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Abstract
We consider reinforcement learning in parameterized Markov Decision Processes (MDPs), where
the parameterization may induce correlation across transition probabilities or rewards. Conse-
quently, observing a particular state transition might yield useful information about other, unob-
served, parts of the MDP. We present a version of Thompson sampling for parameterized reinforce-
ment learning problems, and derive a frequentist regret bound for priors over general parameter
spaces. The result shows that the number of instants where suboptimal actions are chosen scales
logarithmically with time, with high probability. It holds for prior distributions that put signifi-
cant probability near the true model, without any additional, specific closed-form structure such as
conjugate or product-form priors. The constant factor in the logarithmic scaling encodes the infor-
mation complexity of learning the MDP in terms of the Kullback-Leibler geometry of the parameter
space.
Keywords: Thompson sampling, Markov Decision Process, Reinforcement learning

1. Introduction

Reinforcement Learning (RL) is concerned with studying how an agent learns by repeated interac-
tion with its environment. The goal of the agent is to act optimally to maximize some notion of
performance, typically its net reward, in an environment modeled by a Markov Decision Process
(MDP) comprising states, actions and state transition probabilities.

The difficulty of reinforcement learning stems primarily from the learner’s uncertainty in know-
ing the environment. When the environment is perfectly known, finding optimal behavior essen-
tially becomes a dynamic programming or planning task. Without this knowledge, the learner faces
a conflict between the need to explore the environment to discover its structure (e.g., reward/state
transition behavior), and the need to exploit accumulated information. The trade-off is compounded
by the fact that the agent’s current action influences future information. Thus, one has to strike the
right balance between exploration and exploitation in order to learn efficiently.

Several modern reinforcement learning algorithms, such as UCRL2 (Jaksch et al., 2010), RE-
GAL (Bartlett and Tewari, 2009) and R-max (Brafman and Tennenholtz, 2003), learn MDPs using
the well-known “optimism under uncertainty” principle. The underlying strategy is to maintain
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high-probability confidence intervals for each state-action transition probability distribution and re-
ward, shrinking the confidence interval corresponding to the current state transition/reward at each
instant. Thus, observing a particular state transition/reward is assumed to provide information for
only that state and action.

However, one often encounters learning problems in complex environments, often with some
form of lower-dimensional structure. Parameterized MDPs, in which the entire structure of the
MDP is determined by a parameter with only a few degrees of freedom, are a typical example. With
such MDPs, observing a state transition at an instant can be informative about other, unobserved
transitions. As a motivating example, consider the problem of learning to control a queue, where
the state represents the occupancy of the queue at each instant (#packets), and the action is either
FAST or SLOW denoting the (known) rate of service that can be provided. The state transitions
are governed by (a) the type of service (FAST/SLOW) chosen by the agent, together with (b) the
arrival rate of packets to the queue, and the cost at each step is a sum of a (known) cost for the type
of service and a holding cost per queued packet. Suppose that packets arrive to the system with
a fixed, unknown rate λ that alone parameterizes the underlying MDP. Then, every state transition
is informative about λ, and only a few transitions are necessary to pinpoint λ accurately and learn
the MDP fully. A more general example is a system with several queues having potentially state-
dependent arrival rates of a parametric form, e.g., λ(s) = f(θ, s) for θ, s ∈ Rd.

A conceptually simple approach to learn MDPs with complex, parametric structure is poste-
rior or Thompson sampling (Thompson, 1933), in which the learner starts by imposing a fictitious
“prior” probability distribution over the uncertain parameters (thus, over all possible MDPs). A
parameter is then sampled from this prior, the optimal behavior for that particular parameter is com-
puted and the action prescribed by the behavior for the current state is taken. After the resulting
reward/state transition is observed, the prior is updated using Bayes’ rule, and the process repeats.

1.1. Contributions

The main contribution of this work is to present and analyze Thompson Sampling for MDPs (TSMDP)
– an algorithm for undiscounted, online, non-episodic reinforcement learning in general, parame-
terized MDPs. The algorithm operates in cycles demarcated by visits to a reference state, samples
from the posterior once every cycle and applies the optimal policy for the sample throughout the
cycle. Our primary result is a structural, problem-dependent regret1 bound for TSMDP that holds
for sufficiently general parameter spaces and initial priors. The result shows that for priors that put
sufficiently large probability mass in neighborhoods of the underlying parameter, with high proba-
bility the TSMDP algorithm follows the optimal policy for all but a logarithmic (in the time horizon)
number of time instants. To our knowledge, these are the first logarithmic gap-dependent bounds
for Thompson sampling in the MDP setting, without using any specific/closed form prior structure.
Furthermore, using a novel sample-path based concentration analysis, we provide an explicit bound
for the constant factor in this logarithmic scaling which admits interpretation as a measure of the
“information complexity” of the RL problem. The constant factor arises as the solution to an op-
timization problem involving the Kullback-Leibler geometry of the parameter space2, and encodes
in a natural fashion the interdependencies among elements of the MDP induced by the parametric

