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Abstract
We present a PTAS for agnostically learning halfspaces w.r.t. the uniform distribution on the d
dimensional sphere. Namely, we show that for every µ > 0 there is an algorithm that runs in time
poly

(
d, 1ε

)
, and is guaranteed to return a classifier with error at most (1 + µ)opt + ε, where opt

is the error of the best halfspace classifier. This improves on Awasthi, Balcan and Long Awasthi
et al. (2014) who showed an algorithm with an (unspecified) constant approximation ratio. Our
algorithm combines the classical technique of polynomial regression (e.g. Linial et al. (1989);
Kalai et al. (2005)), together with the new localization technique of Awasthi et al. (2014).
Keywords: Agnostic learning, Uniform distribution, Halfspaces, Approximation algorithms, Poly-
nomial approximation, Localization, Polynomial regression

1. Introduction

In the problem of agnostically learning halfspaces, the learner is given an access to examples drawn
from a distribution D on Rd × {±1} and an accuracy parameter ε > 0. It is required to output1 a
classifier h : Rd → {±1}whose error, ErrD(h) := Pr(x,y)∼D (h(x) 6= y), is at most2 opt+ε. Here,
opt is the error of the best classifier of the from hw(x) = sign(〈w, x〉). The learner is efficient if it
runs in time poly

(
d, 1ε
)
. We note that we consider the general, improper, setting where the learner

have the freedom to return a hypothesis that is not a halfspace classifier.
Halfspaces are extremely popular in practical applications, and have been extensively studied

in Machine Learning, Statistics and Theoretical Computer Science (see section 1.2). Unfortunately,
from a worst case perspective, the problem seems very hard: Best known efficient algorithms have
a terrible approximation ratio of Ω̃(d). In the case of proper learning, where the output hypothesis
must be a halfspace, agnostic learning is known to be NP-hard. Even learning with a constant
approximation ratio, where the returned classifier should have error ≤ α · opt + ε, is NP-hard. In
fact, even approximation ratio of 2log

0.99(d) is NP-hard. In the general (improper) case, agnostic
learning of halfspaces, and even agnostic learning with a constant approximation ratio, have been
showed hard under various complexity assumptions (see section 1.2). In light of that, it is just
natural to consider agnostic learning under various restrictions on the distributionD. A very natural
and widely studied such restriction Klivans et al. (2009, 2002); Awasthi et al. (2014); Kalai et al.
(2005) is that the marginal distribution, DRd , is uniform on the sphere Sd−1.

Even under the uniform distribution, no efficient algorithms are known, and there is also an
evidence that the problem is hard Klivans and Kothari (2014). This lead researchers to consider
approximation algorithms. The first approximation guarantee is due to Kalai et al. (2005), who

1. Throughout, we require our algorithms to succeed with a constant probability (that can be standardly amplified by
repetition).

2. Note that opt might be > 0, namely, we consider the “agnostic PAC learning” model Kearns et al. (1994).

c© 2015 A. Daniely.



DANIELY

showed an efficient regression based algorithm with approximation ratio of α = O

(√
log
(

1
opt

))
.

In an exciting recent work, Awasthi et al. (2014) introduced a new algorithmic technique, called
localization, and showed an efficient algorithm with an unspecified constant approximation ratio.
In this paper, we advance this line of work further, and show a Polynomial Time Approximation
Scheme (PTAS). Namely, we show:

Theorem 1 (main) For every µ > 0, there is an efficient algorithm for agnostically learning
halfspaces under the uniform distribution with an approximation ratio of (1 + µ).

As noted above, Klivans and Kothari (2014) showed that under a certain complexity assumption
(hardness of learning sparse parity), there are no exact efficient algorithms (i.e., with approximation
ratio α = 1). In that case, our result is optimal.

Label Complexity: Our algorithm naturally fits to the active learning (e.g. Settles (2010))
setting. Often, a label is much more expensive than an example (e.g., in biology, it might be the
case that we have to make an experiment to get a label). It is therefore useful to make economical
use of labels. Our algorithm naturally have such property, as its label complexity (i.e., the number
of labels it needs to see) is poly-logarithmic in 1

opt (see theorem 5 for a more detailed statement).
Interpolation between approximation and exact algorithms: A more precise statement of

our result is that there exists an algorithm with runtime poly

(
d

log3( 1
µ)

µ2 , 1ε

)
that returns a classifier

with error ≤ (1 + µ)opt + ε for every 0 < µ, ε ≤ 1. Taking µ up to ε
2 and replacing ε with ε

2 , the
error bound is

(
1 + ε

2

)
opt + ε

2 ≤ opt + ε. Hence, we get an exact algorithm. The running time

is poly

(
d

log3( 1
ε )

ε2

)
, which almost matches the state of the art – poly

(
d

1
ε2

)
Kalai et al. (2005);

Diakonikolas et al. (2010b).
Open questions: Obvious open questions are to extend our results to more distributions (uni-

form on {±1}d, permutation-invariant, product, log-concave, . . . ) and more problems (learning
intersection of halfspaces, functions of halfspaces, . . . ). In addition, as opposed to previous approx-
imation algorithms Awasthi et al. (2014); Kalai et al. (2005), our algorithm does not always return
a halfspace classifier. A natural open question is therefore to find a proper PTAS.

1.1. Algorithmic Components, The PTAS, and Proof Outline

Our algorithm and its analysis build on and combine various algorithmic and proof techniques
that were previously used for learning halfspaces. This includes regression based algorithms (e.g.
Shalev-Shwartz et al. (2011); Kalai et al. (2005)), polynomial approximations of the sign function
(e.g. Shalev-Shwartz et al. (2011); Kalai et al. (2005); Diakonikolas et al. (2010a,b)) and localization
techniques Awasthi et al. (2014). In this section we outline these techniques and the way we use
them. Then, we present our PTAS, state its properties (theorem 5), and describe the course of the
proof. The full proof is in sections 2 and A.

