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Abstract

Given a large data matrix A € R™*"™, we consider the problem of determining whether its entries
are i.i.d. from some known marginal distribution A;; ~ Fp, or instead A contains a principal
submatrix Aq q whose entries have marginal distribution A;; ~ P # FPy. As a special case, the
hidden (or planted) clique problem is finding a planted clique in an otherwise uniformly random
graph.

Assuming unbounded computational resources, this hypothesis testing problem is statistically
solvable provided |Q| > C'logn for a suitable constant C. However, despite substantial effort,
no polynomial time algorithm is known that succeeds with high probability when |Q| = o(y/n).
Recently, Meka and Wigderson (2013) proposed a method to establish lower bounds for the hidden
clique problem within the Sum of Squares (SOS) semidefinite hierarchy.

Here we consider the degree-4 SOS relaxation, and study the construction of Meka and Wigder-
son (2013) to prove that SOS fails unless k& > C'n'/3/logn. An argument presented by Barak
(2014) implies that this lower bound cannot be substantially improved unless the witness construc-
tion is changed in the proof. Our proof uses the moment method to bound the spectrum of a certain
random association scheme, i.e. a symmetric random matrix whose rows and columns are indexed
by the edges of an Erdds-Renyi random graph.

1. Introduction

Characterizing the computational complexity of statistical estimation and statistical learning prob-
lems is an outstanding challenge. On one hand, a large part of research in this area focuses on the
analysis of specific polynomial-time algorithms, thereby providing upper bounds on the problem
complexity. On the other hand, information-theoretic techniques are used to derive fundamental
limits beyond which no algorithm can solve the statistical problem under study. While in some
cases algorithmic and information-theoretic bounds match, in many other examples a large gap re-
mains in which the problem is solvable assuming unbounded computational resources but simple
algorithms fail. The hidden clique and hidden submatrix problems are prototypical examples of this
category.

In the hidden submatrix problem, we are given a symmetric data matrix A € R™*" and two
probability distributions Py and P; on the real line, with Ep {X} = 0 and Ep {X} = p > 0.
We want to distinguish between two hypotheses (we set by convention A;; = 0 for all i € [n] =

{1,2,...,n}):
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Hypothesis H(: The entries of A above the diagonal (A;;);<; are independent and identically dis-
tributed (i.i.d.) random variables with the same marginal law A;; ~ FPp.

Hypothesis H;: Given a (hidden) subset Q C [n] the entries (A;;);<; are independent with

4 {P1 if {i,j} € Q, 0

Py otherwise.

Further, Q is a uniformly random subset conditional on its size, that is fixed |Q| = k.

The estimation version of this problem is also of interest, wherein the special subset Q is known to
exist, and an algorithm is sought that identifies Q with high probability.

This model encapsulates the basic computational challenges underlying a number of problems
in which we need to estimate a matrix that is both sparse and low-rank. Such problems arise in
various fields such as genomics, signal processing, social network analysis, and machine learning (
Shabalin et al. (2009); Johnstone and Lu (2009); Oymak et al. (2012)).

The hidden clique (or ‘planted clique’) problem (Jerrum (1992)) is a special case of the above
setting, and has attracted considerable interest within theoretical computer science. Let J, denote
the Dirac delta distribution at the point x € R. The hidden clique problem corresponds to the
distributions

1 1
Py =641, P0:§5+1+§571- )

In this case, the data matrix A can be interpreted as the adjacency matrix of a graph G over n
vertices (wherein A;; = +1 encodes presence of edge {i,7} in G, and A;; = —1 its absence).
Under hypothesis H1, the set Q induces a clique in the (otherwise) random graph G. For the rest of
this introduction, we shall focus on the hidden clique problem, referring to Section 2 for a formal
statement of our general results.

The largest clique in a uniformly random graph has size 21ogy n + o(log n), with high proba-
bility (Grimmett and McDiarmid (1975)). Thus, allowing for exhaustive search, the hidden clique
problem can be solved when k > (2+¢) log, n. On the other hand, despite significant efforts (Alon
et al. (1998); Ames and Vavasis (2011); Dekel et al. (2011); Feige and Ron (2010); Deshpande
and Montanari (2014)), no polynomial time algorithm is known to work when k& = o(y/n). As
mentioned above, this is a prototypical case for which a large gap exists between performances of
well-understood polynomial-time algorithms, and the ultimate information-theoretic (or statistical)
limits. This has motivated an ongoing quest for computational lower bounds.

At first sight this appears to be straightforward: finding the maximum clique in a graph is a
classical NP-hard problem (Karp (1972)). Even a very rough approximation to its size is hard to
find (Hastad (1996); Khot (2001)). In particular, it is hard to detect the presence of a clique of size
n'~¢ in a graph with n vertices.

However, as is well-known, these worst-case hardness results do not imply computational lower
bounds when problem instances are distributed according to a natural statistical model. Over the
last two years there have been fascinating advances in crafting careful reductions that preserve the
instance distribution in specific cases (Berthet and Rigollet (2013); Ma and Wu (2013); Chen and
Xu (2014); Hajek et al. (2014); Cai et al. (2015)). This line of work typically establishes that several
detection problems (sparse PCA, hidden submatrix, hidden community) are at least as hard as the
hidden clique problem with k = o(+/n). This approach has two limitations:
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(7) It yields conditional statements relying on the unproven assumption that the hidden clique
problem is hard. In absence of any ‘completeness’ result, this is a strong assumption that
calls for further scrutiny.

(7) Reductions among instance distributions are somewhat fragile with respect changes in the
distribution. For instance, it is not known whether the hidden submatrix problem with Gaus-
sian distributions Py = N(0,1) and P; = N(gu,1) is at least as hard as the hidden clique
problem, although a superficial look might suggest that they are very similar'.

A complementary line of attack consists in proving unconditional lower bounds for broad classes
of algorithms. In an early contribution, Jerrum (1992) established such a lower bound for a class of
Markov Chain Monte Carlo methods. Feldman et al. (2012) considered a query-based formulation
of the problem and proved a similar result for ‘statistical algorithms.” Closer to the present paper
is the work of Feige and Krauthgamer (2000), who analyzed the Lovasz-Schrijver semidefinite
programming (SDP) hierarchy. Remarkably, these authors proved that » rounds of this hierarchy
(with complexity n®(")) fail to detect the hidden clique unless k > \/n/2". (Here and below we
write f(n,r,...) 2 g(n,r,...) if there exists a constant C such that f(n,r,...) > Cg(n,r,...).)

While this failure of the Lovdsz-Schrijver hierarchy provides insightful evidence towards the
hardness of the hidden-clique problem, an even stronger indication could be obtained by estab-
lishing an analogous result for the Sum of Squares (SOS) hierarchy (Shor (1987); Lasserre (2001);
Parrilo (2003)). This SDP hierarchy unifies most convex relaxations developed for a variety of com-
binatorial optimization problems. Its close connection with the unique games conjecture has led to
the idea that SOS might indeed be an ‘optimal’ algorithm for a broad class of problems (Barak and
Steurer (2014)). Furthermore, many of the low-rank estimation problems mentioned above include
naturally quadratic constraints, that are most naturally expressed within the SOS hierarchy.

The SOS hierarchy is formulated in terms of a sequence of polynomial optimization problems.
The level of a relaxation in the hierarchy corresponds to the largest degree d of any monomial whose
value is explicitly treated as a decision variable. Meka and Wigderson (2013) proposed a construc-
tion of a sequence of feasible solutions, or witnesses (one for each degree d), that can be used to
prove lower bounds for the hidden clique problem within the SOS hierarchy. The key technical step
consisted in proving that a certain moment matrix is positive semidefinite: unfortunately this part of
their proof contained a fatal flaw.

In the present paper we undertake the more modest task of analyzing the Meka-Wigderson
witness for the level d = 4 of the SOS hierarchy. This is the first level at which the SOS hierarchy
differs substantially from the baseline spectral algorithm of Alon et al. (1998), or from the Lovéasz-
Schrijver hierarchy. We prove that this relaxation fails unless

/3

k2 .
~ logn

3)

Notice that the natural guess would be that the SOS hierarchy fails (for any bounded d) whenever
k = o(y/n). While our result falls short of establishing this, an argument presented in Barak
(2014) shows that this is a limitation of the Meka-Wigderson construction. In other words, the
bound of Eq. (3) can be improved (by more than a logarithmic factor) only by changing the witness
construction of Meka-Wigderson that we and Meka et al. (2015) have used.

1. We note here that Ma and Wu (2013) establish this for 4 = o(y/logn), whereas one would expect the reduction to
hold also for . = O(1).
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Apart from the lower bound on the hidden clique problem, our analysis provides two additional
sets of results:

e We apply a similar witness construction to the hidden submatrix problem with entries distri-
butions Py = N(0,1), P; = N(u,1). We define a polynomial-time computable statistical test
that is based on a degree-4 SOS relaxation of a nearly optimal combinatorial test. We show
that this fails unless k > p~'n'/?/logn.

e As mentioned above, the main technical contribution consists in proving that a certain random
matrix is (with high probability) positive semidefinite. Abstractly, the random matrix in ques-
tion is function of an underlying (Erdos-Renyi) random graph GG over n vertices. The matrix
has rows/columns indexed by subsets of size at most d/2 = 2, and elements depending by
the subgraphs of GG induced by those subsets. We shall loosely refer to this type of random
matrix as to a random association scheme.

In order to prove that this witness is positive semidefinite, we decompose the linear space
on which it acts into the irreducible subrepresentations of the group of permutations over
n objects. We then use the moment method to characterize each submatrix defined by this
decomposition, and combine the results to obtain our final condition for positivity.

We believe that both the matrix definition and the proof technique are so natural that they are
likely to be useful in related problems.

e As an illustration of the last point, our analysis covers the case of Erdds-Renyi graphs with
sublinear average degree (namely, with average degree of order n'=%, a < 1/12). In particu-
lar, it is easy to derive sum-of-squares lower bounds for finding cliques in such graphs from
our main theorem.

The rest of the paper is organized as follows. In Section 2 we state our main technical result,
which concerns the spectrum of random association schemes. We then show that it implies lower
bounds for the hidden clique and hidden submatrix problem. Section 3 presents a brief outline of
the proof. Finally, Section A presents the proof of our main technical result.

While this paper was being written, we became aware through Barak (2014) that Meka et al.
(2015) proved that the degree-d SOS relaxation is unsuccessful unless k 2 n'/? for arbitrary,
constant d. Their work follows the path of Meka and Wigderson (2013), wherein the proof of
positivity of the moment matrix is achieved by a trace method calculation similar to ours. However,
as explained in the proof strategy in Section 3 below, their analysis does not account for certain
spectral properties of the moment matrix. Ultimately, this results in establishing a lower bound of
n/4 ford = 4, which is slightly weaker than our result. However, of course, Meka et al. (2015) are
able to handle d > 4, which we do not consider.

