempala (2005) does not apply in our context as the loss function
is non-additive. Furthermore, the FPL bounds of Cesa-Bianchi and Lugosi (2006) for the expert
setting do not directly apply to our setting either since the perturbations Nt(ξ) are correlated.

Observe that the topologies of the WFAs Nts coincide for all t since they are all derived from
A1 by augmenting transitions with random weights. Let n denote the total number of transitions
of A1, n = |EA1 |. We denote by pt ∈ Rn the perturbation random vector whose components
are the transition weights wNt [e], for some fixed ordering of the transitions e ∈ ENt . Each path ξ
can be viewed as a binary vector in Rn with the non-zero components correspond to its constituent
transitions. We will denote by P ⊆ Rn the set of all such binary vectors.

Let N denote the number of paths in A1. For any t ∈ [1, T ], let `t ∈ RN denote the vector of
path losses at round t and denote by L ⊂ RN the set of all such vectors:

L =
{
`t ∈ RN : `t(ξ) = LU(yt,At(ξ)), t ∈ [1, . . . , T ]

}
,

where `t(ξ) is the component of `t indexed by path expert ξ. Let R be a N × n matrix where
each row is a binary vector representing a path ξ in A1. Our regret guarantees are in terms of
A = sup`∈L ‖R†`‖1. In particular, observe that A ≤ sup`∈L ‖`‖1‖R†‖∞.

Theorem 2 For any sequence y1, . . . , yT , the following upper bound holds for the expected regret
of FPRL run with parameter ε ≤ min

(
1, 1

2A

)
:

E
[
RT (FPRL)

]
≤ 4
√
DALmin(1 + log n) + 16DA(1 + log n),

where Lmin is the cumulative loss of the best expert in hindsight, A = sup`∈L ‖R†`‖1, D =
supd,d′∈P ‖d− d′‖1 and where n is the number of transitions of the path expert automaton A1.
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5.3. Running-time complexity

Since the worst-case complexity of each composition is quadratic, at each round t, (Yt ◦ Ũ ◦ Tt)
can be computed in time O(|U||A1||yt|) using the equalities |Ũ| = |U| and |Tt| = |A1|. Similarly,
Wt can be computed in O(|Wt−1||Vt|) and W in time O(|Wt||Nt|). Since W is acyclic, its single-
source shortest-path (line 11) can be found in linear time, that is O(|W|) = O(|Wt||Nt|). Thus, to
show that our algorithm admits a polynomial-time complexity, it suffices to show that the cost of
the determinization of Π(Yt ◦ Ũ ◦ Tt) (line 5) is also polynomial.3

5.4. Determinization of Π(Yt ◦ Ũ ◦ Tt)

Let M denote Yt ◦ Ũ ◦ Tt. This section analyzes the determinization of Π(M) for any t. We will
assume here that the number of possible distinct expert predictionsN at any round is polynomial in
the size of the automaton A1, which is a mild assumption clearly holding in all applications that we
are aware of – in fact, we will only require that the number of distinct multiplicities of the sequences
reaching any state q of Π(M) is polynomial in |Π(M)|.

5.4.1. TRANSDUCERS FOR COUNTING AND COUNTING-BASED RATIONAL LOSSES

Suppose we wish to compute − log of the number of occurrences of the sequences accepted by a an
arbitrary deterministic finite automaton (DFA) Z. In the simple case of bigrams, Z would be a DFA
accepting the strings aa, ab, ba, and bb. We can augment Z with weights all equal to 0, including
final weights and interpret the resulting automaton Z as one defined over the log semiring. Then, it
has been shown by Cortes, Haffner, and Mohri (2004) that the simple WFST TZ of Figure 4(a) over
the log semiring can be used to compute (− log) of the number of occurrences of every sequence
accepted by Z. That is, for any sequence x ∈ Σ∗ and any sequence z accepted by Z, we have
TZ(x, z) = − log(|x|z), where |x|z denotes the number of occurrences of z in x. This is because
the number of distincts decompositions of x into x1zx2 with x1 a prefix of x and x2 a suffix of x is
precisely the number of occurrences of z, and because TZ admits exactly one path for each of these
decompositions. These paths are obtained by consuming a prefix x1 of x while remaining at state
0 and outputting ε, next reading z to reach state 2, and finally consuming a suffix x2 at state 2 and
outputting ε. Since each path has weight zero, the ⊕log of the weights of these paths is − log(|x|z).

Most sequence kernels used in applications, including n-gram kernels, other natural language
processing kernels, and kernels used in computational biology and many others are instances of
rational kernels of the type U = TZ ◦ T−1

Z (Cortes et al., 2004). In view of that, in what follows, we
will assume that U is of this form, which covers most applications in practice.