1. more precisely, pseudo-regret (Audibert and Bubeck, 2010)
2. more precisely, involving marginal KL divergences – weighted KL-divergences that measure disparity between the

true underlying MDP and other candidate MDPs. We discuss this in detail in Sections 5, 3.
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structure3. This results in significantly improved regret scaling in settings when the state/policy
space is potentially large but where the space of uncertain parameters is relatively much smaller
(Section 4.3), and represents an advantage over decoupled algorithms like UCRL2 which ignore the
possibility of generalization across states, and explore each state transition in isolation.

The analysis of a distribution-based algorithm like Thompson sampling poses difficulties of a
flavor unlike than those encountered in the analysis of algorithms using point estimates and confi-
dence regions (Jaksch et al., 2010; Bartlett and Tewari, 2009). In the latter class of algorithms, the
focus is on (a) theoretically constructing tight confidence sets within which the algorithm uses the
most optimistic parameter, and (b) tracking how the size of these confidence sets diminishes with
time. In contrast, Thompson sampling, by design, is completely divorced from analytically tailored
confidence intervals or point estimates. Understanding its performance is often complicated by
the exercise of tracking the (posterior) distribution, driven by heterogeneous and history-dependent
observations, concentrates with time.

The problem of quantifying how the prior in Thompson sampling evolves in a general param-
eter space, with potentially complex structure or coupling between elements, where the posterior
may not even be expressible in a convenient closed-form manner, poses unique challenges that we
address here. Almost all existing analyses of Thompson sampling4 for the multi-armed bandit (a
degenerate special case of MDPs) rely crucially on specific properties of the problem, especially
independence across actions’ rewards, and/or specific structure of the prior such as belonging to a
closed-form conjugate prior family (Agrawal and Goyal, 2012; Kaufmann et al., 2012; Korda et al.,
2013; Agrawal and Goyal, 2013), or finitely supported priors (Gopalan et al., 2014).

Additional technical complications arise when generalizing from the bandit case – where the
environment is stateless and IID5 – to state-based reinforcement learning in MDPs, in which state
evolution is coupled across time and evolves as a function of decisions made. There is little work
on rigorous performance analysis of Thompson sampling schemes for reinforcement learning apart
from a line of work in the Bayesian RL setting, in which the true MDP is assumed to be sampled
episodically from a prior completely known to the algorithm (Osband et al., 2013; Osband and Roy,
2014; Osband and Van Roy, 2014). Our interest, however, is in continuous (non-episodic) regret
minimization, especially in the frequentist sense, where the environment is fixed but unknown,
and the “prior” is merely an algorithm parameter. We are also interested in problem- (or “gap-”)
dependent O (log T ) regret bounds that depend explicitly on the MDP parameterization.

We overcome these hurdles to derive the first regret-type bounds for TSMDP at the level of a
general parameter space and prior. First, we directly consider the posterior density in its general
form of a normalized, exponentiated, empirical Kullback-Leibler divergence. This is reminiscent
of approaches towards posterior consistency in the statistics literature (Shen and Wasserman, 2001;
Ghosal et al., 2000), but we go beyond it in the sense of accounting for partial information from
adaptively gathered samples. We then develop self-normalized, maximal concentration inequalities
(de la Peña et al., 2007) for sums of sub-exponential random variables to Markov chain cycles,
which may be of independent interest in the analysis of MDP-based algorithms. These permit us to
show sample-path based bounds on the concentration of the posterior distribution, and help bound
the number of cycles in which suboptimal policies are played – a measure of regret.

3. In fact, the constant factor is similar in spirit to the notion of eluder dimension coined by Russo and Van Roy (Russo
and Van Roy, 2013) in their fully Bayesian analysis of Thompson sampling for the bandit setting.

4. except a few purely Bayesian regret analyses (Russo and Van Roy, 2013; Osband and Roy, 2014)
5. Independent and Identically Distributed
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2. Preliminaries

Let Θ be a space of parameters, where each θ ∈ Θ parameterizes an MDP mθ := (S,A, r, pθ).
Here, S and A represent finite state and action spaces, r : S × A → R is the reward function
and pθ : S × A × S → [0, 1] is the probability transition kernel of the MDP (i.e., pθ(s1, a, s2) is
the probability of the next state being s2 when the current state is s1 and action a is played). We
assume that the learner is presented with an MDP mθ? where θ? ∈ Θ is initially unknown. In the
canonical parameterization, the parameter θ factors into separate components for each state and
action (Dearden et al., 1999).