1.1.1. SOME PRELIMINARIES

Noise tolerance is a measure to evaluate the performance of learning algorithms, that is essentially
equivalent to the approximation ratio. Yet, we find it slightly more convenient for the technical
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exposition. We say that a learning algorithm tolerates noise rate of 0 < f(η) < η (w.r.t. halfspaces)
if, when running on input 0 < η < 1, it guaranteed to return a hypothesis with error ≤ η, provided
that opt ≤ f(η). We say that such an algorithm is efficient if it runs in time poly

(
d, 1η

)
. We

note that given a learning algorithm that tolerates noise rate of η
α , for some α > 1, it is not hard to

construct an algorithm with approximation ratio of α, and the running time grows only by a factor of
poly

(
1
ε

)
: Indeed, in order to return a hypothesis with error ≤ α · opt + ε, we can run the algorithm

with α · opt ≤ η ≤ α · opt + ε. We can find such an η by trying η = kε for k = 1, 2, . . . ,
⌈
1
ε

⌉
.

Notation. Let D be a distribution on a space X . For Y ⊂ X we denote by D|Y the restriction of D
to Y . If D is a distribution on X × {±1} we denote by DX the marginal distribution on X . If D is
a distribution on Sd−1 (resp. Sd−1 × {±1}) and w ∈ Sd−1, we define the projection of D on w as
follows: If x ∼ D (resp. (x, y) ∼ D) thenDw is the distribution (on [−1, 1]) of the random variable
〈w, x〉. For a distribution D on a space X and a function f : Sd−1 → R, we denote ‖f‖p,D =

(Ex∼D|f(x)|p)
1
p . We will sometimes abuse notation and use ‖f‖p,D instead of ‖f‖p,D

Sd−1
even

when D is a distribution on Sd−1 × {±1}. We denote by θ(w,w∗) = cos−1(〈w,w∗〉) the angle
between two vectors w,w∗ ∈ Sd−1. We will frequently use the fact that for uniform x ∈ Sd−1 we
have Pr (hw∗(x) 6= hw(x)) = θ(w,w∗)

π . We denote by POLr,d the space of d-variate polynomials of
degree ≤ r. For w ∈ Sd−1 and γ > 0 we let Td,γ(w) := {u ∈ Sd−1 : |〈w, u〉| ≤ γ}.

1.1.2. POLYNOMIAL `1-REGRESSION FOR CLASSIFICATION

The output of a classification algorithm is a (description of a) hypothesis h : Sd−1 → {±1}.
Often, the returned hypothesis is of the form h(x) = sign(f(x)), for some real valued function
f : Sd−1 → R. To conveniently dealing with such hypotheses, we introduce some terminology. We
denote the standard (zero-one) loss of f by ErrD(f) = ErrD (sign(f)). We also consider the `1-
loss, ErrD,1(f) = E(x,y)∼D|f(x)− y|. We note that for f : Sd−1 → R, since | sign(z)−1|2 ≤ |z − 1|
for all z, we have

ErrD(f) = E(x,y)∼D
| sign(yf(x))− 1|

2
≤ E(x,y)∼D|yf(x)− 1| = E(x,y)∼D|f(x)− y| = ErrD,1(f)

Thus, by finding f with small `1-error we can find a good classifier. The motivation for moving
from the 0-1 loss to the `1 loss is the convexity of the `1 loss, which enables the use of convex
optimization. Concretely, for “nice enough” convex set, F , of functions from Sd−1 to R, it is
possible to efficiently find (both in terms of number of examples and time) f ∈ F with `1 error
almost as small as minf∈F ErrD,1(f). Now, for a classifier h : Sd−1 → {±1} we have

ErrD(f) ≤ ErrD,1(f) = E(x,y)∼D|f(x)− y|
≤ E(x,y)∼D|f(x)− h(x)|+ E(x,y)∼D|h(x)− y| (1)

= ‖f − h‖1,D + 2 Err(h)

Thus, if we minimize the `1-loss over a collection of functions that is large enough to contain
a good `1-approximation of the best halfspace classifier, we can find a function whose `1-error,
and therefore also the 0-1 error, is almost as good as the 0-1 error of the best halfspace classifier.
Methods that follow the above spirit have been extensively studied in computational learning theory.
Concretely, Kalai et al. (2005) suggested the following algorithm: First, find P ∈ POLr,d that
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minimizes the empirical `1-error on the given sample3. Then, find a classifier that makes the least
number of errors on the given sample, among all classifiers of the form x 7→ sign (P (x)− a) for
a ∈ R. We note that the second step is required in order to overcome the factor of 2 in equation (1).
They used that algorithm to show:

Theorem 2 Kalai et al. (2005) There is an algorithm with runtime poly
(
dr, 1ε

)
such that, for every

distribution D on Sd−1 × {±1} and every h : Sd−1 → {±1}, it returns P ∈ POLr,d with
ErrD(P ) ≤ ErrD(h) + minP ′∈POLr,d ‖h− P ′‖1,D + ε.

1.1.3. LEARNING HALFSPACES USING SIGN APPROXIMATIONS

To use theorem 2 for learning halfspaces, we need to prove the existence of low degree polynomials
P such that ‖h − P‖1,D is small, where h is a halfspace classifier. As explained below, this is

naturally done by approximating the sign function, sign(x) =

{
1 x > 0

−1 x ≤ 0
, with respect to an

appropriate proximity measure.
Suppose that w∗ ∈ Sd−1 defines the optimal halfspace and let Dw∗ be the projection of D on

w∗. For a univariate polynomial p ∈ POLr,1, consider the d-variate polynomial P ∈ POLr,d given
by P (x) = p(〈w∗, x〉). We have

‖P − hw∗‖1,D = Ex∼D
Sd−1

[|p(〈w∗, x〉)− sign(〈w∗, x〉)|]
= Ex∼Dw∗ [|p(x)− sign(x)|] = ‖p− sign ‖1,Dw∗ (2)

Therefore, in order to find a good `1 approximation for hw∗ w.r.t. D, we can find a good `1 approx-
imation for sign w.r.t. Dw∗ .