5.4.2. CHARACTERIZATION OF THE STATES OF M = (Yt ◦ Ũ ◦ Tt)

Since U = TZ ◦ T−1
Z , we can write M = Yt ◦ Ũ ◦ Tt = Yt ◦ T̃Z ◦ T̃−1

Z ◦ Tt, where T̃Z is the WFST
over the log semiring obtained from T by replacing each weight x by (− log(x)). Thus, to compute
M, we can separately compute (Yt ◦ T̃Z) and (T̃−1

Z ◦ Tt) and then compose them.
Recall that a factor f of a string y is a sequence of contiguous symbols, possibly empty, appear-

ing in y: thus there exists y1, y2 ∈ Σ∗ such that y = y1fy2. In view of our discussion of a counting
transducer T̃Z , by definition of composition, the states of Yt ◦ T̃Z are pairs (p, u), where p is the

3. After each determinization step, we can apply weighted minimization (Mohri, 1997) to reduce the size of the resulting
WFA. Since the WFAs are acyclic here, the time and space complexity of minimization is only linear in that case.
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Figure 4: (a) WFST T̃Z over the log semiring and the alphabet Σ= {a, b} computing (− log) of the
number of occurrences of sequences accepted by an acyclic DFA Z. Z:Z/0 represents a
WFST over the log semiring obtained from a DFA Z, by augmenting each transition with
an output label matching the input label and by setting all weights to be equal to 0. (b)
Illustration of the states (p, u) of Yt ◦ T̃Z . (c) Illustration of the states (v, q) of T−1

Z ◦ T̃t.

position in yt at which a factor f of yt is ending and where u is the unique state of T̃Z reached by
reading f : since Z is deterministic, f cannot reach two distincts states of Z; also, if reading a prefix
of f leads to the final state of T̃Z , then f leads to that final state too. Figure 4(b) illustrates this.

Similarly, the states of T̃−1
Z ◦ Tt are precisely the pairs (v, q), where q is a state of Tt reached

by some sequence x, and where v is the (unique) state of TZ reached by a suffix x′ of x. This
is illustrated by Figure 4(c). Now, the transducer (Yt ◦ T̃Z) may have ε-labels on the output and
similarly (T̃−1

Z ◦ Tt) may have ε-labels on the input. To avoid the construction of redundant ε-paths
in the composition (Yt ◦ T̃Z) ◦ (T−1

Z ◦Tt), a composition filter is used in the composition algorithm,
which itself consists of a simple 3-state transducer (or even 2-state) transducer (Mohri et al., 1996;
Mohri, 2009). We will denote by s ∈ {0, 1, 2} the state of that filter transducer.

Thus, the states of (Yt ◦ T̃Z) ◦ (T̃−1
Z ◦ Tt) are 5-tuples (p, u, s, v, q) where (p, u) and (v, q) are

as just described and where, additionally, the factor f of yt coincides with the suffix x′ of x. Thus,
they are precisely the 5-tuples where p is the ending position of a factor f of yt, q the state reached
by some string x in the input of Tt that admits f as a suffix, u the state reached by reading f in T̃Z
and v the one reached by reading x′ = f on the output of T̃−1

Z , and s one of three filter states.

5.4.3. CHARACTERIZATION OF THE STATES AND SUBSETS CONSTRUCTED BY Det(Π(M))

Theorem 3 The complexity of computing Det(Π(M)), the determinization of Π(M) = Π(Yt ◦U ◦
Tt), is in O(N|U||yt||A1|).

Proof The application of determinization to Π(M) creates states defined by weighted subsets. Let
S be such a weighted subset reached by a path ξ. S contains states of the form (pi, ui, si, vi, qi),
i = 1, . . . , n, which are all reached by the same path ξ. But, since the path expert automaton At is
deterministic, the states qi must be all equal to the unique state q reached in At by path ξ. Thus, the
subsets of S are all of the form (pi, ui, si, vi, q) and we will refer to them as q-subsets.

We now further analyze the different possible q-subsets constructed by weighted determiniza-
tion. In view of the characterizations previously given for 5-tuples of the form (p, u, s, v, q) ending
with state q, all 5-tuples of a q-subset S are defined by a string x reaching q on the input side of
Tt, and the different factors of yt matching a suffix of x, each creating a new element of S (with

11
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Figure 5: (a) Illustration of sequences of factors of yt, f1 ≥s f2 ≥s · · · ≥s fn, along the set of paths
with destination state q in Tt. Each factor fi is indicated in red by its starting position
along a path, its ending positing being always state q. (b) Suffix trie of yt = ababbb. The
number of sequences f1 ≥s f2 ≥s · · · ≥s fn is the number of paths to a final state, that
is the number of positions in yt (marked at each final state after the separator |) .

possibly multiple filter states s). Thus, two q-subsets differ precisely by the set of factors f in yt
that are suffixes of a sequence ending in q. How many different sequences of factors can be suffixes
of the set of sequences x ending in q? Figure 5(a) illustrates the situation.

For any two strings z1 and z2, we write z1 ≥s z2 when z2 is a suffix of z1. Observe that if
f1, . . . , fn is the sequence of factors in yt, suffixes of a sequence x ending at q, then we must have
f1 ≥s f2 ≥s · · · ≥s fn. Thus, the number of distinct q-subsets is the number of different sequences
of factors of yt ordered for the suffix order. The number of such sequences is at most |yt| + 1 as it
can be seen straightforwardly from a suffix trie representing yt. Figure 5(b) illustrates that.

This proves that for any given state q of At, the number of distinct unweighted q-subsets con-
structed by the determinization of Det(Π(Yt ◦U◦Tt)) is at most O(|yt||U|). Thus, the total number
of distinct subsets is at most O(|yt||U||At|).