2. Main results

In this section we present our results. Subsection 2.1 introduces a feasible random association
scheme that is a slight generalization of the witness developed in Meka and Wigderson (2013) (for
the degree d = 4 SOS). We state conditions implying that this matrix is positive semidefinite with
high probability. These conditions are in fact obtained by specializing a more general result stated
in Proposition 6. We then derive implications for hidden cliques and hidden submatrices.
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2.1. Positivity of the Meka-Wigderson witness

We will denote by G(n, p) the undirected Erdos-Renyi random graph model on n vertices, with
edge probability p. A graph G = (V, E) ~ G(n,p) has vertex set V = [n] = {1,2,...,n}, and
edges set E defined by letting, for each i < j € [n], {4,j} € E independently with probability p.

The random association scheme M = M (G, a) can be thought as a parametric generalization
of the adjacency matrix of G, depending on the graph G and parameters o = (a1, ao, a3, ag) € R%.
In order to define the matrix M we first need to set up some notation. For an integer r, we let ([Zf])
denote the set of all subsets of [n] of size exactly r, and (L"i) denote the set of all subsets of size at
most r. We also let () denote the empty set. a

We shall often identify the collections of subsets of size one, ([’f]) = {{i} : i € [n]} with [n].
Also, we identify ([g}) with the set of ordered pairs {(i, ) : i,5 € [n],i < j}. If A = {i,j} with
i < j we call i (j) the head (respectively, tail) of A denoted by h(A) (respectively, t(A)).

Given the graph G and a set A C [n], we let G 4 denote the subgraph of G induced by A. We
define the indicator G4

1 if G4 isaclique,
Ga = { 1 (4)

0 otherwise.

For convenience of notation we let G;; = G {i.j) and g4 = G4 — E{G4} be the centered versions of
the variables G;;. We also set g;; = 0.
[n] [n]
We can now define the matrix M = M(G,a) € R(£2)*(22) as follows. For any pair of sets
A B¢ (L"%) we have:

Ma,B = jauB|94uB , )
with ag = 1.
Theorem 1 Suppose o, p satisfy:
2 3 4
o=k, =20, ag="p, a=8, clklogn)/nP<p<i, (©
p p p

for some k € [logn/n,n=2/3/logn] and c a large enough absolute constant. If G ~ G(n,p) is a
random graph with edge probability p then, for every n large enough,

1
PIM(G,a) =0} >1——. 7
{M(G.a) =0} =1~ (7)
The proof of this theorem can be found in Section A. As mentioned above, a more general set of
conditions that imply M (G, «) > 0 with high probability is given in Proposition 6. The proof of
Theorem 1 consists in checking that the conditions of Proposition 6 hold and deriving the conse-
quences.

2.2. A Sum of Squares lower bound for Hidden Clique

We denote by G(n, p, k) hidden clique model, i.e. the distribution over graphs G = (V, E), with
vertex set V' = [n], a subset Q C [n] of k uniformly random vertices forming a clique, and every
other edge present independently with probability p.
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The SOS relaxation of degree d = 4 for the maximum clique problem (Tulsiani (2009); Barak
[n] [n]
(2014)) is a semidefinite program, whose decision variable is a matrix X € R(SQ) x (9):

maximize Z X{i},{i} , (®)
i€[n]
subjectto: X = 0, Xg,.5, €[0,1],
Xs,,5, =0 when S; USsisnotacliquein G,
)(51’52 = X33754 for all S; U Sy = S3U Sy,
Xpp = 1.

Denote by Val(G;d = 4) the value of this optimization problem for graph G (which is obviously
an upper bound on the size of the maximum clique in G). We can then try to detect the clique (i.e.
distinguish hypothesis H; and H( defined in the introduction), by using the test statistics

T(G) =

{o if Val(G; 4) < .k, ©

1 if Val(G;4) > c.k.

with ¢, a numerical constant. The rationale for this test is as follows: if we replace Val(G;4) by the
size of the largest clique, then the above test is essentially optimal, i.e. detects the clique with high
probability as soon as k 2 logn (with ¢, = 1).

We then have the following immediate consequence of Theorem 1.

Corollary 2 Suppose G ~ G(n,1/2). Then, with probability at least 1 — n™!, the degree-4 SOS
relaxation has value

nl/3

Val(G:;4) > .
al(G; )Nlogn

10)

Proof Consider M (a, G) from Theorem 1 (with p = 1/2). For M (a, G) to be positive semidefinite
with high probability, we set k = ¢on~2/3 / log n for some absolute constant cy. It is easy to check
that M (a, G) is a feasible point for the optimization problem (8). Recalling that My, ¢y = a1 = &,
we conclude that the objective function at this point is nx = con'/3 /log n, and the claim follows.
|

We are now in position to derive a formal lower bound on the test (9).

Theorem 3 The degree-4 Sum-of-Squares test for the maximum clique problem, defined in Eq. (9),
fails to distinguish between G ~ G(n,k,1/2) and G ~ G(n,1/2) with high probability if k <
nl/3 /logn.

In particular, T(G) = 1 with high probability both for G ~ G(n,k,1/2), and for G ~
G(n,1/2).

Proof [Proof of Theorem 3] Assume k < c¢ynl/? /logn for ¢; a sufficiently small constant. For
G ~ G(n,1/2), Corollary 2 immediately implies that Val(G;4) > c.k, with high probability.

For G ~ G(n, k,1/2), we obviously have Val(G;4) > k (because SOS gives a relaxation). To
obtain a larger lower bound, recall that Q C [n] indicates the vertices in the clique. The subgraph
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G- induced by the set of vertices Q¢ = [n]\Q is distributed as G(n—k, 1/2). Further, we obviously
have

Val(G;4) > Val(Gqe;4) . (11)

Indeed we can always set to 0 variables indexed by sets A C [n] with A Z Q°. Hence, applying
again Corollary 2, we deduce that, with probability 1—(n—k)~", Val(G;4) > C(n—k)'/3/log(n—
k), which is larger than c.k. Hence T'(G) = 1 with high probability. [ |

2.3. A Sum of Squares lower bound for Hidden Submatrix

As mentioned in the introduction, in the hidden submatrix problem we are given a matrix A €
R™* ™ which is generated according with either hypothesis Hy or hypothesis H; defined there. To
avoid unnecessary technical complications, we shall consider distributions Py = N(0, 1) (for all the
entries in A under Hy) and P, = N(u, 1) (for the entries A;;, ¢, j € Q under Hy) .

In order to motivate our definition of an SOS-based statistical test, we begin by introducing a
nearly-optimal combinatorial test, call it T¢,,,. This test essentially look for a principal submatrix
of A of dimension k, with average value larger than /2. Formally

1 if 3z € {0,1}" such that } ,,;; zi < k., and
Teomb(A) = and 3o, e (.i<j Aigzizy = 5 (5) . (12)

0 otherwise.

A straightforward union-bound calculation shows that T, () succeeds with high probability
provided k > =2 logn.

As in the previous section, the degree-4 SOS relaxation of the set of binary vectors x € {0, 1}"
consists in the following convex set of matrices

[n] [n]
Ca(n) = {X eREXE) T x -0, Xg6 €01, Xpg=1,
XSI,SQ = X53754 forall S; U Sy = S3U 54} . (13)
This suggests the following relaxation of the test Tcomp( - ):

1 if there exists X € C4(n) such that 3,0 X(iy (i3 < k. and
T(A) = >ijeyics AiiX iy 1y = etk (14)

0 otherwise.

We begin by stating a corollary of Theorem 1.

Corollary 4 Assume A is distributed according to hypothesis Hy, i.e. A;j ~ N(0,1) foralli,j €
[n). Then, with probability at least 1 — 2n~1, there exists X € C4(n) such that

nl/3 n2/3
2 X Signe 2 A0 R gogae (15)
i€[n] i,j€[n]i<j
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Proof Fix ) a sufficiently large constant and let G’ be graph with adjacency matrix G given by G;; =
I(A;; > X). Note that this is an Erd6s-Renyi random graph G ~ G(n, p) with edge probability
p = ®(—\). (Throughout this proof, we let ¢(z) = e~*"/2//21 denote the Gaussian density, and
®(z) = [7__ ¢(t) dt the Gaussian distribution function.)

We choose X = M (G, «) a random association scheme, where « is set according to Theorem
1, with

C2

K (16)

T 23 logn’
with c a suitably small constant. This ensures that the conditions of Theorem 1 are satisfied, whence
X € C4(n) with high probability. Further, by definition

ey /3

> Xy =nk = . (17)

i€[n] logn

It remains to check that the second inequality in (15) hold. We have

252
Y ApXup = Y, AyGy. (18)

i,j€[n],i<j i,j€[n],i<j

Note that

E{ 3 Aijgij} - <;‘> E{A11(A1y > \)} = (Z) d(N) . (19)

,j€[n],i<j
Note that the random variables (Aij gij)K ;j are independent and subgaussian. By a standard concentration-
of-measure argument we have, with probability at least 1 — n~2, for a suitably small constant ¢/,
>icj AijGij > ¢n*¢(A) and hence

n2/3

2,2
> AuXpgy 2Rt 2 (ogn )2

i,j€n], i<y

(20)

Theorem 5 Consider the Hidden Submatrix problem with entries’ distributions Py = N(0, 1), and
P1 = N(/L, 1).

Then, the degree-4 Sum-of-Squares, defined in Eq. (14), fails to distinguish between hypotheses
Hy and Hy if k < p~'n'/3/logn. In particular, T(A) = 1 with high probability both under Hy
and under Hi.

Proof First consider A distributed according to hypothesis Hy. Note that, if Xy € C4(n) and
s € [0,1] is a scaling factor, then s Xy € C4. Therefore (by choosing s = ckn=31ogn for a
suitable constant ¢) Corollary 4 implies that with high probability there exists X € C4(n) such that

knl/?)
Y X <k > AXun 2 ogn (21)
1€[n] i,j€[n],i<j
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Therefore, for 1k < ¢n'/3/logn with c a sufficiently small constant, we have 3
¢yt k? and therefore T'(A) = 1 with high probability. B
Consider next A distributed according to hypothesis H;. Note that A = 1 1q 15 + A, where 1q

Ay Xy 5y 2

1<j

is the indicator vector of set Q, and A is distributed according to Ho. Since >ici Aii X iy 1y

is increasing in A, we also have that T(A) = 1 implies T(A) = 1. As shown above, for
pk < cen'/3/logn, we have T(A) = 1 with high probability, and hence T'(A) = 1. [ |

3. Further definitions and proof strategy

[n] [n]
In order to prove M (G, a) = 0, we will actually study a new matrix N (G, a) € IR{<SQ) x(<3) defined
as follows:

Nap=oaum || G (22)
icA\B,jeB\A

Notice that My p = N4 BGaGp, i.e. M is obtained from N by setting to zero columns (rows)
indexed by sets A, B that do not induce cliques in G. Thus, NV = 0 implies M 3= 0.

[n] (n] (n] [n]
We also define the matrix H € R« (s )) * (( (s )) that is the Schur complement of NV
with respect to entry Ny = 1. Formally:

Hap=Nap— aup|, (23)

where, as before, we define oy = 1. Furthermore we denote by H, 3, fora, b € {1, 2}, the restriction

of H to rows indexed by ([Z]) and columns indexed by ([Z]). (This abuse of notation will not be
a source of confusion in what follows, since we will always use explicit values in {1, 2} for the
subscripts a, b. )

Since H is the Schur complement of N, H > 0 implies N > 0 and hence M > 0. The next
section is devoted to prove H > 0: here we sketch the main ingredients.