Approximating the sign function is a central component in many papers about halfspaces Birn-
baum and Shalev-Shwartz (2012); Diakonikolas et al. (2010a,a); Kalai et al. (2005); Shalev-Shwartz
et al. (2011). These papers needed to find approximation of the sign function w.r.t. relatively well
studied proximity measures, such as the `∞ norm, or the `1 and `2 norms w.r.t. the Gaussian dis-
tribution. Therefore, some of these papers used basis expansion methods (Fourier, Hermite, Cheby-
shev, . . . ). In this paper we need to find `1 approximation w.r.t. somewhat messier distributions.
Therefore, we use a somewhat more flexible approach, similar to the one used in Diakonikolas et al.
(2010a). We rely on techniques from approximation theory Davis (1975). In particular, our main
tool for constructing polynomials will be the celebrated Jackson’s theorem.

Theorem 3 (Jackson, Davis (1975)) For every L-lipschitz function f : [−1, 1] → R and r ∈ N
there is a degree r polynomial p such that ‖p− f‖∞,[−1,1] ≤ 6L

r .

1.1.4. LOCALIZATION

An additional algorithmic component we will use, except polynomial regression, is localization in
the instance and the hypotheses space (e.g. (Bartlett et al., 2005; Awasthi et al., 2014)). The basic
idea is the following. Suppose that w∗ ∈ Sd−1 defines the optimal halfspace. Suppose furthermore
that we have found (say, using some simple algorithm) a vector w ∈ Sd−1 that defines a halfspace
with a relatively small error. The facts that the marginal distribution is uniform and Err(hw) is small
have two relevant consequences:

3. I.e., if the sample is (x1, y1), . . . , (xm, ym) ∈ Sd−1×{±1}, findP ∈ POLr,d that minimizes 1
m

∑m
i=1 |P (xi)−yi|.
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• We know that the optimal vector, w∗, is close to w.

• Hence, if |〈w, x〉| is large, then hw∗(x) = hw(x) and therefore we know hw∗(x).

These two properties enable us to “localize the learning” and concentrate only on hypotheses hw′
with w′ close to w, and on instances x with small |〈w, x〉|. We will use this idea directly in our
algorithm. In addition, we will use, as a black-box, the localization-based algorithm of Awasthi
et al. (2014). Their algorithm starts with a crude approximation w1 ∈ Sd−1 of the optimal halfspace
w∗. Then, it finds w2 that minimizes the hinge loss ED|T×{±1}(1 − 〈w, yx〉)+ on the restriction of
D to some small strip T = {x ∈ Sd−1 | |〈w, x〉| ≤ γ}. Then, it continue in this manner to find
better and better wi’s. Awasthi, Balcan and Long used their algorithm to show:

Theorem 4 Awasthi et al. (2014) There is an efficient learning algorithm with label complexity
poly

(
d, log

(
1
η

))
that tolerates noise rate of η

α0
for some universal constant α0 > 1. Moreover,

the algorithm is proper, that is, its output is a halfspace.

1.1.5. THE PTAS AND ITS ANALYSIS

In a nutshell, our algorithm first find (step 1) a “rough estimation”, w, of w∗. Then, it “localizes
the learning” and apply more computation power (step 3), to a small strip T that is closed to hw’s
decision boundary, and therefore, intuitively, we are less certain about hw’s prediction.

Algorithm 1 A PTAS for agnostically learning halfspaces w.r.t. the uniform distribution
Input: 0 < η ≤ 1 and access to samples from a distribution D on Sd−1 × {±1}.
Parameters: r ∈ N, β > 0 and γ > 0.

1: Find, using Awasthi et al. (2014) (theorem 4), a vector w ∈ Sd−1 with ErrD(hw) ≤ α0η
2: Let T = Td,γ(w) := {u ∈ Sd−1 : |〈w, u〉| ≤ γ}.
3: Find, using Kalai et al. (2005) (theorem 2), P ∈ POLr,d with

ErrD|T (P ) ≤ ErrD|T (hw∗) + min
P ′∈POLr,d

‖hw∗ − P ′‖1,D|T + β

where hw∗ is an optimal halfspace classifier w.r.t. D.

4: With probability 1
2 return hw, and w.p. 1

2 return h(x) =

{
hw(x) |〈w, x〉| > γ

sign(P (x)) |〈w, x〉| ≤ γ

Theorem 5 (main – detailed) With appropriate choice of the parameters r, β, γ (depending on
0 < µ, η ≤ 1), algorithm 1 satisfies:

• It tolerates noise rate of (1− µ)η.

• It runs in time poly

(
d

log3( 1
µ)

µ2 , 1η

)
.

• Its label complexity is poly

(
d

log3( 1
µ)

µ2 , log
(
1
η

))
.
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Proof outline. To prove theorem 5, we must show that we can choose the parameters so that the
time and label complexity are as stated, and under the assumption that ErrD(hw∗) ≤ (1− µ)η, the
error of the returned classifier satisfies ErrD(h) ≤ η. Below, we explain how we do that. We would
naturally like to decompose the error into two parts:

ErrD(h) = Pr
(x,y)∼D

(x /∈ T ) · ErrD|Tc×{±1}(h) + Pr
(x,y)∼D

(x ∈ T ) · ErrD|T×{±1}(h)

= Pr
(x,y)∼D

(x /∈ T ) · ErrD|Tc×{±1}(hw) + Pr
(x,y)∼D

(x ∈ T ) · ErrD|T×{±1}(P ) (3)