We now examine the number of possible remainder weights for each unweighted subset. Con-
sider any q-subset that is reached by a path labeled with x. If there is another q-subset containing
exactly the same tuples with different weights, then there must be another path labeled with x0 that
goes to the same q-subset. Note, however, that, by definition of determinization, if the number of
paths labeled with x0 with destination q in Π(M) is the same as the number of paths labeled with
x and with destination q in Π(M) then this will result in the same remainders and will not create
new states. It follows that the number of possible remainders is precisely the number of counts of
different strings labeling paths ending in state q of Wt, which is bounded by N .

6. Conclusion

We presented algorithms extending FPL and RWM to the setting of path experts when using two
important families of non-additive loss functions. These constitute significant advances in on-line
learning broadening the applicability of these algorithms to critical applications such as machine
translation, automatic speech recognition, and computational biology. In Appendix F, we describe
the application of these algorithms and their extensions to several tasks, including machine transla-
tion and automatic speech recognition.
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Appendix A. FPRL proofs

Proposition 1 Let LU be a rational loss associated to the WFST U over the probability semiring.
For any t ∈ [1, T ], let Vt denote the WFA over the log semiring defined by Vt = Det(Π(Yt ◦Ũ◦Tt))
and Wt the WFA over the log semiring defined by Wt = V1 ◦ · · · ◦ Vt. Then, for any t ∈ [1, T ] and
any path expert ξ, the following equality holds:

Wt(ξ) =

t∑
s=1

LU(ys, ξ(s)). (8)

Proof By definition of composition, for any s ∈ [1, T ] and any path expert ξ, Π(Ys ◦ Ũ ◦ Ts)(ξ)
can be expressed as follows:

Π(Ys ◦ Ũ ◦ Ts)(ξ) =
⊕

log

z1,z2

(
Ys(z1) + Ũ(z1, z2) + Ts(z2, ξ)

)
.

Since Ys only accepts the sequence ys, the sum can be restricted to z1 = ys. Similarly, since Ts
admits only one path with output ξ, the one with input label ξ(s), the sum can be restricted to
z2 = ξ(s). Thus, the expression simplifies into the following:

Π(Ys ◦ Ũ ◦ Ts)(ξ) = Ys(ys) + Ũ(ys, ξ(s)) + Ts(ξ(s), ξ) = Ũ(ys, ξ(s)) = LU(ys, ξ(s)),

using the fact that, by construction, we have Ys(ys) = 0 and Ts(ξ(s), ξ) = 0. The WFA Vs is
equivalent to Π(Ys ◦ U ◦ Ts) since it is obtained from it via determinization. Thus, we also have
Vs(ξ) = U(ys, ξ(s)) for any path expert ξ. Now, by definition of composition, we can write

Wt(ξ) = V1(ξ) + · · ·+ Vt(ξ) =

t∑
s=1

LU(ys, ξ(s)),

which concludes the proof.

We will adopt the following notation, which is similar to the one used in the proofs for FPL:
for any WFA A, M(A) = argminξ A(ξ). Using this notation, the following analogue of a standard
result in FPL proofs holds (Kalai and Vempala, 2005; Cesa-Bianchi and Lugosi, 2006).

Lemma 4 Let L be a loss function such that for all t ∈ [1, T ],
∑t

s=1 L(ys, ξ(s)) = Xt(ξ) for some
WFAs X1, . . . ,XT . Then, the following holds:

T∑
t=1

L(yt,M(Xt)(t)) ≤
T∑
t=1

L(yt,M(XT )(t)).

Proof The proof is by induction on T . The inequality clearly holds for T = 1. Now, assume that it
holds for t ≤ T − 1, then

T∑
t=1

L(yt,M(Xt)(t)) ≤
T−1∑
t=1

L(yt,M(XT−1)(t)) + L(yT ,M(XT )(T )).

14
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By the definition of M(XT−1) as a minimizer, we have

T−1∑
t=1

L(yt,M(XT−1)(t)) ≤
T−1∑
t=1

L(yt,M(XT )(t)).

Thus, we can write

T∑
t=1

L(yt,M(Xt)(t)) ≤
T−1∑
t=1

L(yt,M(XT )(t)) + L(yT ,M(XT )(T )) =
T∑
t=1

L(yt,M(XT )(t)),

which completes the proof.

Lemma 5 For any any sequence of vectors y1, . . . , yT , the following holds:

T∑
t=1

LU(yt,M(Wt ◦Nt)(t)) ≤
T∑
t=1

LU(yt,M(WT )(t)) +D
T∑
t=1

‖pt − pt−1‖∞,

where D = supd,d′∈P ‖d− d′‖1.

Proof For any path ξ, let ξ denote the binary vector in Rn representing ξ. Let p0 = 0 and consider
the loss function L such that for t ∈ [1, T ], L(yt, ξ(t)) = LU(yt, ξ(t)) + ξ · (pt − pt−1). Observe
that
t∑

s=1

L(yt, ξ(t)) =

t∑
s=1

LU(yt, ξ(s)) +

t∑
s=1

ξ · (ps − ps−1) =

t∑
s=1

LU(yt, ξ(t)) + ξ · pt = (Wt ◦Nt)(ξ).