Technically, we control the spectrum of H by first computing eigenvalues and eigenspaces of
its expectation EH and then controlling the random part H — EH by the moment method, i.e.
computing moments of the form ETr{(H — EH)?™}. The key challenge is that the simple Weyl
inequality Amin(H) > Amin(EH) — ||[H — EH |2 is too weak for proving the desired result. We
instead decompose H in its blocks Hy 1, Hi 2, Hs 2 and prove the inequalities stated in Proposition
6, cf. Egs. (55) to (57). Briefly, these allow us to conclude that:

Hyip = 0. 24)
Hyy = H{yHi | Hy g, (25)

)

S\

which are the Schur complement conditions guaranteeing H = 0. While characterizing H;  is
relatively easy (indeed this block is essentially the adjacency matrix of ), the most challenging
part of the proof consists in showing a sufficient condition for Eq. (25) (see Eq.(57) below). In
order to prove this bound, we need to decompose H> 2 and H; 2 along the eigenspaces of EH> o,
and carefully control each of the corresponding sub-blocks.
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In the rest of this section we demonstrate the essentials of our strategy to show the weaker
assertion H» o = 0. We will assume that p is order one, for concreteness p = 1/2 which corresponds
to the hidden clique problem. It suffices to show that

EHs2 = EHy o — Ho 0. (26)

The expected value [EH> 5 has 3 distinct eigenspaces Vg, V1, Vo that form an orthogonal decompo-

sition of R([g]). Crucially, these spaces admit a simple description as follows:

Vo = {U c R([g]) :Ju € Rs.t. V(g = U forall i < J}a 27
V= {ue R([g]) :Ju € R", st (1,,u) =0and vy 53 = u; + uj foralli < Jt, (28)
Vo= (Voo Vi)t 2

If P, is the orthogonal projector onto V, we have that EHz9 = APy + AMP1 + A2P2 where
Ao ~ 2kt A\~ nk? and Ay ~ k2 (see Proposition 21 for a formal statement).
Now, consider the entry indexed by {3, j}, {k, ¢} € ([g}):

(Ha2) (i jy {0y = — 05 + 04GirGieG1Gje (30)
= —a5 + au(p + gi) (P + 9ie) (P + 95%) (0 + gje) 31
= —aj + aup® + aup®(gi + gie + gk + gj0)

+ ap? (9irgie + 9ikgjkgixgje + GieGje + Gikgje + Giejk)
+ aup(gikiegik + Gikgikgie + GikGiegje + Giegikgie) + 2aGijGiegikgje- (32)

The decomposition Eq. (32) holds only when {7, j} and {k, ¢} are disjoint. Since the number of
pairs {4, 5}, {k, ¢} that intersect are at most n® < n?, it is natural to conjecture that these pairs
are negligible, and in this outline we shall indeed assume that this is true (the complete proof deals
with these pairs as well). The random portion EH> 2 — Hs 5 involves the last 15 terms of the above
decomposition. Each term is indexed by a pair (7, ) where 1 < 7 < 4 denotes the number of g;;

variables in the termand 1 < v < (;47) the exact choice of 7 (out of 4) variables used. In accordance

with notation used in the proof, we let ,7,7,,, denote the matrix with {i, 5}, {k, ¢} entry is the (1, )
entry in the decomposition Eq. (32). See Table 1 and Eq. (178) for a formal definition of the matrices
Jp,v- Hence we obtain (the ~ below is due to the intersecting pairs, which we have ignored):

Hyo —EH; 5 ~ Z Z jn,u- (33)

n=ts(y)

We are therefore left with the task of proving

EHop 7 Q== > Jnu (34)
n v
Viewed in the decomposition given by Vg, V1, Vs, Eq. (34) is satisfied if:
Ao 00 [Po@Polly  1PoQP1lly  Po@P2ll,
0 A 0] = [[Pi@QPolly IP1QPLlly P1QP2ll; (35)
0 0 X [P2QPolly  1P2QPl,  [P2QP2ll,

10
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The bulk of the proof is devoted to developing operator norm bounds for the matrices Pajw,Pb that
hold with high probability. We then bound P,Q)P, using triangle inequality

1PaQPslly <D |PadnuPo| - (36)

n?lj

The matrices j;u, jg,l,, (7271, jgﬁ turn out to have an approximate “Wigner”-like behavior, in the
following sense. Note that these are symmetric matrices of size (g) ~ n? /2 with random zero-mean
entries bounded by ay. If their entries were independent, they would have operator norms of order
ag\/n? )2 ~ x*n (Fiiredi and Komlés (1981)) Although the entries are actually not 1ndependent
the conclusion still holds for J4 1 J3 v Jg 1 Jg .6 and they have operator norms of order k*n. Hence
| Pa Jm Pplle < HJn,,Hg ~ r*n for these cases.

We are now left with the cases (J1 l,)1<y<4 and (Jg l,)2<y<5 These requlre more care, since
their typical norms are significantly larger than n. For instance consider J1,y where

(J1) i}ty = Gik- (37

Viewed as a matrix in R"QX”2, j1,y corresponds to the matrix aiy g ® (1n1n)T where ® denotes the
standard Kronecker product and g € R™*" is the matrix with (¢, j) entry being g;;. By standard
< /n with high probability.

Hence:

loe1a]| = /2, (38)

lalls |

with high probability. This suggests that HjlyHg < aun®/? ~ k*n3/? with high probability. This

turns out to be the correct order for all the matrices J; , and JQ’V under consideration.

This heuristic calculation shows the need to be careful with these terms. Indeed, a naive ap-
plication of this results yields that ||P,QPsl|, < #*n®2. Recalling Eq.(35), this imposes that
Ao > k4n3/2. Since we have \o &~ k2, we obtain the condition k < n=3/%. The parameter k
turns out to be related to the size of the planted clique through k ~ nx. Hence this argument can
only prove that the SOS hierarchy fails to detect hidden cliques of size k < nl/4. Indeed, the result
of Meka et al. (2015) specialized to d = 4 amounts to such a consideration. B B

In order to improve over this, and establish Theorem 1 we prove that matrices .J; , and Jo,
satisfy certain spectral properties with respect to the subspaces Vg, V1, Va. For instance consider

~ ~ [n]
the sum Jo 3 + Jo 5. For any v € R( 2)

(Josv + Josv) iy = O P (gingie + Gjkgs0)Vin e} (39)
k<t
= u; + uj, (40)
where we let u; == dep gzkglg)v{k - It follows that (jg 3v + jg5>’l) € Vo @& Vy hence

PQ(JQ 3+ Jo 5)=0. By taking transposes we obtain that (J2 5+ Jo 4)P2 = 0. In a similar fashion
we obtain that Pa(D Ji,) = >, J1.,)P2 = 0. See Lemmas 28, 29 for formal statements and
proofs.

11
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Using these observations and Eq. (36) we obtain that || P2QP2|| < x*n, while for any other pair
(a,b) € {0,1,2}? we have that | P,QPs|| < s*n®/2. As noted before, since Ao ~ n?k*, \; =~ nx>
and \; ~ 2 whence the condition in Eq. (35) reduces to:

2kt 0 0 nd/2 p3/2 p3/2
0 nkd 0| —r*[n32 n3/2 p32| »o. 41)
0 0 K2 n3/2 p32 g

The 2,2 entry of this matrix inequality yields that k2 — k*n > 0 or x < n~'/2. Considering the

(1,1) entry yields a similar condition. The key condition is that corresponding to the minor indexed
by rows (and columns) 1, 2:

3 _.3/2,.4
nK n K
= 0. 42
<—n3/2/<;4 (2 > (42)

This requires that nx° > nk® or, equivalently x < n~2/3. Translating this to clique size k = nx,
we obtain the condition & < n'/3. This calculation thus demonstrates the origin of the threshold
of n'/3 beyond which the Meka-Wigderson witness fails to be positive semidefinite. The coun-
terexample of Barak (2014) shows that our estimates are fairly tight (indeed, up to a logarithmic
factor).

8
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Appendix A. Proofs
A.1. Definitions and notations

Throughout the proof we denote the identity matrix in m dimensions by I,,,, and the all-ones vector
by 1,,. Welet Q,, = 1n11 /n be the projector onto the all ones vector 1,,, and Q# =1, — 9, its
orthogonal complement.

The indicator function of property A is denoted by I(A). The set of first m integers is denoted
by [m] ={1,2,...,m}.

As mentioned above, we write f(n,r,...) 2 g(n,r,...) if there exists a constant C' such that
fn,r,...) > Cg(n,r,...). Similarly we write f(n,r,...) > g(n,r,...) if, for any constant
C, we have f(n,r,...) > Cg(n,r,...) for all n large enough. These conditions are always
understood to hold uniformly with respect to the extra arguments r, . . ., provided these belong to a
range depending on n, that will be clear from the context.

We finally use the shorthand . = n logn.

A.2. Main technical result and proof of Theorem 1

The key proposition is the following which controls the matrices H, ;. A set of conditions for the
parameters « is stated in terms of two matrices W, W € R3*3, Below we will develop approxi-
mations to these matrices, under the parameter values of Theorem 1. This facilitates checking the
conditions of Proposition 6.

Proposition 6 Consider the symmetric matrices W, W € R3*3, where W is diagonal, and given
by:

(n— 2)2(n -3) ot — n(n2— l)a% , 3)

Wi = ag + (n —4)azp — (n — 3)ap?, (44)
Way = g — 2a3p + aup®, (45)

Woo = a2 +2(n — 2)asp +

14
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and W is defined by:

=\2
Woo = Cag’fll/Q + C’a4ﬁ3/2 + 0(04371)

(n3/2043p2 + 2v/nag + COégT_L)2

aq

n(oep — a%)

Wo1 = Ca3ﬁ1/2 + CO(4T_L3/2 + ag(O&g),T_L)(CO@fL + \/HOCQ)

1

1
_|_ .
n(agp — o)
—\2
Woo = Ca3ﬁ1/2 + COJ4T_L3/2 + C'(Z?m)
1
¢
n(agp — of

2
Wi = CO&;),’ITLI/2 + 00447_13/2 + OT (Cag’f_l + \/ﬁa2)2 +
1

Wi = Ca3ﬁ1/2 + CO(4T_L3/2 + g(&?,fl)(cay)ﬁ + \/ﬁag) +

aq

C(azn)?

(n*2asp? + 2v/nas + Casn)(3asmn)

37 (125" + 20 + Cagn) (o)

C(O&g’ﬁ)Z
n(oep — a%) ’
C(agﬁ)Q

2

C(Oé;gT_L)Q

Waoo = Cozgfll/z + Coyn + o +
1

n(oep — a%) '

Assume the following conditions hold for a suitable constant C':

a1 > 209p + 2a2ﬁ1/ ,

2 2
agp Z Qg ,
We=W.

2

Then with probability exceeding 1 — n~" all of the following are true:

Hll >f—07
1

H'<
= n(agp — a?)