We restrict ourselves to the case where the reward function r is completely known, with the
only uncertainty being in the transition kernel of the unknown MDP. The extension to problems
with unknown rewards is well-known from here (Bartlett and Tewari, 2009; Tewari and Bartlett,
2008).

Algorithm 1: Thompson Sampling for Markov Decision Processes (TSMDP)
Input: Model space Θ, action space A, reward function r : S ×A → R, transition kernels
{pθ : θ ∈ Θ}, start state s0 ∈ S.
Output: Action At ∈ A at each time t ∈ Z+.
Parameters: Probability distribution π over Θ, Sequence of stopping times
t0 := 0 < t1 < t2 < . . .
Initialize: π0 ← π, t← 0, S0 = s0, R0 = 0.
for k = 1, 2, 3, . . .

1. (Start of epoch k) Sample θk ∈ Θ according to the probability distribution πtk .

2. Set Ck ← cOPT(θk) ≡ arg maxc∈C limu→∞
Hu,θk,c

u .

3. repeat

(a) Play action At+1 ← Ck(St).

(b) Observe St+1, Rt+1 ≡ r(St, At+1).

(c) Update (Bayes Rule): Set the probability distribution πt+1 over Θ to satisfy

∀θ πt+1(dθ) ∝ pθ(St, At+1, St+1) πt(dθ). (1)

(d) t← t+ 1.

until t = tk (End of epoch k).

end for

A (stationary) policy or control c is a prescription to (deterministically) play an action at every
state of the MDP, i.e., c : S → A. Let C denote the set of all stationary policies6 over (S,A), which
are the “reference policies” to compete with. Each policy c ∈ C, together with an MDP mθ, induces

6. Note that C is finite since S,A are finite. In general, C can be a subset of the set of all stationary policies, containing
optimal policies for every θ ∈ Θ. This serves to model policies with specific kinds of structure, e.g., threshold rules.
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the discrete-time stochastic process
(
Sθ,ct , Aθ,ct , Rθ,ct

)∞
t=0
≡ (St, At, Rt)

∞
t=0, with Sθ,ct , Aθ,ct and

Rθ,ct denoting the state, action taken and reward obtained respectively at time t. In particular, the

sequence of visited states
(
Sθ,ct

)∞
t=0

becomes a discrete time Markov chain.

For each policy c, MDP mθ and time horizon t ∈ {0, 1, 2, . . .}, we define the t-step value
function Ht,θ,c : S → R over initial states to be Ht,θ,c(s) := Eθ,c

[∑t
i=0R

θ,c
i

∣∣ S0 = s
]
, with the

subscripts7 θ, c indicating the stochasticity induced by c in the MDP mθ. Denote by cOPT(θ) :=

arg maxc∈C limt→∞
Ht,θ,c
t the policy with the best long-term average reward8 in C (ties are assumed

to be broken in a fixed fashion). Correspondingly, let µOPT(θ) := maxc∈C limt→∞
Ht,θ,c
t be the best

attainable long-term average reward for θ. We will overload notation and use c? ≡ cOPT(θ?) and
µ? ≡ µOPT(θ?).

In general, a(i) denotes the ith coordinate of the vector a, and a · b is taken to mean the standard
inner product

∑
i a(i)b(i) of vectors a and b. Here, KL (µ || ν) denotes the standard Kullback-

Leibler divergence
∑

y∈Y µ(y) log µ(y)
ν(y) between probability distributions µ and ν on a common

finite alphabet Y . The notation 1{A} is employed to denote the indicator random variable corre-
sponding to event A.

The TSMDP Algorithm. TSMDP (Algorithm 1) operates in contiguous intervals of time called
epochs, induced in turn by an increasing sequence of stopping times t0, t1, . . . We will analyze the
version that uses the return times to the start state s0 as epoch markers, i.e., tk := min{t >
tk−1 : St = s0}, k ≥ 1. The algorithm maintains a “prior” probability distribution (denoted by
πt at time t) over the parameter space Θ, from which it samples9 a parameterized MDP at the
beginning of each epoch. It then uses an average-reward optimal policy w.r.t. C for the sampled
MDP throughout the epoch , and updates the prior to a “posterior” distribution via Bayes’ rule (1),
effectively at the end of each epoch.

3. Assumptions Required for the Main Result

We begin by stating and explaining the assumptions needed for our main result for TSMDP to hold.