Thus, we can apply Lemma 4 with the loss function L, which gives

T∑
t=1

L(yt,M(Wt ◦Nt)(t)) ≤
T∑
t=1

L(yt,M(WT ◦NT )(t)) ≤
T∑
t=1

L(yt,M(WT )(t)),

where we used the minimizing property of M(WT ◦NT ). The inequality relating the first and third
term can be written explicitly as follows:

T∑
t=1

(
LU(yt,M(Wt ◦Nt)) +M(Wt ◦Nt) · (pt − pt−1)

)
≤

T∑
t=1

LU(yt,M(WT )) +
T∑
t=1

M(WT ) · (pt − pt−1).

Rearranging, we obtain

T∑
t=1

LU(M(Wt ◦Nt), yt) ≤
T∑
t=1

LU(M(WT ), yt) +

T∑
t=1

(M(WT )−M(Wt ◦Nt)) · (pt − pt−1).

The result then follows by application of Hölder’s inequality.
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Theorem 2 For any sequence y1, . . . , yT , the following upper bound holds for the expected regret
of FPRL run with parameter ε ≤ min

(
1, 1

2A

)
:

E
[
RT (FPRL)

]
≤ 4
√
DALmin(1 + log n) + 16DA(1 + log n),

where Lmin is the cumulative loss of the best expert in hindsight, A = sup`∈L ‖R†`‖1, D =
supd,d′∈P ‖d− d′‖1 and where n is the number of transitions of the path expert automaton A1.

Proof Our proof is based on the bound of Lemma 5. We may assume that p1 = p2 = . . . = pT
since only marginal distributions of these random vectors affect the expected regret. Then the bound
of Lemma 5 reduces to

T∑
t=1

LU(yt,M(Wt ◦Nt)) ≤
T∑
t=1

LU(yt,M(WT )) +D‖p1‖∞. (9)

Since p1 is a vector of n independent standard Laplacian random variables scaled by 1/ε, the fol-
lowing upper bound holds:

E[‖p1‖∞] ≤ 2
1 + log n

ε
. (10)

To conclude the proof we need to relate E[LU(M(Wt ◦ N1), yt)] and E[LU(M(Wt−1 ◦ N1), yt)].
We will show that the following inequality holds for all t:

E[LU(yt,M(Wt−1 ◦N1))] ≤ exp(εA)E[LU(yt,M(Wt ◦N1))]. (11)

Indeed, let fY be the joint density of Yξs. Observe that Y = RX, where Y is a vector of Yξ, X is a
vector of n independent Laplacian random variables corresponding to edge noise and R is a matrix
where each row is a binary vector representing a path ξ in expert automaton. By change of variables,
fY(x) = fX(R†x)|det∗(R†)|, where R† is a pseudo-inverse of R, det∗ is the pseudo-determinant
and fX is joint density of X. Then it follows that

E[LU(yt,M(Wt−1 ◦N1))] =

∫
LU(yt,M(Wt−1(ξ) + LU(ξ, yt) + xξ))fY(x)dx

≤
(

sup
fY(x)

fY(x− `)

)∫
LU(M(Wt(ξ) + xξ), yt)fY(x)dx

=

(
sup

fY(x)

fY(x− `)

)
E[LU(M(Wt ◦N1), yt)].

By definition of fY and fX and the triangle inequality, the following inequality holds:(
sup

fY(x)

fY(x− `)

)
≤ exp

(
ε‖R†x−R†`‖1 − ε‖R†x‖1

)
≤ exp(εA),

which shows (11) for all t. Now, summing up the inequalities (11) over t and using (9) and (10)
yields

T∑
t=1

E[LU(M(Wt−1 ◦Nt), yt)] ≤ exp(εA)

[
Lmin + 2D

1 + log n

ε

]
.
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For ε ≤ 1 we have that

T∑
t=1

E[LU(yt,M(Wt−1 ◦Nt))] ≤ (1 + 2εA)

[
Lmin + 2D

1 + log n

ε

]
,

where Lmin is the cumulative loss of the best expert in hindsight. Using ε = ε1/2A with ε1 ≤ 1
leads to the following bound on the expected regret:

T∑
t=1

E[LU(yt,M(Wt−1 ◦Nt))]− Lmin ≤ ε1Lmin + 8D
A(1 + log n)

ε1
.

If 8DA(1 + log n) ≤ Lmin, then ε1 =
√

8DA(1+logn)
Lmin

minimizes the right-hand side and gives the

minimizing value 4
√
DALmin(1 + log n). Otherwise, Lmin < 8DA(1 + log n) and for ε1 = 1, the

right-hand side is bounded by 16DA(1 + log n).

Appendix B. Follow-the-Perturbed-Tropical-Leader (FPTL) algorithm

Here, we briefly discuss our on-line learning algorithm for path experts with a tropical loss, the
Follow-the-Perturbed-Tropical-Leader (FPTL) algorithm, which, as in the case of FPTL, can be
viewed as an extension of FPL (Kalai and Vempala, 2005). FPTL syntactically coincides with
FPTL (same pseudocode) but, everywhere in the algorithm, instead of the log semiring, the tropical
semiring is used. The correctness of the algorithm, including the proof of an analogue of Proposi-
tion 1 is straightforward to show using similar techniques. In particular, the algorithm can be used
for on-line learning with the edit-distance loss. We are leaving to a future study, however, the key
question of the complexity of determinization in FPTL.