2
Hyo = —H,QF Hio +
(05} n

ozp—a%)

2
Q.+ —QrF,
(071

H,0Q,His.

n(aop —a?)’

(46)

(47)

(48)

(49)

(50)

(1)

(52)
(33)
(54)

(35)
(56)

(57)

The next two lemmas develop simplified expressions for matrices W, W under the parameter

choices of Theorem 1.

Lemma 7 Setting (c, p) as in Theorem 1, there exists 6,, = 6y (K, p) with 6,,(k,p) — 0 as n — oo,

such that
— on2k?
‘WOO P
3
— nK
-
p
— 2k2
Woy — —

15

< 6,Woo,
S 6nW11 )

<5, Was.

(38)

(39)
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Lemma 8 Setting («, p) as in Theorem 1, there exists 6,, = 6y, (K, p) with 6, (k,p) — 0 asn — oo,
such that, for some absolute constant C,

2,4
’WOO Uz ’; < 6n,Woo, (61)
p
4-3/2
|W11 ot <5, (62)
p
3. /> 552
‘WZQ—C“ Vi GRS W, (63)
p
and, for every a # b € {0,1,2},
4-3/2
Wap = O 5| < 8aWa, (64)

With Proposition 6 and the auxiliary Lemmas 8, 7 in hand, the proof of Theorem 1 is straightfor-
ward.

Proof [Proof of Theorem 1] As noted in Section 3 it suffices to prove that H > 0. By taking the
Schur complement with respect to H1;, we obtain that H > 0 if and only if

Hy1 =0 and  Ha = HLH ' Hia. (65)

Suppose that the conditions of Proposition 6 are verified under the values of «, p specified as in
Theorem 1. Then we have H1; = 0 by Eq. (55). Further by Eqgs. (56) and (57), we have
2
Hoyp = Hy | —QF 4 ————— H 66
22 12 (041 Qn + n(aap — o) Qn> 12 (66)
= HLH Hip (67)

which yields the desired (65).
We are now left to verify the conditions of Proposition 6. To begin, we verify that a1 2 2a9p +
2aip7/2. This condition is satisfied if:

p> kn'/?. (68)

For this, it suffices that
(klogn)Y*n/0 > kn'/?. (69)
or k <n 42 (logn)~1/3. (70)

Since k < n~2/3 this is true.

The condition aep — a2 > 0 holds since azp — of = 2k? — k% = k% > 0.
It remains to check that W = W. By Sylvester’s criterion, we need to verify that:

Woo — Woo >0, (71)
Woo — Woo —Wo
—_ >0, 72
—Woi Wi —Wn (72)
Woo — Woo W —Woe
—Woi Wiu—-Wu =W >0. (73)
—Woe —Wia Woo — Wag

16
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It suffices to check the above values using the simplifications provided by Lemmas 7 and 8 respec-

tively as follows. Throughout, we will assume that n is large enough, and write J,, for a generic se-

quence such that §,, — 0 uniformly over € [logn/n, ¢ *n=2/3/logn], p € [c(klogn)/*n'/6 1].
For Eq. (71), using Lemmas 7 and 8 we have that:

n?kt

Woo — Woo > o7 (74)

Hence , Wog — Woo > n?k*/2p? > 0 for large enough n.
For Eq. (72) to hold we need:

(Woo — W()())(WH — Wn) — W021 > 0. (75)
By Lemmas 7 and 8 we have:

3 CkAn3/2

Wu—wuz%a—én)— 1+ 5), (76)

The ratio of the two terms above is (up to a constant) given by p*/(kn'/?(logn)3/?) — oo, hence
for n large enough we have Wi — Wi > nk? / 2p2. Thus Eq. (72) holds if

2
712/{4 TLI@'S I’u‘4’r_l3/2
5)()- (45

or p& > k(logn)3. (78)

However as we set p 2 (k log n)l/ 4n1/6 this is satisfied for n large. Indeed this implies that:

3K’

2pt

Woo —Woo W
—Wor Wi — W] —

(719)

Consider now Eq. (73). Expanding the determinant along the third column

e Woo — Woo —Woi Woo —Woo —Wo ~Wor Wi —Wn
Waa — W, — +W - W
Wz 22) —Wn Wi —Wn Pl W Wi % Woe Wi
(80)
We start by noting that, for all n large enough,
— 3K
Waog — Wy > o (81)
P
Indeed, by Lemma 7 and 8, to prove this claim it is sufficient to show that
2 552 351/2
Lol 2R, (82)
p p p
for a large enough constant C' or:
p > C'max (n2/5n3/5(10g n)?°, k% (nlog n)1/4) (83)

17
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This is satisfied when we choose p > ¢(x log n)'/4n!/6 when we choose ¢ a large enough constant.
Along with the argument for the second condition above, this implies that:

n3k?

- 2p5 )

Woo—Woo  —Wo
—Wor Wi — Wi

(Waz — Waa) (84)

for large enough n.
We now consider the second term. Let w = Ck*7%/2/p®. Then by Lemmas 7 and 8, for all n
large enough:

Woo—Woo —Wor| _ 3 <n2’<ﬂ4 >
0<-W, < -w +w 85
s Wl Ty Wil 2 2 (85)
o2 cdo?
2ttt 86)
p
as n?x*/p? > 2w whenever p > (log n)3/8n*1/8. As we have p > n~1/12 this is satisfied.
Similarly, for the third term
—Wm Wu - W 3102 nli3
< < — — ] .
0 < Wpe ~Wos Wi <5 w + 2 (87)

The second term in the parentheses above dominates when p > «/4(log n)3/ 8n1/8 which holds as
we keep p > c(klogn)'/*n'/6, Hence:

—W()1 Wu - WH 27m3w2
Wi 88
|~ Woe Wiz p? (58)
Thus, using Eqgs. (84), (86), (88), we conclude that Eq. (73) holds if
n3k? > on?ktw?  2nkiw? 89)
2p° p? p?
_ 20+ n/z)n/i3w2' 90)
p
For this, it suffices that:
3.9 2,4, 2
n I;, > n HQ’LU : (91)
p p

or, equivalently, p? > c;n?k3(logn)? for an appropriate ¢; large enough. This holds under the
stated condition p > ¢(klogn)/4n!/6 provided c is large enough. This completes the proof of
Theorem 1. |

The proofs of Lemma 8 and 7 follow by a simple calculation and are given in Section A.3.

Our key technical result is Proposition 6. Its proof is organized as follows. We analyze the
expectation matrices E{ Hoo}, E{H12} in Section A.5. We then control the random components
Hyy —E{Hj1} in Section A.6, Hio — E{H2} in Section A.8, and Hay — E{H22} in Section A.7.
The application of the moment method to these deviations requires the definition of various specific
graph primitives, which we isolate in Section A.4 for easy reference. Finally, we combine the results
to establish Proposition 6 in Section A.9.
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A.3. Proofs of Lemmas 8 and 7
Proof [Proof of Lemma 8] Recall that W} is defined as:

_ \2
73/2 + 0(043”)2 i (n\/ﬁagpQ + 2v/nas + 304371) .

Woo = asin'/? + Cay - 92)
a1 n(agp — af)
Firstly, since p > ¢(k log n)1/4n1/6, and nk > logn, we have that p > n~1/12 asymptotically.
Hence:
2 2
nynasp” _ pvn oo 93)
Qasn logn
Similarly:
2
nynasp® _nk (94)
\/ﬁag 2
Also:
~3/2 4-2
T S 95)
ndazpt /n(asp — af) ~ (n?kC/nk?p?)
log?n _ log®n
-0 (%)
—\2 2 2
i 2(a23n) Jaq) < ,%lo%l " klog“n o ©7)
Padp?/n(asp —ad) ~ p i
~1/2 3/,3 3
asn KPP, (98)

asn3/? ~ k*fn/p? kR

Hence the term (n+/nasp?)?/n(azp — 1) is dominant in W and the first claim of the lemma
follows.
For Wy, we have the equation:

Wor = azi/? 4+ Caun®/? + ag(agﬁ)(ag(ﬁ + Vnay))
1
1
+ 72(n\/ﬁa3p2 + 2v/nas + asn)(asn). (99)
n(agp - a1)

It suffices to check that C'cy7%/2 is the dominant term. By the argument in Wy we already have that
the first term is negligible. Further since, azii//nos = ky/nlogn/p? = (klogn)'/?n'/% — 0, to
prove that the third term is negligible, it suffices that

. 5,3 2
(asn)(\{ﬁag) < _Mp _ (100)
aqond/? k°p~6y/Togn  logn

By the estimates in Wy the fourth term is negligible if:

2 —
n(aep — a?)oynid/?
5/21 —4 6 2
je, L 08TD AW P (102)

n®/2logn3/2p=6k6  /logn
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This implies the claim for Wy;. The calculation for Wy and Wis is similar.
We now consider W7; given by:

Wi = a3ﬁ1/2 + C()é4ﬁ3/2
0(0437_7,)2

_— 103
n(oep — a%) (103)

C
+ o (Cagn + Vnasp? + 2a2)2 +
1

As in Wy, the first term is negligible. For the third term, first we note that asn/ag = (klogn)n/p? >
log? n — co. Hence to prove that the third term is negligible, it suffices that:

2
M < kv — 0. (104)
agayund/?

The final term in W11 is negligible by the same argument, since n(cop — a?) = nk? > aj.
Wag is given by:

Woo = Ozg’fll/z + Coyn

C(Oégﬁ)Q i C(Oé3ﬁ)2

+ .
aq n(aep — a?)

(105)

Since n(agp — o) = nk? > «q it is easy to see that the third term dominates the fourth above. To
see that the first dominates the second, it suffices that their ratio diverge i.e.

=1/2 3
O (106)
aun KV
P
> 107
~ klogny/n (107
= A(rlogn)/Snt/* - o, (108)

as £ > 1/n. Thus we have that the first and third terms dominate the contribution for Way. This
completes the proof of the lemma. |

Proof [Proof of Lemma 7] Wy is given by:

_ -2 -3 -1
Woo = ag +2(n —2)asp + Wa4p4 — n(n2)a§. (109)

It is straightforward to check that the third and fourth terms dominates the sum above i.e.:

WOO

Y — — 1. (110)
(n 2)2(n 3) a4p4 _ n(n2 1) Oé%
Further we have:
n—=2)(n—-3) 4 nn-1) 4 2n2k?
fogp — TO@ = (14 dn) 2 (111)
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for some 6,, — 0. The claim for W then follows.
The claims for W1, and Wy follow in the same fashion as above where we instead use the
following, adjusting d,, appropriately:

Wi as+ (n—4)asp — (n — 3)asp*

= —1 (112)
nosp nosp
w -2 4
22 _ o3P + a4p 1 (113)
a9 a9
]

A.4. Graph definitions and moment method

In this section we define some family of graphs that will be useful in the moment calculations of
Sections A.6, A.7 and A.8. We then state and prove a moment method lemma, that will be our basic
tool for controlling the norm of random matrices.

Definition 9 A cycle of length m is a graph D = (V, E) with vertices V' = {v1, ... vy, } and edges
E = {{vi,viy1} : @ € [m]} where addition is taken modulo m.