We first handle the former summand using a localization lemma (lemma 6 below). We show that

for γ = Θ

η

√
log
(

1
µ

)
√
d

, the probability that hw(x) 6= hw∗(x) outside the strip T , is ≤ µη
2 . Hence,

on the complement of T , the returned classifier, that coincides with hw, is as good as h∗, up to an
additive error of µη2 . Concretely,

Pr
(x,y)∼D

(x /∈ T ) · ErrD|Tc×{±1}(hw) ≤ Pr
(x,y)∼D

(x /∈ T ) · ErrD|Tc×{±1}(hw∗) +
µη

2
. (4)

It remains to handle the latter summand in equation (4). It is enough to show that

Pr
(x,y)∼T

(x ∈ T ) · ErrD|T×{±1}(P ) ≤ Pr
(x,y)∼T

(x ∈ T ) · ErrD|T×{±1}(hw∗) +
µη

2
(5)

Indeed, in that case it follows from equations (3), (4) and (5) that

ErrD(h) ≤ Pr
(x,y)∼D

(x /∈ T ) · ErrD|Tc×{±1}(hw∗) + Pr
(x,y)∼T

(x ∈ T ) · ErrD|T×{±1}(hw∗) + µη

= ErrD(hw∗) + µη ≤ (1− µ)η + µη = η .

To prove equation (5) we first note that Pr(x,y)∼D(x ∈ T ) = Θ

(
η

√
log
(

1
µ

))
. Hence, it is enough

to show that for suitable choice of r and β, ErrD|T×{±1}(P ) ≤ ErrD|T×{±1}(hw∗) + µ

C

√
log
(

1
µ

) for

large enough constant C > 0. By theorem 2, it is enough to choose β = µ

2C

√
log
(

1
µ

) , and large

enough r so that minP ′∈POLr,d ‖h− P ′‖1,D|T×{±1} ≤
µ

2C

√
log
(

1
µ

) .

As we show, r = O

(
log3

(
1
µ

)
µ2

)
suffices. To do that, by equation (2), it is enough to find a poly-

nomial of degree O

(
log3

(
1
µ

)
µ2

)
that approximates the sign function up to an `1-error of µ

2C

√
log
(

1
µ

)
w.r.t the distribution (D|T×{±1})w∗ . This is done in section A, in three steps:

1. We first (section A.1) show how to find polynomials that approximate the sign function on
all the points of a given segment [−a, a], except the area that is very close to the origin,
say [−ε, ε]. To this end, we invoke Jackson’s theorem (theorem 3) to find a polynomial
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that roughly (up to an error of, say, 0.1) approximates the sign function on the mentioned
regime. Namely, we find a polynomial p of degree O

(
a
ε

)
that maps [−a,−ε] (resp. [ε, a])

to [−1.1,−0.9] (resp. [0, 9, 1.1]). To move from accuracy of 0.1 to accuracy of some small
τ > 0, we compose p with another polynomial r that maps [−1.1,−0.9] (resp. [0.9, 1.1]) to
[−1− τ,−1 + τ ] (resp. [1− τ, 1 + τ ]). Using the Taylor expansion of the the error function

erf(x) := 1√
2π

∫ x
−∞ e

− t
2

2 dt, we show that there exists such r of degree O
(
log
(
1
τ

))
.

2. In the second step (section A.2), we find `1 approximations for distributions with strong tail
bounds (namely, with density function bounded by 2 exp

(
−x2

32

)
on a certain domain). Using

step 1 we find polynomials that approximate the sign function in `∞ on a large area, and use
the tail bounds and lemma 13 to neglect the `1 norm on the complement of that area.

3. In the last step (section A.3), using basic facts about high dimensional spherical geometry, we
show that the distribution (D|T×{±1})w∗ have strong enough tail bounds.

1.2. Related work

Upper bounds. Statistical aspects of learning halfspaces have been extensively studied (e.g. Vap-
nik (1998)). Halfspaces are efficiently learnable in the realizable case, when opt = 0. This is done
using the ERM algorithm Vapnik (1998) that efficiently find, using linear programming, a halfspace
that makes no errors on the given sample. For agnostic, distribution free learning, the best known
efficient algorithm Kearns and Li (1988) have an approximation ratio of O(d), and the best known
exact algorithm is the naive (exponential time) algorithm that go over all halfspaces and return the
one with minimal error on the given sample. Under distributional assumptions, better algorithms are
known. Under the uniform distribution, Kalai et al. (2005) and Awasthi et al. (2014) presented effi-

cient algorithms with approximation ratios
√

log
(

1
opt

)
and O(1) respectively. The best known ex-

act algorithm Kalai et al. (2005) runs in time dO
(

1
ε2

)
(as follows from Diakonikolas et al. (2010b)).

For log-concave distributions, Klivans et al. (2009) and Awasthi et al. (2014) presented efficient

algorithms with approximation ratios O

(
log
(

1
opt

)
opt2

)
and O

(
log2

(
1

opt

))
respectively. The best

known exact algorithm Kalai et al. (2005) runs in time df(ε). In learning halfspaces with margin4

γ > 0, best known algorithms Long and Servedio (2011); Birnbaum and Shalev-Shwartz (2012)
have approximation ratio of 1/γ

log(1/γ) , while the best known exact algorithm Shalev-Shwartz et al.

(2011) runs in time
(
1
ε

)O( log(1/γ)
γ

)
.