Appendix C. Rational Randomized Weighted-Majority (RRWM) algorithm

In this section, we present an efficient algorithm for on-line learning for path experts with a rational
loss, Rational Randomized Weighted-Majority (RRWM), which can be viewed as an extension of
RWM Littlestone and Warmuth (1994).

C.1. Description

In the context of path experts, the randomized weighted majority (RWM) algorithm (Littlestone
and Warmuth, 1994) can be described as follows: (1) first, compute exp(−η

∑T
t=1 L(ξ(t), yt)) for

each path expert ξ; (2) next, sample according to the distribution defined by these weights. This
raises several issues: (1) the number of path experts ξ is exponential in the number of states of the
automaton, therefore, a naive computation of the cumulative loss per path expert is not practical; (2)
even if we compute a WFA whose weight for each path expert ξ is exp(−η

∑T
t=1 L(ξ(t), yt)), it is

not clear how to use that WFA for sampling path experts.
We will show that an elegant algorithmic solution can be derived for these problems by intro-

ducing a new semiring and by using some standard WFST algorithms.
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Lemma 6 For any η > 0, the system Sη = (R+ ∪ {+∞},⊕η,×, 0, 1), where ⊕η is defined for

all x, y ∈ R+ ∪ {+∞} by x ⊕η y =
(
x

1
η + y

1
η
)η, is a semiring that we will call the η-power

semiring. Furthermore, the mapping Ψη : (R+ ∪ {+∞},+,×, 0, 1) → Sη defined by Ψη(x) = xη

is a semiring isomorphism.

Proof By definition of Sη, for all x, y ∈ R+ ∪ {+∞}, Ψη(0) = 0, Ψη(1) = 1, and

Ψη(x+ y) = Ψη(x)⊕η Ψη(y) and Ψη(xy) = Ψη(x)Ψη(y).

Furthermore, Ψη(R+ ∪ {+∞}) = R+ ∪ {+∞}. This shows that Sη is a semiring and that Ψη is a

semiring morphism. It is straightforward to verify that its inverse Ψ−1
η defined by Ψη(x) = x

1
η for

all x ∈ R+ ∪ {+∞} is also a morphism.

To any WFST U over the probability semiring, we associate a corresponding WFST Ũ over the
η-power semiring by replacing every transition weight or final weight x of U with xη. Observe that,
by definition, for any x, y ∈ Σ∗, we can then write

Ũ(x, y) =
⊕

η

π∈P (I
Ũ
,x,y,F

Ũ
)

w
Ũ

[π]

=

[ ∑
π∈P (I

Ũ
,x,y,F

Ũ
)

w
1
η

Ũ
[π]

]η
=

[ ∑
π∈P (IU,x,y,FU)

wU[π]

]η
= U(x, y)η = e−η[− logU(x,y)] = e−ηLU(x,y).

For any t ∈ [1, T ], we augment the finite automaton At with output labels to help us explicitly keep
track of edges and paths. That is, each transition (p, a, q) ∈ EAt of At is replaced with (p, a, epq, q),
where epq represents the transition between p and q, as illustrated by Figure 1(c). We further assign
the weight 1 to every transition and final weights. This results in a WFST Tt which we interpret
over the η-power semiring and which assigns weight 1 to every pair (ξ(t), ξ).

For any t ∈ [1, T ], let Yt denote a simple finite automaton accepting only the sequence yt. We
assign weight 1 to every transition of Yt and its final weight. In this way, Yt is a WFA over the
semiring Sη which assigns weight 1 to the sequence yt, the only sequence it accepts (and weight 0
to all other sequences).

Proposition 7 Let LU be a rational loss associated to the WFST U over the probability semiring.
For any t ∈ [1, T ], let Vt denote the WFA over the semiring Sη defined by Vt = Det(Π(Yt ◦ Ũ◦Tt))
and Wt the WFA over the semiring Sη defined by Wt = V1 ◦ · · · ◦ Vt. Then, for any t ∈ [1, T ] and
any path expert ξ, the following equality holds:

Wt(ξ) = e−η
∑t
s=1 LU(ys, ξ(s)). (12)

Proof By definition of composition, for any t ∈ [1, T ], Π(Yt ◦ Ũ ◦ Tt)(ξ) can be expressed as
follows:

Π(Yt ◦ Ũ ◦ Tt)(ξ) =
⊕

η

z1,z2

(
Yt(z1)Ũ(z1, z2)Tt(z2, ξ)

)
.