Definition 10 A couple is an ordered pair of vertices (u, v) where we refer to the first vertex in the
couple as the head and the second as the tail.

Definition 11 A bridge of length 2m is a graph B = (V, E) with vertex set V. = {u;, v;,w; : i €
[m]}, and edges E = {{u;,v;}, {wi, w;}, {uit1,vi}, {uit1,w;} : i € [m]} where addition above
is modulo m. We regard (v;,w;) for i € [m] as couples in the bridge.

Definition 12 A ribbon of length m is a graph R = (V, E) with vertex set V. = {uj ... Upn,
V1 ... Uy and edge set E = {{u;, uiy1}, {ui, vig1}, {vi, wiv1}, {vi, vig1} - @ € [m]} where addi-
tion is modulo m. Further we call the subgraph induced by the 4-tuple (u;, v;, u;1+1,vi+1) a face of
the ribbon and we call the ordered pairs (u;,v;), i € [m] couples of ribbon.

Each face of the ribbon has 4 edges, hence there are (4) ways to remove 4 — n edges from the

face. We define a ribbons of class 7, type v and length 2m as follows.

Definition 13 For 1 < n < 4and1 < v < (f}) we define a ribbon of length 2m, class n and
type v to be the graph obtained from a ribbon of length 2m by keeping n edges in each face of the
ribbon, so that the following happens. The subgraphs induced by the tuples (ug2;—1, V2;—1, U2i, V2;)
and (ugit1,v2i+1,u2;, Vi) for i > 1 are faces of class n and type v as shown in Table 1.

For brevity, we write (1, v)-ribbon to denote a ribbon of class n and type v.

Definition 14 A (1, v)-star ribbon S = (V, E) of length 2m is a graph formed from a (n, v)-ribbon
R(V', E') of length 2m by the following process. For each face (u;, v;, uit1, vi+1) we identify either
the vertex pair (u;, uit+1) or the pair (v;, vi11) and delete the self loop formed, if any, from the edge
set. Note here that the choice of the pair identified can differ across faces of R.

We let S))',, denote this collection of (1, v)-star ribbons.

vV
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Definition 15 A labeled graph is a pair (F = (V,E),{) where F is a graph and { : 'V — [n]
maps the vertices of the graph to labels in [n]|. We define a valid labeling fo be one that satisfies the
following conditions:

1. Every couple of vertices (u, v) in the graph satisfies {(u) < {(v).
2. Forevery edge e = {v1,v2} € E, l(v1) # £(v2).

A labeling of F' is called contributing if, in addition to being valid, the following happens. For every
edge e = {u,v} € E, there exists an edge ¢’ = {u/,v'} # e such that {{(u),{(v)} = {£(u'), £(v")}.
In other words, a labeling is contributing if it is valid and has the property that every labeled edge
occurs at least twice in F.

Remark 16 Suppose F' is one of the graphs defined above and C' is a face of F. We write, with
slight abuse of notation, C' C F to denote “a face C of the graph F”. Furthermore, to lighten
notation, we will often write e € F' for an edge e in the graph F.

Definition 17 Ler £(F) denote the set of valid labelings of a graph F = (V, E) and £4(F') denote
the set of contributing labelings. Further, we define

v (F) = zelq):l?(}fv) range({) (114)

where range({) = {i € [n] : i = £(u),u is a vertex in F'}.
The following is a simple and general moment method lemma.

Lemma 18 Given a matrix X € R™*", suppose that there exist constants cy, c2,¢3,cq4,¢5 > 0
satisfying co > cy4 and for any integer r > 0:

ETr{(XTX)"} < < ) (c5)%" (17 + co)87Tea, (115)

c1r + Cc2

Then, for every n large enough, with probability exceeding 1 — n~("'=2)/2 ywe have that

|1 X[, < 04\/exp(clf)ncl (logm)es—er, (116)

Proof By rescaling X we can assume that c5 = 1. Since Tr{(XTX)*} = > .(0;(X))?" where
0;(X) are the singular values of X ordered o1(X) > 09(X)...on(X), we have that:

IX[13" = o1(X)* < Tr{(XTX)"}. (117)

Then, by Markov inequality and the given assumption:

P{|X|l, >t} gIP’{Tr{(XTX)QT} > tQT} (118)
<t UETy {(XTX)Q’”} (119)
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Figure Ribbon class(n) Ribbon type(r) Typical norm

e

')

4 1 n
(e
h(e

Ue')
)

=

(O8]
3

10} i)
e €)

w
[\
3l

1(e)
e,

Ue')
A(e')

W
w
3

ey
h(e)

1e')
)

=

w
N
3

ey
h

Ue')
&)

=

te)
e

1)
)

=

[\

[\

3
w
~
)

ey te')

e €)

=

\o}

W

I
w
~~
)

1) 1)
h &)

o

N

3
w
~
[N}

ie)
hie

Ue')
)

=

[\

9,

3
w
~~
)

t(e)
e,

Ye')
&)

\S)
(@)
3l

te) ie')

h(e )

1 1 n3/2
t(e) i(e')
h(e), h(e)
\ 1 2 n3/2
t(e) te')
h(e) h(e)
/ 1 3 n3/2
te) te')
h(e) h(e)
1 4 n3/2

(o)

1e')

Table 1: Definition of the different ribbon classes and types.

Using (}) < (ne/k)* we have:

P{|| Xy >t} <t (ne)m+2 (crr + ¢p)l@c)rteamez (121)
=exp{(cir + c2)(logn + 1) + ((cs — c1)r + ¢4 — c2) log(c1r + ) — 2rlogt} .
(122)

Setting = [(logn — ¢2)/c1] and using ¢ > ¢4 we obtain the bound:

P{[|X]|ly >t} <exp {logn(logn + 1)+ (e3/c1 — 1)(logn) loglogn — (logn — ¢2) log(tz/cl)}
(123)

< exp {lognlog (ne(log n)c?’/cl_l) — (logn — ¢2) log(tQ/Cl)} : (124)
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We can now set ¢ = {exp(I')n(log n)cs/c1=1 }Cl/ 2 whereupon the bound on the right hand side is
at most n~I'=¢2)/2 for every n large enough. This yields the claim of the lemma. |

The next lemma specialized the previous one to the type of random matrices we will be inter-
ested in.

Lemma 19 For a matrix X € R"™ " suppose there exists a sequence of graphs Gx (r) with
vertex, edge sets V,, E, respectively, a set £(Gx(r)) of labelings ¢ : V., — [n] and a constant
B > 0 such that:

{0 b= S I e (125)

KEQ Gx( )) EEGX )

where, for e = {u,v}, l(e) = {l(u),l(v)}. Let L2(Gx(r)) C L£(Gx(r)) denote the subset of
contributing labelings (i.e. the set of labelings { € £(Gx (1)) such that every labeled edge in
G x (r) is repeated at least twice). Further define v(r) and v*(r) by:

o) = il (126)
vi(r) = v(Gx(r))- (127)
Then
ETr {(XTX)T} < 87 125(Gx(r))] (128)
n 2r v(r)

Proof By rescaling X it suffices to show the case 8 = 1. Taking expectations on either side of
Eq. (125) we have that:

IETr{(XTX)T}: S B ] e (130)

LeL(Gx (r)) e€Gx (1)

The variables gy are centered and independent and bounded by 1. Hence the only terms that do
not vanish in the summation above correspond to labelings ¢ wherein every labeled edge occurs at
least twice, i.e. precisely when ¢ € £2(Gx(r)). By the boundedness of gy(.), the contribution of
each non-vanishing term is at most 1, hence

ETr{(XTX)T} < |182(Gx(1))]. (131)

It now remains to prove that |£2(G x ()] < (U:Z T))v(r)”(r). By definition, ¢ can map the vertices in

n
v« (1)

V. to at most v, (r) distinct labels. There are at most (7 ) distinct ways to pick these labels in [n],

and at most v, (r)*(") ways to assign the v, (r) labels to v(r) vertices, yielding the required bound.
|
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Lemma 20 Consider the setting of Lemma 19. If we additionally have

ve(r) < er+ e (132)
v(r) = c3r + c, (133)

where c3 < 2cy then | X ||, < B2 with probability at least 1 — n°.

Proof The proof follows by combining Lemmas 19 and 18. |

A.5. The expected values E{ Ho }, E{ H12}

In this section we characterize the eigenstructure of the expectations E{Hao}, E{H12}. These

. . (n] . . . .
can be viewed as linear operators on R(%) that are invariant under the action of permutations’
(n] L ..
on R(%). By Schur’s Lemma Serre (1977), their eigenspace decomposition corresponds to the
.. (n]) . . . . . ..

decomposition of R(%) into irreducible subrepresentations of the group of permutations. This is

(n]

2

given by R(%) = Vo @ V1 @ Vy, where

Vo={ve R([;]) : Ju € Rs.twy; j3 = uforall i < Jjt (134)
Vi={ve R([g]) :Ju € R, st(ly,u) = 0and vy 50 = w; + uj foralli < j} (135)
Vo= (Voo Vi)t (136)

An alternative approach to defining the spaces V,, is to let Vo = span(vp),V; = span(vi,i =
1...n),Vy =span(vy,1 < i< j<n), where

2
(v0)a = m (137)
. w(n=1) 1 )
_ 138
(v1)a _m otherwise. o
n=3 if A= {i,j}
()4 = —wtsy/ ot ifA={i}or{j} (139
ﬁ Z—j otherwise.
2

Notice that dim(Vy) = 1, dim (V1) = n—1, dim(V3) = n(n—3)/2, and that {v} };cpu) {017 i jepn)
are overcomplete sets. For a € {0, 1,2}, we denote by V, the matrix whose rows are given by this
overcomplete basis of V,

It is straightforward to check that the two definitions of the orthogonal decomposition R([g]) =
Vo & V1 & Vs, given above coincide. We let P, € R([g]) x(13) denote the orthogonal projector on
the space V.

The following proposition gives the eigenstructure of E{H2,}.

2. A permutation o : [n] — [n] acts on r(3) by permuting the indices in ([Z]

{o(i),o(4)}

) in the obvious way, namely o ({, j}) =

25



DESHPANDE MONTANARI

Proposition 21 The matrix E{Ha2} has the following spectral decomposition
E{Ha2} = MPo + MP1 + AP2, (140)

where

(n—2)(n-3) g n(n—=1) 4

No = a3 +2(n = 2agp + "ot = B 203, (141)
A =g+ (n—4)azp — (n — 3)ayp?, (142)
A2 = ag — 2a3p + agp’. (143)

Proof It is straightforward to verify that the vectors vf defined above are eigenvectors of E{ Hao }.
The eigenvalues are then given by Ay = (v;!, E{Has}v;!) for an arbitrary choice of A = {i} or

{i,7}- u

Remark 22 The above eigenvalues can also be computed using Meka and Wigderson (2013) which
relies on the theory of association schemes. We preferred to present a direct and self-contained
derivation.

We now have a similar proposition for E{ H12} € r(%) X([g]). More precisely, we decompose
R([T]) in span(1,,) and its orthogonal complement, and R([g]) =V ® V; & Vs as above.