Lower bounds. Hardness of (distribution free) agnostic learning of halfspaces is known to follow
from several complexity assumptions including hardness of learning parity Kalai et al. (2005) (this
result even rules out learning under the uniform distribution on {±1}d), hardness of the shortest vec-
tor problem Feldman et al. (2006), and hardness of refuting random K-SAT formulas Daniely and
Shalev-Shwartz (2014). Hardness of learning sparse parity implies hardness of agnostic learning un-
der the uniform distribution on Sd−1 Klivans and Kothari (2014). Hardness of agnostic learning of

4. In this problem the distribution is supported in the unit ball, and the algorithm should compete with all classifiers
that predict like a halfspace classifier hw, except that they give no prediction (and therefore err) for instances that are
within distance γ of the decision boundary of hw.
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halfspaces with a constant approximation ratio follows from a rather strong complexity assumption
on the complexity of refuting random CSP instances Daniely et al. (2014a). For proper learning of
halfspaces, super constant (Ω

(
2log

1−τ (d)
)

for every τ > 0) lower bounds on the best approximation
ratio are known, assuming NP 6= RP Arora et al. (1993); Guruswami and Raghavendra (2006);
Feldman et al. (2006). Finally, lower bounds on concrete families of algorithms were studied in
Ben-David et al. (2012); Daniely et al. (2014b)

2. Proof of theorem 5

For localization arguments, we will use the following lemma.

Lemma 6 (localization) Let w,w∗ ∈ Sn−1 and let D be a distribution of Sd−1 × {±1} such that
D|Sd−1 is uniform.

• We have θ(w,w∗)
π ≤ ErrD(w) + ErrD(w∗).

• If x ∈ Sd−1 is a uniform vector, then for every r > 0,

Pr (hw(x) 6= hw∗(x) and |〈x,w〉| > r · θ(w,w∗)) ≤ 4 · θ(w,w∗)
π

exp

(
−1

8
r2d

)
Proof For the first part we note that Prx∼D (hw(x) 6= hw∗(x)) = θ(w,w∗)

π , while on the other hand,

Pr
x∼D

(hw(x) 6= hw∗(x)) ≤ Pr
(x,y)∼D

(hw(x) 6= y) + Pr
(x,y)∼D

(hw∗(x) 6= y) .

For the second part, let V ⊂ Rd be the 2-dimensional space spanned by w,w∗, let PV : Rd → V
be the orthogonal projection V , and let B ⊂ V be the ball of radius r around 0. We have

|〈w∗, x〉 − 〈w, x〉| = |〈w∗ − w,PV (x)〉| ≤ ‖w − w∗‖ · ‖PV (x)‖ ≤ θ(w,w∗) · ‖PV (x)‖ .

Therefore, if PV (x) ∈ B and |〈x,w〉| > r · θ(w,w∗) then hw(x) = hw∗(x). It follows that

Pr (hw(x) 6= hw∗(x) and |〈x,w〉| > r · θ(w,w∗)) = Pr (hw(x) 6= hw∗(x) | PV (x) /∈ B) · Pr (PV (x) /∈ B)

=
θ(w,w∗)

π
· Pr (PV (x) /∈ B) .

Finally, let e1, e2 ∈ V be an orthonormal basis. Note that if |〈x, e1〉| ≤ r√
2

and |〈x, e2〉| ≤ r√
2

then
PV (x) ∈ B. Hence, we have

Pr (PV (x) /∈ B) ≤ Pr

(
|〈x, e1〉| >

r√
2

)
+ Pr

(
|〈x, e2〉| >

r√
2

)
≤ 4 exp

(
−1

8
r2d

)
.

Here, the last inequality follows from the well known measure concentration bound according which
for every e ∈ Sd−1 and σ > 0 we have Pr (|〈x, e〉| ≥ σ) ≤ 2 exp

(
−1

4σ
2d
)
.

To approximate hw∗ , we will find low degree `1 approximation of hw∗ w.r.t. D|T . Such approxi-
mations are given in the following two lemmas. The first is from Diakonikolas et al. (2010a) (see a
proof in section A. For a stronger version, with r = O

(
1
τ2

)
, see Diakonikolas et al. (2010b)). The

second lemma is established by approximating the sign function (as explained in section 1.1.3) and
is given in section A.

8
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Lemma 7 (uniform halfspaces approximation, Diakonikolas et al. (2010a)) Let D be the uni-
form distribution on Sd−1 and let w∗ ∈ Sd−1. For every τ > 0 there is P ∈ POLr,d, for

r = O
(
log2(1/τ)

τ2

)
such that ‖hw∗ − P‖1,D < τ .

Lemma 8 (halfspaces approximation on a strip) Let w,w∗ be two vectors with θ = θ(w,w∗)
and let 1

2 > γ > 0. Let D be the distribution on Sd−1 that is the restriction of the uniform

distribution to Td,γ(w). Then, for every 0 < τ < sin(θ)

2γ
√
d

there is P ∈ POLr,d, for r = O
(
log2(1/τ)

τ2

)
such that ‖hw∗ − P‖1,D < τ .

Lastly, we will also rely on the following complexity analysis of algorithm 1.

Lemma 9 (complexity analysis) The runtime of algorithm 1 is poly
(
dr, 1β ,

1
γ ,

1
η

)
and the label

complexity is poly
(
dr, 1η , log

(
1
η

))
.

Proof The runtime of step 1 is poly
(
d, 1η

)
, while the label complexity is poly

(
d, log

(
1
η

))
. For

step 3, we can apply the Kalai et al. (2005) algorithm on poly
(
dr, 1η

)
examples and labels from

the distribution D|T . We can get these many examples by sampling poly
(
dr, 1β ,

1
PrD(T×{±1})

)
examples from D and keep and expose the labels of only the first poly

(
dr, 1β

)
examples that fell

in T . It is not hard to see that PrD(T ×{±1}) ≥ Ω
(

min
(
γ
√
d, 1
))

. Hence, the runtime of step 3

is poly
(
dr, 1β ,

1
γ

)
. To summarize, the total runtime is poly

(
dr, 1β ,

1
γ ,

1
η

)
and the label complexity

is poly
(
dr, 1β , log

(
1
η

))
.