Since Yt only accepts the sequence yt, the ⊕η-sum can be restricted to z1 = yt. Similarly, since
Tt admits only one path with output ξ, the one with input label ξ(t), the ⊕η-sum can be restricted
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RRWM(T )

1 W0 ← 1 . deterministic one-state WFA over the semiring Sη mapping all strings to 1.
2 for t← 1 to T do
3 xt ← RECEIVE()
4 Tt ← PATHEXPERTPREDICTIONTRANSDUCER(xt)

5 Vt ← Det(Π(Yt ◦ Ũ ◦ Tt))
6 Wt ←Wt−1 ◦ Vt
7 Wt ← WEIGHTPUSH(Wt, (+,×))
8 ŷt+1 ← SAMPLE(Wt)
9 return WT

Figure 6: Pseudocode of RRWM.

to z2 = ξ(t). Further, using the fact that, by construction, Yt(yt) = 1 and Tt(ξ(t), ξ) = 1, the
expression simplifies into the following:

Π(Yt ◦ Ũ ◦ Tt)(ξ) = Ũ(yt, ξ(t)) = e−ηLU(yt,ξ(t)).

The WFA Vs is equivalent to Π(Ys ◦ U ◦ Ts) since it is obtained from it via determinization. Thus,
we also have Vs(ξ) = U(ys, ξ(s)) for any path expert ξ. Now, by definition of composition, we can
write

Wt(ξ) = V1(ξ) · · ·Vt(ξ) = e−η
∑t
s=1 LU(ys, ξ(s)),

which concludes the proof.

Figure 6 gives the pseudocode of our Rational Randomized Weighted-Majority (RRWM) algo-
rithm. At each round t ∈ [1, T ] the learner receives the input point xt as well as the predictions
made by the path experts, which are represented by the transducer Tt mapping each path expert ξ to
its prediction ξ(t). The deterministic WFA Vt computed at line 5 gives the loss incurred at time t by
each path expert ξ: Vt(ξ) = U(yt, ξ(t)), as seen in the proof of Proposition 7. By Proposition 7, the
WFA Wt obtained by composition of Wt−1 and Vt (line 6) gives the cumulative loss up to time t for
each path expert ξ: Wt(ξ) =

∑t
s=1 LU(ys, ξ(s)). Furthermore, by induction, Wt is deterministic:

W0 is deterministic; assume that Wt−1, then Wt is deterministic as the result of the composition of
two deterministic WFAs (Lemma 9).

Wt(ξ) gives the loss of path expert ξ precisely as in the RWM algorithm. To use Wt for sam-
pling, we need to compute a WFA equivalent to Wt that is stochastic in the probability semiring, that
is one that assigns precisely the same weight to each path expert but such that outgoing transition
weights at each state sum to one.

The weight pushing algorithm (Mohri, 1997, 2009) can precisely help us compute such a WFA.
But, to do so, we would need to apply it to a WFA over the probability semiring while Wt is defined
over Sη. Observe however that Sη and the probability semiring share the same times operation
(standard multiplication). Furthermore, since Wt is deterministic, the plus operation of Sη is not
needed in the computation of Wt(ξ) for any path expert ξ. Thus, we can equivalently interpret Wt
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as a WFA over the probability semiring. Note that our use of weighted determinization is key to
ensure this property.4

We now briefly describe the weight pushing algorithm. For any state q ∈ QWt , let d[q] denote
the sum of the weights of all paths from q to final states:

d[q] =
∑

π∈P (q,FWt
)

wWt [π] ρWt(dest(π)),

where P (q, FWt) denotes the set of paths from q to a state in FWt . The weight pushing algorithm
then consists of the following steps. For any transition e ∈ EWt such that d[orig(e)] 6= 0, update its
weight as follows:

wWt [e]← d[orig(e)]−1wWt [e] d[dest(e)].

For any final state q ∈ FWt , update its weight as follows:

ρWt [e]← ρWt [q] d[IWt ].

The resulting WFA is guaranteed to preserve the path expert weights and to be stochastic (Mohri,
2009).

C.2. Regret guarantees

The following regret guarantee for RRWM follows directly the existing bound for RWM (Littlestone
and Warmuth, 1994; Cesa-Bianchi and Lugosi, 2006).

Theorem 8 Let N be the total number of path experts and M an upper bound on the loss of any
path expert. Then, the following upper bound holds for the regret of RRWM:

E[RT (RRWM)] ≤ 2M
√
T logN.

C.3. Running-time complexity

Since the worst-case complexity of each composition is quadratic, at each round t, (Yt ◦ Ũ ◦Tt) can
be computed in time O(|U||A1||yt|) using the equalities |Ũ| = |U| and |Tt| = |A1|. Similarly, Wt

can be computed inO(|Wt−1||Vt|). Since Wt is acyclic, the sums d[q] can be all computed in linear
time O(|Wt|) (Mohri, 1997, 2009). Thus, to show that our algorithm admits a polynomial-time
complexity, it suffices to show that the cost of the determinization of Π(Yt ◦ Ũ ◦ Tt) (line 5) is also
polynomial.5 This can be shown in the same way as in Theorem 3.

4. As indicated in the discussion of the FPRL algorithm, an alternative method improving RRWM consists of using,
instead of determinization, a recent disambiguation algorithm for WFAs (Mohri and Riley, 2015), which returns an
equivalent WFA with no two accepting paths sharing the same label.

5. After each determinization step, we can apply weighted minimization (Mohri, 1997) to reduce the size of the resulting
WFA. Since the WFAs are acyclic here, the time and space complexity of minimization is only linear in that case.
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Appendix D. Tropical Randomized Weighted-Majority (TRWM) algorithm

In this section, we present an efficient algorithm for on-line learning for path experts with a rational
loss, Tropical Randomized Weighted-Majority (TRWM), which can be viewed as an extension of
RWM (Littlestone and Warmuth, 1994).