Proposition 23 The following hold for all n large enough:

QL E{H12}Po = 0 (144)
HQiE{le}PlH , < Vo (145)
QrRE{H |5} Py =0 (146)
| QnE{ H12}Pol|y < n*/2a3p? + 2¢/nas (147)
OnE{H12}P1 =0 (148)
Q,E{H12}P> = 0. (149)

Proof For A € ([71‘]) and B € ([Z]):

asp? —ajay  if [ANB| =0

. (150)
Q9 — 10 if ’AﬂB’:1

(E{H12})a,B = {

Recall from the definition of the space V; = span({v{'} Ac(m) ). We can write E{H12} as:
1

n—1

E{H5} = ("2

azp® — aja n—1)(ag — agp? n—1)(n—
)( 3D 102) + ( 1)(a 3D )lnvg—k ( 1)( 2)(a2—a3p2)V1.

(5) !

(151)
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This implies all but the second and the fourth claims immediately as V1 Py = VP2 =0, Q, V1 =0
and Q:-1,, = 0. For the second claim, the above decomposition yields:

—1 -2
HQ#E{H12}P1H =  max w(ag — azpP)Viz (152)
2 zeVi:z],<1 n 5
n—1)(n—2
= ()Tf)(ozg — a3p?)\/ Amax(VIV]). (153)
Since (v, v} = —1/(n — 1) when A # A’ and 1 otherwise, we have that:
1
vl =" 1, 1,(1,)7 154
hence Amax(ViV]") = n/(n — 1). This implies that:
HQ#E{HQ}ﬂHQ — Vi~ 2(as — asp?) < Vnas. (155)
For the fourth claim, the expression for E{H12} above yields that:
n—1 2 2
asp” —ajag) + (n— 1)(as — asp
| QnE{H12}Poll5 = (s ) ) n( ) )\/ﬁ (156)
(2)
n—I1 2
-1
n—=1 n—=1
2 2
< nv/nasp? + 2v/nas. (158)
[ |

A.6. Controlling HH — E{HH}

The block Hj; is a linear combination of the identity and the adjacency matrix of G. Hence,
its spectral properties are well understood, since the seminal work of Fiiredi-Komlds Fiiredi and
Komlds (1981). While the nest proposition could be proved using these results, we present an self-
contained proof for pedagogical reasons, as the same argument will be repeated several times later
for more complex examples.

Proposition 24 Suppose that « satisfies:

G —aw 2 am'/?, (159)
awp—a?>0, a;>0. (160)
Then with probability at least 1 — n™5:
Hy, =0, (161)
1 2
H' < o 162
T L (162)
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Proof First, note that:
E{H11} = (a1 — cop)l;, + (cvap — a%) nQ,, . (163)

Furthermore, for A, B € ([T]), A # B, (Hi1 —E{H11})a B = a2gap. Here, we identify elements
of ([71’}) with elements of [r] in the natural way. Thus, expanding Tr { (H11 — EH11) " (H11 — EH11))™}
we obtain:

Tr { <(H11 —E{Hu}) (Hi - E{Hll})>m} =a3™ > Jl9aa9a,.4, (164)

Ay A, ALLLAL =1

where we set A,,+1 = A;. Let D(m) be a cycle of length 2m, Vp, Ep be its vertex and edge
sets respectively, and ¢ be a labeling that assigns to the vertices labels A1, A}, Ay, A, ... Ay, AL,
in order. Then the summation over indices A; ... A,,, A} ... A], can be expressed as a sum over
such labelings of the cycle D(m), i.e

To{ (- E{Hu ) (Hn - E(H0)) b =ad" S0 [ e (169)

Le£(D) e={u,v}eEp

Let £2(D(m)) denote the set of contributing labelings of D(m). By Lemma 20, it suffices to show
that maxyec g, (p(m)) [range(£)| < m + 1. Since for a contributing labeling £ of D(m), every edge
must occur at least twice, there are at most m unique labelings of the edges of D(m). If we consider
the graph obtained from (D, ¢) by identifying in D the vertices with the same label, we obtain a
connected graph with at most m edges, hence at most m + 1 unique vertices. This implies that there
are at most /m -+ 1 unique labels in the range of a contributing labeling ¢. Hence with probability at
least 1 — n~°:

|Hyy — E{Hy1}|, < aoin'/?, (166)
Hence with the same probability:

Hii = (a1 — agp — Caoii/?)L, + (aop — af) n Qy, (167)

for some constant C.. Under the condition a1 /2 — aop > o !/?

which we suppress) we have that:

(with a sufficiently large constant

[0
Hyi 7 5 1o+ (a2p — od) n Q. (168)
or, equivalently,
«
Hyi 7 = QO + (a2p — o) n Q. (169)

Inverting this inequality yields the claim for A 1_11. This completes the proof of the proposition. W
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A.7. Controlling Hyy — E{Ha2}

The following proposition is the key result of this subsection.

Proposition 25 With probability at least 1 — 2507 the following hold:

Fora€{0,1}  |Pu(Haz — E{Hxn})Pully < azn'/? + ayn’/?, (170)
|Po(Haoy — E{ Hop})Pall, < azin'/? + aui, (171)
Fora#be {0,1,2}  |Pu(Ha — E{Ha})Py|l, < azi?? + ayin®/?. (172)
Recall that:
—a3 + az if A=DB
—a3 +as(p+ g A)t(B)) if h(A) = h(B),A# B
(o) ap = —a% + a3(p + gn(ayn)) %f t(A) = h(B),A+#B
—a5 + a3(p + gians)) if h(A) = ¢(B),A# B
—a3 4+ a3(p + ghayns)) ift(A) =t(B),A# B
—a3 + aa(p + ghayn) (P + gnans) ( + guame) (@ + i ays)) i [ANB]=0.
(173)
When |A N B| = 0 (last case above) we can expand H 4 p as a sum of sixteen terms:
Hap = ou(p+ gnayn(n) (P + gh(ays) (2 + Geapns) (P + gians) — o3 (174)
= (up® — 03) + aup® (Gr(ayn(s) + Ih(ay(B) + Ge(A)h(B) T Ge(ay(B))
+ ouap ( In(A)(B)Ih(A)(B) T Ih(A)W(B)It(A)h(B) T Ih(A)h(B)It(A)t(B)
+ Gn(A)(B)It(A(B) T In(A)(B)It(A)(B) T Ge(A)h(B)IL A)t(B))
+ ap(Gn(a)n(B)In(A)(B) It (AYh(B) T Ih(A)h(B)In(A)t(B)It(A)e(B)
+ Gh(A)R(B) It AVR(B)It(A)(B) T Ih(A)L(B)It(A)h(B)It(A)H(B))
+ Q4Gn(A)h(B) In(A)L(B) It(A)h(B) Jt(A)H(B)- (175)

Compactly, we can represent the above summation as follows. Each term above is indexed by
a pair (n,v) where 0 < 1 < 4 denotes the number of variables g.. occurring in the product, and
v < (f}) determines exactly which n-tuple of g variables occur. For instance, when 7 = 1, we have

(1) terms cup®gn(ayn(m), 1P’ gniayi(m)> 1P’ Gi(ayn(p)> 4P’ gi( ay(p)- Equivalently, if Ra p(n,v)
is alabeled (7, v)-ribbon with exactly one face and vertices labeled h(A), t(A), h(B), t(B) in order,
each term corresponds to one specific class and type of ribbon, i.e.

Hap =) asmp'™" 11 9ij-

v e:{imj}ERA,B(n?V)

The exact mapping of the pair (7, ) to the choice of edges in R4 p(7, ) is given in Table 1. With
a slight abuse of terminology, we refer to 7 as the class and v the type of the term. We define the
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matrices J,,, (forn =1,2,3,4 and v = (f})) and K as follows.

(Jyo)aB = {a4p4—n Heperasom g 1 14NBI=0, (176)
0 otherwise.
(03gy(ap(p)  ifh(A) =h(B), A+ B,
asgnaypm) ift(A) =h(B),A# B,
Kap = { a3gyanm) iTh(A) =1(B),A# B, (177)
asgnayn) ift(A)=t(B),A# B,
0 otherwise.

The matrices .J;,,, vanish on the set of entries A, B where A and B have non-zero intersection.
This causes the failure of certain useful spectral properties with respect to the spaces Vo, V1, V.
Consequently, for our proof, it is useful to define the matrices .J,, ,, that do not have this constraint.

(p)as=cp™ [ 94 (178)
{i’j}ERA,B(n’V)

Here we ignore the constraint that A, B do not intersect, and follow the convention that g;; = 0 for

every i € [n].
Thus, with Eq. (173) we arrive at the following expansion:

s ()

Hyy —B{Hp} =K+ > Jy, (179)
n=1v=1

4 4 N 5 N
=K+ Jo1+ Jog+ Ja1+ Z I3+ Z(Jl,l/ —Jiy) + Z(b,y —Joay)
v=1 v=1 v=2
4 5
+Y Sty Jaw (180)
v=1 v=2

We now prove a sequence of lemmas regarding the spectral properties of the matrices K, .J;) .
The first one concerns the casen =2, v = 1,6 andn =4, v = 1.

Lemma 26 With probability at least 1 — 3n"°, we have that:

| J2,1 + J26 + Jaally S cun (181)
Proof By the triangle inequality:
121+ J26 + Janlly < [ J21lly + 12605 + 1 Jall, - (182)
We prove that with probability at least 1 — n >
| Tpwlly S can, (183)
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for (n,v) = (2,1),(2,6), (4,1). The claim then follows by a union bound.
Let R(n, v, m) denote a (n, v)-ribbon of length 2m. Then, by expanding the product we have:

T{ A b= 3 ™™ [T oo p- (184)

LeL(R(n,v,m)) e€R(n,v,m)

Here we write /(e) in place of the pair ¢(u),f(v) when u,v are the end vertices of e. Since
R(n,v,m) has 4m+2 vertices, by Lemma 20 it suffices to prove that maxc ¢, (r(n,v,m)) range(f) =
2m + 2.

We first prove this for the case n = 2 and v = 1, 6. Let £ be a contributing labeling of the ribbon
R(n,v,m) of length 2m. Let G(n, ) denote the graph obtained by identifying in R(n, v, m) every
vertex with the same label according to £. We have:

# connected components in G(n, v) < # connected components in R(n, v, m) = 2 (185)
# edges in R(n, v, m)

#edgesin G,, < 5

= 2m. (186)

It follows that there are at most 2m + 2 unique vertices in G(7, v, m) and hence, at most 2m + 2
unique labels in range(?).

We now prove the condition maxye e, (R(y,v,m)) range(¢) = 2m + 2 for n = 4, v = 1, induction
on m. The base case is m = 1 (or a ribbon of length 2), wherein it is obvious that a contributing
labeling ¢ can have at most 4 = 2m + 2 unique labels. Now, assume the claim is true for ribbons
of length at most 2m > 1 and we will prove it for R(4,1, m + 1) of length 2m + 2. Consider any
contributing labeling ¢ of R(4,1, m + 1). We now have the following cases

1. For every vertex u € R(4,1,m + 1), there exists u/ # w such that £(u’) = £(u).
2. There exists vertex u € R(4,1, m + 1) with a unique label 7 = ¢(u) and the degree of w is 4.