We are now ready to prove theorem 5.
Proof (of theorem 5) We will first deal with the case that η > 1

2(1+α0)
. In that case we won’t use

localization, that is we will choose γ = 1 (in that case our algorithm is essentially the algorithm
of Kalai et al. (2005)). We will choose β = µη

2 , and r = O
(
log2(1/(µη))

(µη)2

)
= O

(
log2(1/µ)

µ2

)
that

is large enough so that minP ′∈POLr,d ‖hw∗ − P ′‖1,D|T ≤
µη
2 (this is possible according to lemma

7). It that case, the algorithm will, w.p. 1
2 , return the hypothesis sign(P ) for the polynomial P that

was found in step 3. We have ErrD(P ) ≤ ErrD(hw∗) + µη
2 + µη

2 . By assumption, ErrD(hw∗) ≤
(1 − µ)η. Hence, ErrD(P ) ≤ η, as required. It also follows from lemma 9 that the runtime and

label complexity are poly

(
d

log2(1/µ)

µ2

)
(note that η is bounded from below by a constant) as stated .

Next, we deal with the case that η ≤ 1
2(1+α0)

. We will show how to choose r = Θ

(
log3

(
1
µ

)
µ2

)
,

β = θ

 µ√
log
(

1
µ

)
 and γ = Θ

η

√
log
(

1
µ

)
√
d

 for which the algorithm will have the desired prop-

erties. Also, by lemma 9, for such a choice of parameters, the runtime and label complexity are as
stated.

9
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Let w∗ be the vector defining the optimal halfspace. By assumption, ErrD(hw∗) ≤ (1 − µ)η.
Let w be the vector found in step 1, and let P be the polynomial found in step 3. We first claim that
we can assume w.l.o.g. that

θ

π
:=

θ(w,w∗)

π
≥ µη . (6)

Indeed, otherwise, we will have

ErrD(hw) ≤ ErrD(hw∗) + Pr
(x,y)∼D

(hw(x) 6= hw∗(x))

= ErrD(hw∗) +
θ

π
≤ (1− µ)η + µη < η

and in that case the algorithm will return, w.p. 1
2 , a hypothesis with error ≤ η, as required.

Let h(x) =

{
hw(x) |〈w, x〉| > γ

sign(P (x)) |〈w, x〉| ≤ γ
. It is enough to show that ErrD(h) ≤ η. Let T =

Td,γ(w) := {u ∈ Sd−1 : |〈w, u〉| ≤ γ}. The error of h is

ErrD(h) = Pr
(x,y)∼D

(hw(x) 6= y and |〈w, x〉| > γ) + Pr
(x,y)∼D

(sign(P (x)) 6= y and |〈w, x〉| ≤ γ)

≤ Pr
(x,y)∼D

(hw(x) 6= hw∗(x) and |〈w, x〉| > γ) + Pr
(x,y)∼D

(hw∗(x) 6= y and |〈w, x〉| > γ)

+ Pr
(x,y)∼D

(x ∈ T ) · ErrD|T (P ) (7)

By the first part of lemma 6 we have

θ

π
≤ ErrD(hw) + ErrD(hw∗) ≤ (1 + α0)η . (8)

By the second part of lemma 6 we have

Pr
(x,y)∼D

(hw(x) 6= hw∗(x) and |〈w, x〉| > γ) ≤ 4(1 + α0)η exp

(
−1

8

(γ
θ

)2
d

)
≤ 4(1 + α0)η exp

(
−1

8

(
γ

(1 + α0)πη

)2

d

)

Now, by an appropriate choice of γ = Θ

η

√
log
(

1
µ

)
√
d

, we get

Pr
(x,y)∼D

(hw(x) 6= hw∗(x) and |〈w, x〉| > γ) ≤ µη

2
. (9)

We next deal with the term Pr(x,y)∼D (x ∈ T ) · ErrD|T (P ). Since γ = Θ

η

√
log
(

1
µ

)
√
d

 we have

that

Pr
(x,y)∼D

(x ∈ T ) = O

(
η ·

√
log

(
1

µ

))
(10)

10
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Also, by equation (8) and the assumption that η ≤ 1
2(α0+1) , we have that 0 ≤ θ ≤ π

2 . For this

regime, sin(θ) ≥ 2θ
π . Hence, by equation (6) we have

sin(θ)

2γ
√
d
≥ θ

πγ
√
d
≥ µη

γ
√
d

= Θ

(
µ√

log (1/µ)

)
(11)

By equations (10) and (11) we can choose β = µ

4C

√
log
(

1
µ

) , where C > 0 is a universal constant

that is large enough so that

β <
sin(θ)

2γ
√
d

and 2β · Pr
(x,y)∼D

(x ∈ T ) ≤ µη

2
(12)

By equation 12 and lemma 8 we can choose r = Θ

(
log2

(
1
β

)
β2

)
= Θ

(
log3

(
1
µ

)
µ2

)
such that

min
P ′∈POLr,d

‖hw∗ − P ′‖1,D|T ≤ β

in that case we have

ErrD|T (P ) ≤ ErrD|T (hw∗) + min
P ′∈POLr,d

‖hw∗ − P ′‖1,D|T + β ≤ ErrD|T (hw∗) + 2β .

Hence,

Pr
(x,y)∼D

(x ∈ T ) · ErrD|T (P ) ≤ Pr
(x,y)∼D

(x ∈ T ) · ErrD|T (hw∗) + Pr
(x,y)∼D

(x ∈ T ) · 2β

≤ Pr
(x,y)∼D

(x ∈ T ) · ErrD|T (hw∗) +
µη

2

= Pr
(x,y)∼D

(hw∗(x) 6= y and |〈w, x〉| ≤ γ) +
µη

2
(13)

By equations (7), (9) and (13) we conclude that

ErrD(h) ≤ µη

2
+ Pr

(x,y)∼D
(hw∗(x) 6= y and |〈w, x〉| > γ)

+ Pr
(x,y)∼D

(hw∗(x) 6= y and |〈w, x〉| ≤ γ) +
µη

2

= ErrD(hw∗) + µη ≤ (1− µ)η + µη = η .
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Appendix A. Polynomial approximation of the sign function

In this section we will find `1 approximation of halfspaces. In particular, we will prove lemmas 8
and 7.