Assumption 1 (Recurrence) The start state s0 is recurrent10 for the true MDP mθ? under each
policy cOPT(θ) ∈ C for θ in the support of π.

Assumption 1 is satisfied, for instance, ifmθ? is an ergodic11 Markov chain under every station-
ary policy – a condition commonly used in prior work on MDP learning (Tewari and Bartlett, 2008;
Burnetas and Katehakis, 1997)12. Define τ̄c to be the expected recurrence time to state s0, starting
from s0, when policy c is used in the true MDP mθ? .

7. We will often drop subscripts when convenient for the sake of clarity in notation.
8. We assume that the limiting average reward is well-defined. If not, one can restrict to the limit inferior.
9. If the prior is analytically tractable, accurate sampling may be feasible. If not, a variety of schemes for sampling

approximately from a posterior distribution, e.g., Gibbs/Metropolis-Hastings samplers, can be used.
10. Recall that a state s is said to be recurrent in a discrete time Markov chain X1, X2, X3, . . . if

P
[
min{t ≥ 1 : Xt = s} <∞

∣∣ X0 = s
]

= 1 (Levin et al., 2006).
11. A Markov chain is ergodic if it is irreducible, i.e., it is possible to go from every state to every state (not necessarily

in one move)
12. We remark that RL algorithms have been designed to operate under weaker assumptions on the MDP structure than

ergodicity (e.g., the REGAL algorithm (Bartlett and Tewari, 2009) for weakly communicating MDPs and UCRL2
(Jaksch et al., 2010)), and that the ergodicity assumption we make is merely to facilitate the analysis of Thompson
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Assumption 2 (Bounded Log-likelihood ratios) Log-likelihood ratios are upper-bounded by a
constant Γ < ∞: ∀θ ∈ Θ ∀(s1, s2, a) ∈ S × S × A : π(θ) > 0, pθ?(s1, a, s2) > 0 ⇒∣∣∣log pθ? (s1,a,s2)

pθ(s1,a,s2)

∣∣∣ ≤ Γ.

Assumption 2 is primarily technical, and helps control the convergence of sample KL divergences
in Θ to (expected) true KL divergences, and is commonly employed in the statistics literature, e.g.,
(Shen and Wasserman, 2001).

Assumption 3 (Unique average-reward-optimal policy) For the true MDP mθ? , c? ≡ cOPT(θ?)

is the unique average-reward optimal policy: c 6= c? ⇒ limt→∞
Ht,θ?,c

t < limt→∞
Ht,θ?,c?

t .

The uniqueness assumption is made merely for ease of exposition; our results continue to hold with
suitable redefinition otherwise.

The remaining assumptions (4 and 5) concern the behavior of the prior and the posterior dis-
tribution under “near-ideal” trajectories of the MDP. In order to introduce them, we will need to
make a few definitions. Let π(c)

s1 (resp. π(c)
s1,s2) be the stationary probability of state s1 (resp. joint

probability of s1 immediately followed by s2) when the policy c is applied to the true MDP mθ? ;
correspondingly, let τ̄c := 1/π

(c)
s1 be the expected first return time to state s0.We denote byDc(θ

?||θ)
the important marginal Kullback-Leibler divergence13 for θ under c:

Dc(θ
?||θ) :=

∑
s1∈S

π(c)
s1

∑
s2∈S

pθ?(s1, c(s1), s2) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

=
∑
s1∈S

π(c)
s1 KL (pθ?(s1, c(s1), ·) || pθ(s1, c(s1), ·)) .

The marginal KL divergence Dc(θ
?||θ) is a convex combination of the KL divergences between

the transition probability kernels of mθ? and mθ, with the weights of the convex combination being
the appropriate invariant probabilities induced by policy c under mθ? . If Dc(θ

?||θ) is positive, then
the MDPsmθ andmθ? can be “resolved apart” using samples from the policy c. DenoteD(θ?||θ) :=
(Dc(θ

?||θ))c∈C , i.e., the vector of Dc(θ
?||θ) values across all policies, with the convention that the

final coordinate is associated with the optimal policy c?.
For each policy c, define Sc := {θ ∈ Θ : cOPT(θ) = c} to be the decision region corresponding

to c, i.e., the set of parameters/MDPs for which the average-reward optimal policy is c. Fixing
ε′ ≥ 0, let S′c ≡ S′c(ε