For case 1, if every label in the range of ¢ occurs at least twice in R(4, 1, m), the number of unique
labels is bounded by 2(m+1), since R(4, 1, m) has only 4(m+1) vertices, hence the claim follows.

For case 2, let (u1,v;) and (ug,v2) be the neighboring couples of u. If u is connected to all
of uy, v1, ug, ve, since the edges connected to u must occur twice, it must hold that £(u;) = £(us)
and ((v1) = £(va) (recall indeed that {(u;) < £(v1), (uz) < ¢(v2) by definition of a valid la-
beling). Hence, we can contract the ribbon removing the couple containing v and all edges and
identifying the couples (u1,v1) with (ug,v2). We obtain now a ribbon R4,1,m) of length 2m and

an induced labeling ¢ thereof which is contributing. By induction hypothesis, range(¢) < 2m + 2,

hence range(¢) = range(¢) + 2 < 2(m + 1) + 2. This completes the proof. [ |

Lemma 27 With probability at least 1 — 8n75, we have

4
Z J37V

v=1

< aupi. (187)
2
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Proof By the triangle inequality, it suffices to show that for v € {1,...,4}, with probability
| — (=22,

|30y < agpn. (188)

We prove the above for the case v = 2. The other case follow from analogous arguments.
Firstly, define the matrices jgg € R(3)*(5) and Q€ R *7? g5 follows:

(J3.2) i1 40l = C4PGikGirGit- (189)
Q(ij), (k1) = YikGilgjl- (190)
Note also that j},g differs from J3 2 only in the entries {i,;}, {k,¢} where j = k. The rows

(columns) of @) above are indexed by ordered pairs (i, j) € [n] x [n]. Now we define the projector
Py iR = R(2) by letting, for all 4, j € [n],
2

(P([g])(x)){i,j} = Z(ij) - (191)

571]) and, consequently, ||J32]la < aup|Qll,. Therefore it
2

suffices to bound the latter, which we do again by the moment method. Firstly we define:

Then we have J3o = 044p77([n])Q73
2

UGigy k) = Y, 9ia9ak9ii 15 = 1), (192)
q€[n]

Dy ey = D 9ja9agis1(i = k). (193)
q€(n]

Then we have, for any integer m > 1,

T _ T T
(@ Q)™) = Z Z Q(i1,jl),(iz,jg)Q(i27j2)7(i3,j3)Q(i3,j3),(i4,j4) o ‘Q(z'zm,jzm),(il,jl)
11,82, i2m €[N] J1,J2,...Jm €[N]

= Z Z (9i1i29j1j29i1j2) ) (9i2i39j2j39j2i3) ) (9i3i49j3j49i3j4) T (gi2mi19j2mj1gj2mi1)
11,12, 02m €[N] J1,J2,---,Jm €[N]

= Z Z (gi1i29i2i39i3i4 o 'gi2mi1) (gj1j2gj2j39j3j4 e 'gj2mj1) (gi1j29j2i39i3j4 o 'ngmh)
i17i27"'7i2m€[n] j17j27"'7j27n6[n]

= Z Z (gi1izgi2i3gi1j2) (gj2j39j3j4gj2i3) (gi3i4gi4isgisj4) e (gj2mj1 gj1j2.gj2mi1) .

11,82,..s02m €[N] j1,J2,..-,J2m €[n]
Then we have
Tr(QTQ)™) = Tr((UD)™). (194)
Hence

1/2m

1Qllz < Tr(QTQ)™)*™ < Tr(UD)™)*™ < (U5 |1D]5") /=" < n/™ U2, (195)

where in the last step we used the fact that |U||2 = ||D||2 by symmetry. Since m can be taken
arbitrarily large, we conclude that ||Q||2 < ||U||2 and we proceed to bound the latter.
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Now let T € R"**"” be the element-wise multiplication by g, i.e.
Tl g), k1) = 9310 = K)I(j = 1). (196)
Then we have
U=T-(*®1,) (197)

Here g € R™*™ is the matrix with 4, j entry being g;;. Since |g;;| < 1, we have ||T||s < 1 and
therefore

1Qll2 < U2 < ITl2llg* @12 < llg* @12 < llg*[l2 < llgll3 - (198)

Finally, similar to Proposition 24 we have that ||g|| < 7'/2 with probability at least 1 — n~°, hence
with the same probability:

| T2, 5 awpn. (199)

By triangle inequality | J32]l5 < HJ3 ollz + | Js2 — J3 2||2, hence to complete the proof we now

bound || J35 — J32||> using the moment method. Recall that .Js5 and Js differ in the entry
{i,7},{k, ¢} only if j = k. Hence:

m

Tr { (J32 — J32) T (J32 — J3,2))m} = (aup)®™ Z H <giqiq+19iqjq+19jqjq+1

11...92m,51.--J2m,Vq iq<jq ¢=1

Gigirigr2TigrrigraTioriiorl(l =2 =js =da =+ = ZQm))

= (up)®™ Y II  swewy  @0D

EEE(R(S,Q,M) e={u,v}€R(3,2,m)

Here, R(3,2,m) is a (3, 2)-ribbon of length 2m and £(R(3,2,m) is a collection of labelings of
R(3,2,m) satisfying the following criteria

1. For every couple (u,v) € R(3,2,m), {(u) < £(v).

2. Let (u1,v1), (u2,v2) ... (u2m, v2m) denote the couples in R(3,2, m). Then £(vy) = £(ug) =
l(vg) = Ll(ug). ...

Let £5(R(3,2,m)) denote the subset of contributing labelings, i.c. those that satisfy the addi-
tional criterion that every labeled edge is repeated twice. By Lemma 20 it suffices to show that
ve(R(3,2,m)) = MAX 5 R (3.2,m) [range(¢)| < m + 2. We prove this by induction. For the base
case of m = 1, since every edge is repeated twice under a contributing labeling, it is easy to see that
there are at most 3 unique labels. Assume the induction hypothesis that v, R(3,2,m — 1) < m+ 1.
Let ¢ be a contributing labeling of R(3,2, m). Then one of the following must happen:

1. No vertex in R(3,2,m) has a unique label under /.
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2. There exists a vertex w of degree 4 with a unique label under /.

The second condition follows because the vertices of degree smaller than 4 already have non-unique
labels due to condition 2 of the labeling set £(R(3,2,m)).

In case 1, R(3,2,m) can have at most 2m/2 + 1 = m + 1 < m + 2 unique labels under ¢. In
case 2, since w has a unique label and degree 4 the neighboring (u, v), (u’,v") have the same labels
under { i.e. {(u) = ¢(u') and £(v) = ¢(v"). Hence we can identify the couples (u,v), (v, v"), delete
w and its incident edges to obtain a ribbon R( ,2,m — 1) of length 2m — 2 and an induced labeling
{ thereof. By the induction hypothesis range(?) < m -+ 1 hence range(f) = range(f) + 1 < m + 2,

as required. By Lemma 20 we obtain that H J392 — J32 H2 < aypn with probability at least 1 — n=o

By Eq. (199), it follows that with probability at least 1 — 2n=°, || J32||2 < aupn < ayn. This
completes the proof of the lemma. |

For the case 7 = 1 we prove the following

Lemma 28 Recall that Ps : R([g]) — R([g ) is the orthogonal projector onto the space Vo C R( )
(defined in Section A.5). Firstly, we have that 772(2 _1J1,0)P2 = 0 Further, with probability at
least 1 — 4n=°, we have that:

4
> S| S aun®? (202)
v=1 2
Proof Recall from the definition of le, that
4 ~
D (i) ighine = P°(Gik + gie + gk + gje)- (203)
v=1

Now, for any v € R([g]>:

4
(Z J1,yv> => D’ (gik + gie + gk + 9j0) vk
{i,g}

v=1 k<t
=u; + Uy,

where we define u; = Y, p° (gir + gzg)v{k ¢}~ It follows that ST, Jywv € Vi = Vo & V1, and

hence Po 24,1 Jpv = 0. Since Z -1 J1 v 1s symmetric we obtain the first claim.
We prove the second claim —cf. Eq. (202)— by the moment method, similar to Lemma 26. Let
R(1,v,m) be a (1, v)-ribbon of length 2m. Then:

T { (UL 7) = (aap®) > I s @

LeL(R(1,v,m)) \ e={u,w}eR(1,v,m)

By Lemma 20 it suffices to prove that v, (R(1,v,m)) = 3m + 2. The claim then follows, using
Lemma 20 and the union bound.
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Let ¢ € £5(R(1,v,m)) be a contributing labeling of a ribbon R(1,v, m) of length 2m. Let
G(1, v, m) be the graph obtained by identifying vertices in R(1, v, m) with the same label. Notice
that R(1, v, m) is a union of a cycle D(m) of length 2m and 2m + 1 isolated vertices. The isolated
vertices can have arbitrary labels, hence v, (R(1,v,m)) = 2m + 1 4+ v (D(2m)) = 3m + 2 as
proved in Proposition 24. n

In a similar fashion, we bound the norm of the terms 17272, J~273, j274, !7275:
Lemma 29 We have that:

(Jo + Jo.4) P2 = 0, (205)
Po(Jas + Jos) = 0. (206)

Further with probability at least 1 — 2n~*
| 2|, 5 (@up®yn®”, 07
|2, 5 (@ar®yn®”2 (208)
Proof It is easy to check that :];72 = jQT 3 and ng = jZT 5. We prove Eq.(206), from which

Eq. (205) follows by taking transposes of each side. From the definition of jz,, we have for any
[n]
Ve R( )

(Jo3v + j2,5v){z‘,j} = Zp2 (9ikGie + 9ikgie) V) (209)
k<t
= uj + uy, (210)
where we let u; == Zk<ép2(gikgig)v{k7g}. It follows that (,72,311 + £,5)v € Vo ® Vy hence

Po(Jos + Jos) = 0. _ B
We prove the claim on the spectral norm for Jo 5. The claim for J5 4 holds in an analogous
fashion. Let R(2,2,m) be a (2, 2)-ribbon of length m. Then:

Tr {(j;r,2j2,2)m} = ) ()™ 11 Je(u)e(w)- (211)
LeL(R(2,2,m)) e={u,v}€R(2,2,m))

By Lemma 20, it suffices to show that v, (R(2,2,m)) = 3m + 2. i.e a contributing labeling ¢ maps
to at most 3m + 2 unique labels. Notice that R(2,2,m) is the union of m + 1 isolated vertices
and a bridge B(m) of length 2m. The isolated vertices are unconstrained and hence contribute
at most m + 1 new labels. It suffices, hence, to prove that B(m) has at most 2m + 1 unique
labels under its labeling £p(,,,) induced by £. Since, £g(y,) is contributing for B(m), it suffices that
v« (B(m)) = 2m + 1. We prove this by induction on m. In the base case of m = 1, this implies
it has at most 3 = (2 - 1 4 1) unique labels. Assuming that the claim is true for bridges of length
at most 2m for m > 1, we show that it holds for a bridge B(m + 1) of length 2m + 2. B(m + 1)
contains 3m + 4 vertices hence there are 3 cases:

1. For every vertex u € B there exists a different vertex u’ € B such that {p(u) = {p(u').
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2. There exists a vertex v € B which has a unique label under £ and u has degree 4.
3. There exists a vertex u € B which has a unique label under ¢ with degree 2.