A.1. Approximation in “truncated L∞”

Lemma 10 Let a, γ, τ > 0. There exist a polynomial p of degree O
(

1
γ · log

(
1
τ

))
such that

• For x ∈ [−a, a], |p(x)| < 1 + τ .

• For x ∈ [−a, a] \ [−γ · a, γ · a], |p(x)− sign(x)| < τ .

We will use the following lemma:

Lemma 11 Let τ > 0. There exist a polynomial p of degree O
(
log
(
1
τ

))
such that

• For x ∈ [−1.5, 1.5], |p(x)| < 1 + τ .

• For x ∈ [−1.5, 1.5] \ [−0.5, 0.5], |p(x)− sign(x)| < τ .

Proof The proof is established by approximating the error function, erf(x) := 1√
2π

∫ x
−∞ e

− t
2

2 dt by

a low degree polynomial. Let σ = 2
√

2 log( 4√
2πτ

). We claim that for every x > σ
2 we have

| erf(x)− 1|, | erf(−x)| ≤ τ

4
. (14)

Because 0 ≤ erf(x) ≤ 1 for all x, and since erf(x) = 1 − erf(−x), it is enough to prove that
erf(x) ≥ 1− τ

4 . Indeed, we have

1− erf(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt

≤ 1√
2π

∫ ∞
x

te−
t2

2 dt

=
1√
2π

[
−e−

t2

2

∣∣∣∣∞
x

]
=

1√
2π
e−

x2

2

≤ 1√
2π
e−

σ2

2 =
τ

4
.

Now, by the Taylor expansion of ex we have

e−
x2

2 =

∞∑
n=0

(−1)nx2n

n!2n
.

Integrating element-wise and using the fact that erf(0) = 1
2 , we have

erf(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt =
1

2
+

1√
2π

∞∑
n=0

(−1)nx2n+1

n!2n(2n+ 1)
.

14
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Let r be the 2k’th Taylor polynomial of erf for k = max{d2(1.5σ)2ee, log2
(
4
τ

)
} = O

(
log
(
1
τ

))
.

We have, for |x| ≤ 1.5σ ≤
√

k
2e

|r(x)− erf(x)| ≤ 2√
π

∞∑
n=k

|x|2n+1

n!(2n+ 1)

≤ 2√
π

∞∑
n=k

x2n

n!

≤ 2√
π

∞∑
n=k

x2n√
2π
(
n
e

)n
≤
√

2

π

∞∑
n=k

(
x2e

n

)n
≤
√

2

π

∞∑
n=k

(
1

2

)n
=

√
2

π

(
1

2

)k−1
≤
(

1

2

)k
≤ τ

4

Here, the 4’th inequality follows from the well known fact that n! ≥
√

2π
(
n
e

)n. Finally, using the
last inequality and equation (14), it is not hard to check that the polynomial p(x) = 2r(σx) − 1
satisfies the required properties.

Proof (of lemma 10) By rescaling, we can assume w.l.o.g. that a = 1. Let φ : [−1, 1] :→ R be the
function

φ(x) =


1
γx |x| ≤ γ
1 x ≥ γ
−1 x ≤ −γ

By Jackson’s Theorem, there is a polynomial q : [−1, 1]→ R of degree≤
⌈
12
γ

⌉
with ||q − φ||∞,[−1,1] ≤ 1

2 .
Also, let r be the polynomial from Lemma 11. It is easy to check that, p = r ◦ q satisfies the re-
quirement of the Lemma.

A.2. Approximations for short tailed distributions

Lemma 12 Let ρ : R→ R+ a density function such that for some γ, σ > 0 we have

∀x, ρ(x) ≤ 2

σ
and ∀|x| > 2γ, ρ(x) ≤ 2

σ
exp

(
− x2

32σ2

)
Then, for every 0 < τ ≤ σ

2γ there is a polynomial of degree5 O
(
log2(1/τ)

τ2

)
such that∫ ∞

−∞
|p(x)− sign(x)|ρ(x)dx ≤ τ

5. The constant in the big-O notation is universal.
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We will use the following fact.

Lemma 13 Ben-Eliezer et al. (2009) Let p : R → R be a polynomial of degree ≤ r for which
|p(x)| ≤ b in the interval [−a, a]. Then, for every |x| ≥ a we have |p(x)| ≤ b ·

∣∣2x
a

∣∣r.
Proof (of lemma 12) By lemma 10, there is a polynomial p of degree O (r log (1/τ)) such that

• For x ∈ [−rτσ, rτσ], |p(x)| < 2.

• For x ∈
[
−rτσ,− τσ

100

]
, |p(x)| < τ

100 .

• For x ∈
[
τσ
100 , rτσ

]
, |p(x)− 1| < τ

100 .