It is straightforward to verify that Ψη : x 7→ xη defines a semiring isomorphism between
(R+ ∪ {+∞},min,+, 0, 1) and (R+ ∪ {+∞},min,×, 0, 1). TRWM syntactically coincides with
RRWM (same pseudocode, same definition of Yt, Ũ, and Tt), with the difference that, everywhere,
instead of the semiring Sη, the semiring (R+ ∪ {+∞},min,×, 0, 1) is used. The correctness of
the algorithm, including the proof of an analogue of Proposition 7 is straightforward to show us-
ing similar techniques. In particular, note that, since the second operation of the semiring is the
standard multiplication, the weight pushing algorithm can be applied to Wt to derive a stochastic
WFA that can used for sampling. Our TRWM algorithm can be used for on-line learning with the
edit-distance loss. We are leaving to a future study, however, the key question of the complexity of
determinization used in TRWM.

Appendix E. WFA algorithms and properties

E.1. Weighted determinization

Here we give a brief description of a version of the weighted determinization (Mohri, 1997) in
the context of the probability semiring (R+ ∪ {+∞},+,×, 0, 1). The algorithm takes as input a
WFA A and returns an equivalent WFA B that is deterministic: at each state of B no two outgoing
transitions share the same label. We will assume here that the weights in A are positive, otherwise
the corresponding transitions or final states could be first removed in linear time. Unlike the familiar
unweighted case, not all weighted automata are determinizable (Mohri, 1997; Allauzen and Mohri,
2003) but all acyclic weighted automata are determinizable, which covers the cases of interest for
this paper.

Figure 7 illustrates the algorithm in a simple case. The states of the determinized automaton B

are weighted subsets of the form {(q1, w1), . . . , (qn, wn)}, where qis, i = 1 . . . n, are states of A
reachable from an initial state of A via the same string x and wis remainder weights (real numbers)
adjusted as follows: let w be the weight of a path in B labeled with x, starting at the initial state and
ending at state {(q1, w1), . . . , (qn, wn)}, then w × wi is exactly the sum of the weights of all paths
labeled with x and ending at qi in A.

For any set of states U of A and any string x ∈ Σ∗, let δA(U, x) denote the set of states reached
from U by paths labeled with x. Also, for any string x ∈ Σ∗, let W (x, q) denote the sum of
the weights of all paths from IA to q in A labeled with x, and and define W (x) as the minimum
minqW (x, q). We will also denote by w(q, a, q′) the sum of the weights of all transitions from q to
q′ in A labeled with a ∈ Σ.
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(a) (b)

Figure 7: Illustration of weighted determinization. (a) Non-deterministic weighted automaton over
the probability semiring A; (b) Equivalent deterministic weighted automaton B. For each
state, the pairs elements of the subset are indicated. For final states, the final weight is
indicated after the slash separator.

With these definitions, the deterministic weighted automaton B = (Σ, QB, IB, FB, EB, 1, ρB),
is defined as follows:

QB =

{
{(q1, w1), . . . , (qn, wn)} : ∃x ∈ Σ∗ | qi ∈ δA(IA, x), wi =

W (x, qi)

W (x)

}
EB =

{
(q, a, w, q) : q = {(q1, w1), . . . , (qn, wn)}, q′ = {(q′1, w′1), . . . , (q′r, w

′
r)} ∈ Q,

a ∈ Σ, w ∈ R : δA
(
{q1, . . . , qn}, a

)
= {q′1, . . . , q′r}, w = min(wi × w(qi, a, q

′
j))

w′j =
wi × w(qi, a, q

′
j)

w

}
IB = {(q, 1) : q ∈ IA}.
FB = {q = {(q1, w1), . . . , (qn, wn)} ∈ Q | ∃i ∈ [1, n] : qi ∈ FA},

with the final weight function defined by:

∀q = {(q1, w1), . . . , (qn, wn)} ∈ FB, ρB(q) =
∑

i : qi∈FA

wi.

Note that the weighted determinization algorithm defined by the subset construction just de-
scribed applies also to weighted automata containing ε-transitions since, for any set of states U ,
δA(U, x) is the set of states reached from U via paths labeled with x that may contain εs.

E.2. Composition of deterministic WFAs

Lemma 9 Let T1 and T2 be two deterministic WFSTs over a semiring (S,⊕,⊗, 0, 1) with the
output alphabet of T1 matching the input alphabet of T2. Then, the WFST (T1 ◦ T2) returned by the
composition algorithm is deterministic.

Proof The states of (T1 ◦ T2) created by composition can be identified with pairs (p1, p2) with
p1 ∈ QT1 and p2 ∈ QT2 . The transitions labeled with a symbol a leaving (p1, p2) are obtained by
pairing up a transition leaving p1 and labeled with a with a transition leaving p2 and labeled with
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a. Since T1 and T2 are deterministic, there are at most one such transition for p1 and at most one
for p2. Thus, this leads to the creation of at most one transition leaving (p1, p2) and labeled with a,
which concludes the proof.