In the first case, [range(¢)| < (3m +4))/2 < 2(m + 1) + 1 hence the claim holds.

In the second case, we have that the neighboring couples are (u1,v1), (u2, v2) then £, 41)(u1) =
CB(m+1)(u2) and £p(y,41)(v1) = £B(m+1)(v2). We can then contract the neighbors of u and delete
u and incident edges to obtain a bridge B (m) (and induced labeling ¢ B(m) of length 2m). By in-
duction £, maps to at most 2m + 1 labels, hence £,y to at most 2m 41+ 1 < 2(m+1)+1
labels.

In the third case, if u has neighbors 1, ug then £ g, 11y (u1) = €(m1)(u2). If we now identify
the neighbors of u with the same label, and delete u and the edges incident on it, we obtain a bridge
B(m) of length 2m, and an induced labeling ¢ j(m) Which is contributing. By induction, B(m) has
at most 2m + 1 unique labels, hence B(m + 1) has at most 2m + 1 + 2 = 2(m + 1) + 1 unique
labels. This completes the induction. |

Finally, we have to deal with the remainder terms (recall that matrix K is defined in Eq. (177)).

Lemma 30 We have with probability at least 1 — n~° that:
1K, S asn'/? 212)

Proof We compute Tr { (KT K)™}. Note that:

Tr{(KTK)m} — Z H(KAZBZKAlJrlBl) (213)

A1,B1...Ap B 1=1

.
= Y JIEasEa,sl(AnB|=DI(A4 NB|=1). (214
A1,B1...Am B 1=1

Here we set A,,+1 = A;. The second equality follows since K is supported on entries A, B such
that A, B share exactly one vertex. Recalling the definition of star ribbons, each term that does not
vanish in the summation above corresponds a labeling of a star ribbon S(2,1,m) € &3 formed
from a (2, 1)-ribbon of length 2m, i.e. we have:

T{(KTK)"} =a3" > 3 I e Q19

S(2,1,m)eST £€£(5(2,1,m)) e={u,v}€5(2,1,m)

Since there are at most 22™ = 4™ star ribbons of length 2m, it suffices by a simple extension of
Lemma 20, to show that v, (S(2,1,m)) = m + 2. Note that every S(2, 1,m) is a union of 2 paths,
one of length m’ and the other of length 2m—m/ for some m’ € [2m], hence has at most 2 connected
components. Let £ be a contributing labeling of S(2, 1,m) and Gg(2 1) be the graph obtained by
identifying vertices in S(2, 1, m) with the same label. Since S(2,1,m) is a union of two paths,
G 5(2,1,m) has at most 2 connected components. Furthermore, since £ is a contributing labeling, ev-
ery labeled edge in S(2, 1, m) repeats at least twice, hence G, 1(m) has at most 2m/2 = m edges.
Consequently, it has at most m + 2 vertices, implying that v, (S(2,1,m)) < m + 2. |
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Finally, we deal with the differences J;), — J~777,,. (Recall that .J;) , and jn,,, are defined in Eqgs.
(176) and (178).)
Lemma 31 With probability at least 1 — 6n7°, for eachn < 2 and v < (;‘;) :

HJW,V —Jnw ) S auh (216)

Proof We first consider Tr {((Jmu - Jn7,,)T(j7,7,, - Jm,,))m}. Let R(n,v,m) be a (n, v)-ribbon

of length 2m. As in the previous lemmas, we can write Tr {((jnl, - Jn,l,)T(jW, - Jnyl,))m} as a

sum over labelings of R(n, v, m) as follows:

Tr {((Jn,v - JnW)T(Jn,v - an))m} = (044]94_77)27” Z H 9e(u),(v)-

KEE(R(’VLV,M)) e={u,v}ER(n,v,m)
217)

Here we restrict the labelings ¢ to the subset £(R(7), v, m) that satisfy the criteria:
1. For every couple (u,v), £(u) < £(v).

2. Consider any adjacent pair of couples (u1,v1), (u2,v2) in R(n, v, m), atleast one of u1, v1, ug, vo
has degree 0. Assume this is u; (without loss of generality), then either ¢(u;) = ¢(uz) or

E(Ul) = Z(UQ).

On taking expectations the only labelings that do not vanish satisfy the additional criterion that every
labeled edge is repeated at least twice in R(n, v, m). We call this set of labelings £o(R(n, v, m)).

As in Lemma 29 it suffices to show that ‘EQ(R(T], v, m))‘ < (27;;2) (22m(2m + 2)3™+2). This

follows from the same arguments as in Lemmas 29, 28 (for n = 1, 2 respectively), with the addi-
tional caveat that the isolated vertices in R(n, v, m) are not unconstrained as before. Indeed, once
the labels of the connected component of R(n, v, m) are decided, there are only 2™ possible ways
of choosing the labels for the isolated vertices. Consequently, we have the bound:

ETe { (T = Jna) (T = Taa))™ b < (aap )" |25 (R(n,v,m)) (218)

n 4—n\2m 3m+2
< n .
< <2m N 2> (204p™ ") "™ (2m + 2) (219)

Applying Lemma 18, union bound and the triangle inequality yields the final result. |

We can now prove Proposition 25.
Proof [Proof of Proposition 25] The intersection of high probability events of Lemmas 26, 27, 28,
29, 30 and 31 holds with probability at least 1 — 25n~°. We will condition on this event for the
proof of the proposition.

We bound each of the projections P,(Haz — E{H22})P} for a,b € {0, 1,2} using the decom-
position (180).
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e Let us first consider a = b, a,b € {0, 1}, cf. Eq. (170). By application of above lemmas,
triangle inequality, < | Pally 1 X5 1Pslly < | X || for any X €

R([g]) in the decomposition Eq. (180), we get

| Pa(Haz — E{Hoo ) Pally S asit™/? + astasin®?) (220)

< agn'/? + a2, (221)
This proves Eq. (170).

e The case a = b = 2 is treated in the same manner, with the only difference that, when
bounding || Py ( Has — E{Has})Ps||, the terms of the type s>/ do not appear (see Lemmas
28, 29). Hence:

| Po(Hay — B{Hoo ) Polly < azii'/? 4+ ayn (222)
< asn'? + asn. (223)
This proves Eq. (171).

e The bound for the cross terms ||P,(Ha2 — E{H22})Ps||, for a # b is identical to that for the
case a = b = (0 above.

This proves Eq. (172) and hence finishes our proof of Proposition 25.

|
A.8. Controlling H12 — E{ng}
We prove the following proposition for the deviation Hio — E{H12}
Proposition 32 With probability at least 1 — 5n=" the following are true.
||H12 — E{H12}||2 < Oég’l’L (224)
(I ({20 .
Recall that an entry of H1s € R\ 1 2/ can be written as:
g — 1 if  ANB|=1
(Hi2)aB = | ) | (225)
az(p + gA,h(B))(p + ga)) — a1 otherwise.
Define the matrices L, ,, € R( forn =1,2,v < ( ) and L1 vfory =1, 2:
if | ANB|=0
(Loa)ap = A39A,h(B)IAL(B) 1 | _ | (226)
0 otherwise.
if | ANB| =0
(Lit)ap = a3pga,nB) 1 | | = (227)
0 otherwise.
if | ANB|=0
(Lis)ap = azpgayB) 1 | | = (228)
0 otherwise.
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It thus follows that:
Hip —E{H12} = Li1+ Li2+ La>. (229)
We first prove two Lemmas on the spectral properties of the matrices L, ,,
Lemma 33 With probability at least 1 — n~5, we have that
L2ty S azn. (230)

Proof Note that:
.
Tr {(LQ,lL;—,l)} = > 1T 90940809401 0(BY 94121 (231)
Ao Ap1,B1 ... By 1=1

Equivalently, letting B(m) be a bridge of length 2m we have:

Tr{(L“L?l } > I suwew (232)

LeL(B) e={u,v}eB

By Lemma 20 it suffices to show that v,(B(m)) < 2m + 1. This argument is already covered in
Lemma 29 and the claim hence follows. |

Lemma 34 With probability exceeding 1 — 2n=° the following holds:

max HL1 vy S azn. (233)

Proof We prove the claim for L ;. The same argument applies for L o with minor modifications.

m
Tr {(L1,2L—1r,2)m} = Z (azp)®™ H IAR(B)IALAR(BY) - (234)
At At Br..Bm -1

The above a sum over labelings of a bridge B(m) of type 1 and class 1, of length 2m. This is
union of a cycle D(m) of length 2m, and m isolated vertices. The lemma follows from Lemma
20 if v, (B(m)) < 2m + 1. But by the above decomposition v,(B(m)) < vi(D(m)) + m =
m+ 1+ m = 2m + 1, as in Proposition 24. This completes the proof. |

We can now prove Proposition 32.
Proof [Proof of Proposition 32] The intersection of favorable events of lemmas 33, 34 probability at
least 1 —5n"—%)/2, The required claim then follows from Lemmas 33, 34 and triangle inequality. l
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A.9. Proof of Proposition 6

The intersection of high probability favorable events of Propositions 24, 25 and 32 holds with prob-
ability at least 1 — 30n > > 1 — n~* for large enough n. By Proposition 24 we already have the
required bounds on Hy; and 1_11, cf. Egs. (55) and (56). It remains to show that on the same event:

2
Has > Q—HLQnHU + - H{,Qy Hia, (235)
1

1
(agp — af)

or, equivalently,

2
Or E{Hxn} = E{Hs} — Hy + —H,Q,Hiz + S~ H 5, Qp Hio. (236)
o1 n(agp — af)
Let W, W € R3*3 be two matrices that satisfy, for a,b € {0,1,2}:
Wap = [|PaE{Ha2} Pl (237)

Wan > Paltize — B{H2 )Pl + || @t HiaPu | | @ HaP

1
T o — o)

n(a2p _ al) HQnHlZPaHQ HQnHIQPbHQ . (238)

By expanding the Rayleigh quotient of each term in Eq. (236), and noting that W, = 0 for a # b,
it is straightforward to see that Eq. (236) holds if

aop —at >0, (239)

W=W. (240)

The first condition correspond to assumption (53). For the second one, we develop explicit expres-
sions of W, W as follows. For W, we use Proposition 21, that yields immediately W, ;, = 0 for

a # b as claimed, and WQQ, Wl,l, WZQ as in Eqs. (43), (44), (45).
In order to develop expressions for W we note that it is sufficient to guarantee

Wap > [|Pa(Ha2 — E{Ha2})Ps|l5

+ 0?1 (HQ#E{H12}PCL ,t | Hi2 — E{H12}||2) (HQ#E{HH}P”HQ + ||Hyz — ]E{H12}||2)
1
 naap —ad)

([1CnE{H12}Pally + [[H12 — E{H12}|5) (|QnE{ H12} Py lly + [[H12 — E{H12}l]5) -
(241)

Using the upper bounds in Propositions 23, 25, 32 we obtain the expressions in Eqgs. (46) to (51).
This completes the proof.
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