We have,∫ ∞
−∞
|p(x)− sign(x)|ρ(x)dx =

∫
|x|< τσ

100

|p(x)− sign(x)|ρ(x)dx+

∫
τσ
100
≤|x|≤rτσ

|p(x)− sign(x)|ρ(x)dx

+

∫
|x|≥rτσ

|p(x)− sign(x)|ρ(x)dx

≤
∫
|x|< τσ

100

6

σ
dx+

∫
τσ
100
≤|x|≤rτσ

τ

100
ρ(x)dx

+

∫
|x|≥rτσ

|p(x)− sign(x)|ρ(x)dx

≤ τ

2
+

∫
|x|≥rτσ

|p(x)− sign(x)|ρ(x)dx

It remains to bound
∫
|x|≥rτσ |p(x)− sign(x)|ρ(x)dx. We will choose r ≥ 1

τ2
, and therefore we will

have rτσ ≥ σ
τ ≥ 2γ. Hence, by lemma 13 we have∫
|x|≥rτσ

|p(x)− sign(x)|ρ(x)dx ≤
∫
|x|≥rτσ

3

(
2x

rτσ

)r 2

σ
e−

x2

32σ2 dx

≤ 12

∫ ∞
rτσ

(
2x

rτσ

)r 1

σ
e−

x2

32σ2 dx

= 12

∫ ∞
rτ

(
2y

rτ

)r
e−

y2

32 dy

≤ 12

∫ ∞
rτ

((
2y

rτ

)r
e−

y2

64

)
e−

y2

64 dy

Now, it is possible to choose r = Θ
(
log(1/τ)
τ2

)
such that for all y > rτ we have

(
2y
rτ

)r
· e−

y2

64 ≤ 1.

For such r, the last expression is bounded by 12
∫∞
ω( 1

τ ) e
− y

2

64 dy = o(τ).
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A.3. Approximation on a biased strip: proof of lemma 8

In this section we will find a low degree approximation of halfspaces w.r.t. to the distribution from
step 3 of our PTAS. Namely, we will prove lemma 8. Let ρd,γ,θ : [−1, 1] → R+ be the projection
on w∗ of the uniform distribution on Td,γ(w). By equation (2), it is enough to find τ -approximation
of the sign function in `1, w.r.t. ρd,γ,θ. Namely, it is enough to prove:

Lemma 14 There is a univariate polynomial p of degree r = O
(
log2(1/τ)

τ

)
such that

∫ 1

−1
| sign(x)− p(x)|ρd,γ,θ(x)dx ≤ τ .

Lemma 14 follows immediately from lemma 12 with σ = sin(θ)√
d

, the assumptions that γ < 1
2 and

τ < sin(θ)

2γ
√
d

, and the following bound:

Lemma 15

∀z, ρd,γ,θ(z) ≤
√
d

sin(θ)
√

1− γ2

∀|z| ≥ γ, ρd,γ,θ(z) ≤
√
d

sin(θ)
√

1− γ2
exp

(
−(d− 1)

(|z| − γ)2

4 sin2(θ)

)
To prove lemma 15, we will use an explicit formula for ρd,γ,θ. It will be convenient to introduce
some notation. Let ρd,r : R → R be the density function of the random variable that is the inner
product of a fixed unit vector in Sd−1 and a uniform vector in r · Sd−1. Clearly,

ρd,r(x) =
1

r
· ρd,1

(x
r

)
(15)

We will use the following well known inequality

ρd(x) ≤
√
d exp

(
−x

2d

4

)
(16)

Lemma 16 Let A be the probability of Td,γ(w) according to the uniform distribution. We have

ρd,γ,θ(z) =
1

A

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρ

d−1,
√

sin2(θ)−tan2(θ)u2 (z − u) du

Proof Let x be a uniform vector in the strip Td,γ(w), and let y = 〈w∗, x〉. We note that ρd,γ,θ is the
density of y. We write

x = α · w + z

where 〈w, z〉 = 0. For (w∗)⊥ = w∗ − 〈w∗, w〉w we have,

y = 〈w∗, x〉 = α · 〈w∗, w〉+ 〈w∗, z〉
= α · cos(θ) + 〈(w∗)⊥, z〉
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We note that the density function of the distribution of α · cos(θ) is given by

τ(u) =

{
1
Aρd,cos(θ)(u) |u| ≤ γ · cos(θ)

0 |u| > γ · cos(θ)

Now, given α, z is a uniform vector of norm
√

1− α2 in the orthogonal complement of w, and
(w∗)⊥ is a vector of norm sin(θ) in that space. It follows that the density function of 〈(w∗)⊥, z〉
given that α · cos(θ) = u is ρ

d−1,sin(θ)·
√

1− u2

cos2(θ)

= ρ
d−1,
√

sin2(θ)−tan2(θ)u2 . It therefore follows

that

ρd,γ,θ(z) =
1

A

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρ

d−1,
√

sin2(θ)−tan2(θ)u2 (z − u) du

We are now ready to prove lemma 15.
Proof (of lemma 15) Let A be the probability of the strip Td,γ(w) according to the uniform distri-
bution on the sphere. We have, using equations (15) and (16),

ρd,γ,θ(z) =
1

A

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρ

d−1,
√

sin2(θ)−tan2(θ)u2 (z − u) du

≤ 1

A

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρ

d−1,
√

sin2(θ)−tan2(θ)u2 (0) du

≤
√
d− 1

sin(θ)
√

1− γ2

Similarly, for |z| > γ,

ρd,γ,θ(z) =
1

A

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρ

d−1,
√

sin2(θ)−tan2(θ)u2 (z − u) du

≤ 1

A

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρ

d−1,
√

sin2(θ)−tan2(θ)u2 (|z| − γ) du

≤ 1

A sin(θ)
√

1− γ2

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρd−1,1

(
|z| − γ√

sin2(θ)− tan2(θ)u2

)
du

≤ 1

A sin(θ)
√

1− γ2

∫ γ cos(θ)

−γ cos(θ)
ρd,cos(θ) (u) · ρd−1,1

(
|z| − γ
sin(θ)

)
du

=
1

sin(θ)
√

1− γ2
ρd−1,1

(
|z| − γ
sin(θ)

)
≤

√
d

sin(θ)
√

1− γ2
exp

(
−(d− 1)

(|z| − γ)2

4 sin2(θ)

)
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Proof (of lemma 7) By equation (2), in is enough to show that the there is a univariate polynomial
p of degree r = O

(
log2(1/τ)

τ2

)
such that

∫ 1

−1
|p(x)− sign(x)|ρd,1(x)dx ≤ τ .

This, however, follows immediately from lemma 12 and equation (16).
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