E.3. Determinization of a sum of deterministic WFAs

Theorem 10 Let A and B be two acyclic deterministic weighted automata with positive integer
transition and final weights defined over the probability semiring. Let NA (NB) denote the largest
weight of a path in A (resp. B), then Det(A + B) can be computed in O(NANB|A||B|).

Proof Since A and B have both a single initial state and are acyclic, a weighted automaton A + B

can be constructed from A and B simply by merging their initial states. By definition of weighted
determinization (see Section E.1), the states of Det(A + B) can be identified with subsets of states
of A + B augmented with some remainder weights. Let p be a state of Det(A + B) and let π be
a path reaching p that starts at the initial state and is labeled with some string ξ. Since both A and
B are deterministic, there exists at most one path πA in A and at most one path πB in B labeled
with ξ. Therefore, A + B admits at most two paths (πA and πB) that are labeled with ξ. Let qA be
the destination state of path πA in A (when it exists) and πB the destination of πB in B. If only πA
exists, then, by definition of weighted determinization we have p = {(qA, 1)}. Similarly, if only πB
exists, then we have p = {(qB, 1)}. If both exist, then, by definition of weighted determinization,
we must have p = {(qA, wA), (qB, wB)}, where wA and wB are remainder weights defined by

wA =
w[πA]

min{w[πA], w[πB]}
wB =

w[πB]

min{w[πA], w[πB]}
.

In view of that and the fact that w[πA] ∈ [1, NA] and w[πB] ∈ [1, NB], there are at most NANB dis-
tinct possible pairs of remainder weights (wA, wB). The total number of states in Det(A+B) is thus
at mostO(NANB|QA||QB|). The number of outgoing transitions of state p = {(qA, wA), (qB, wB)}
is at most (|E[qA]| + |E[qB]|) where E[qA] (E[qB]) is the set of outgoing transitions of qA (resp.
qB). Thus, the total number of transitions of Det(A + B) is in O(NANB|EA||EB|) and the size of
Det(A + B) is O(NANB(|QA||QB|+ |EA||EB|)) = O(NANB|A||B|).

Appendix F. Application to ensemble structured prediction

The algorithms we discussed in the previous sections can be used to learn ensembles of structured
prediction rules, thereby significantly improving the performance of algorithms in a number of
areas including machine translation, speech recognition, other language processing areas, optical
character recognition, and computer vision.

Structured prediction problems are common in all of these areas. In structured prediction tasks,
the label or output associated to an input x ∈ X is a structure y ∈ Y that can be decomposed and
represented by l substructures y1, . . . , yl. For example, for the text-to-phonemes pronunciation task
in speech recognition, x is a specific word or word sequence and y is its phonemic transcription
with yk chosen to be individual phonemes or more generally n-grams of consecutive phonemes.
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Figure 8: (a) Full automaton of path experts. (b) Arbitrary automaton of path experts.

The problem of learning ensembles of structured prediction rules can be described as follows.
As in standard supervised learning problems, the learner receives a training samplem labeled points
S = ((x1,y1), . . . , (xm,ym)) ∈ X × Y drawn i.i.d. according to some distribution D used both
for training and testing. The learner is further assumed to have access to a set of p predictors
h1, . . . , hp mapping X to Y to devise an accurate ensemble prediction. Thus, for any input x ∈ X ,
he can use the prediction of the p experts h1(x), . . . , hp(x). Each expert predicts l substructures
hj(x) = (h1

j (x), . . . , hlj(x)). Thus, the experts induce multiple path experts, as illustrated by
Figures 8. Figure 8(a) shows an automaton of path experts where all combinations are allowed,
Figure 8(b) an automaton with a subset of all possible path experts.

The objective of the learner is to use the training sample S to determine the best path expert,
that is the combination of substructure predictors with the best expected loss. This is motivated
by the fact that one particular expert may be better at predicting the kth substructure while some
other expert may be more accurate at predicting another substructure. Therefore, it is desirable to
combine the substructure predictions of all experts to derive the more accurate prediction.

It was shown by Cortes, Kuznetsov, and Mohri (2014) that this problem can be efficiently solved
using the WMWP or FPL algorithm in the special case of the additive Hamming loss. However, the
loss functions used in the applications already listed are non-additive.

We can use the on-line algorithms discussed in the previous sections to derive efficient solutions
for the ensemble structured prediction in machine translation with a rational loss is used (BLEU
score) or the speech recognition problem where an edit-distance with non-uniform edit costs is used.
This requires converting the on-line solutions discussed in the previous section to batch solutions.
We present several on-line-to-batch conversion schemes to derive such batch solutions for which we
will provide theoretical guarantees.

These algorithms can be implemented using the FSM Library or OpenFst software library
(Mohri et al., 1998; Allauzen et al., 2007). We can run experiment with them in a number of
machine translation and speech recognition tasks to demonstrate their benefit for the improvement
of the accuracy in these tasks. Often, several models are available in these applications, typically
as the result of alternative structured prediction learning algorithms, or the result of the training the
same algorithm with different features or subsets of the data (for example different gender models
in speech recognition). These models can serve as the experts in our formulation and we can seek
to derive a solution surpassing their performance by combining the substructures induced by these
experts.
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