′) := {θ ∈ Sc : Dc?(θ
?||θ) ≤ ε′}. In other words, S′c comprises all the

parameters (resp. MDPs) with average reward-optimal policy c that “appear similar” to θ? (resp.
mθ?) under the true optimal policy c?. Correspondingly, put S′′c ≡ S′′c (ε′) := Sc \ S′c as the
remaining set of parameters (resp. MDPs) in the decision region Sc that are separated by at least ε′

w.r.t. Dc? .
Let us use e(t) to denote the epoch to which time instant t belongs, i.e., e(t) := k if t ∈

{tk−1 + 1, tk−1 + 2, . . . , tk}. Let Nc(k) :=
∑k

l=1 1{θl ∈ Sc} be the number of epochs, up to and
including epoch k, in which the policy applied by the algorithm was c. Let J(s1,s2)(k, c) denote the

Sampling specifically with recurrence stopping times. One could, in principle, analyze TSMDP with other stopping
times, such as the one used in UCRL2, and with weaker communicating class structure.

13. The marginal KL divergence appears as a fundamental quantity in the lower bound for regret in parameterized MDPs
established by (Agrawal et al., 1989).
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total number of time instants that the state transition s1 → s2 occurred in the first k epochs when
policy c was used, i.e., J(s1,s2)(k, c) :=

∑∞
t=1 1{Ce(t) = c, (St, St+1) = (s1, s2), Nc(e(t)) ≤ k}.

The next assumption controls the posterior probability of playing the true optimal policy c?

during any epoch, preventing it from falling arbitrarily close to 0. Note that at the beginning of epoch
k (time instant tk), the posterior measure πtk(M) of any legal subset M ⊆ Θ can be expressed
solely as a function of the sample state pair counts J(·,·)(·, ·) as

πtk(M) =

∫
MWtk(θ)π(dθ)∫
ΘWt(θ)π(dθ)

, Wtk(θ) := exp
∑
c,s1,s2

J(s1,s2) (Nc(k), c) log
pθ(s1, c(s1), s2)

pθ?(s1, c(s1), s2)
,

where Wtk(θ) represents the posterior density or weight at time tk. The assumption requires that
the posterior probability of the decision region of c? is uniformly bounded away from 0 whenever
the empirical state pair frequencies

J(s1,s2)(Nc(k),c)

Nc(k) are “near” their corresponding expected14 values

τ̄c π
(c)
(s1,s2)(θ

?, c).

Assumption 4 (Posterior probability of the optimal policy under “near-ideal” trajectories) For
any given scalars e1, e2 ≥ 0, there exists p? ≡ p?(e1, e2) > 0 such that πtk(Sc?) ≥ p? for any epoch
index k at which “near-ideal” state pair transition frequencies have been observed:∣∣∣∣J(s1,s2)(kc, c)

kc
− τ̄c π(c)

(s1,s2)

∣∣∣∣ ≤
√
e1 log (e2 log kc)

kc
∀s1, s2 ∈ S, kc ≥ 1, c ∈ C, k =

∑
c∈C

kc.

The final assumption we make is a “grain of truth” condition on the prior, requiring it to put
sufficient probability on/around the true parameter θ? ∈ Θ. Specifically, we require that prior
probability mass in weighted marginal KL-neighborhoods of θ? to not decay too fast as a function of
the total weighting. This form of local prior property is analogous to the Kullback-Leibler condition
(Barron, 1998; Choi and Ramamoorthi, 2008; Ghosal et al., 1999) used to establish consistency of
Bayesian procedures, and in fact can be thought of as an extension of the standard condition to the
partial observations setting of this paper.

Assumption 5 (Prior mass on KL-neighborhoods of θ?)
(A) There exist a1 > 0, a2 ≥ 0 such that π

({
θ ∈ Θ :

∑
c∈C kcτ̄cDc(θ

?||θ) ≤ 1
})
≥ a1k

−a2 , for
all choices of nonnegative integers kc, and k =

∑
c∈C kc.

(B) There exist a3 > 0, a4 > 0 such that π
({
θ ∈ Θ :

∑
c∈C kcτ̄cDc(θ

?||θ) ≤ 1
})
≥ a3k

−a4 , for
all choices of nonnegative integers kc, k =

∑
c∈C kc, that satisfy kc? ≥ k − 3 log2(k).

The key factor that will be shown to influence the regret scaling with time is the quantity a4

above, which bounds the (polynomial) decay rate of the prior mass around essentially the marginal
KL neighborhood of θ? corresponding to always playing the policy c?.

We show later how these assumptions are satisfied in finite parameter spaces (Section 4.1) ,
and in continuous parameter spaces (Section 4.2). In particular, in finite parameter spaces, the
assumptions can be shown to be satisfied with a2 = a4 = 0 while for smooth (continuous) pri-
ors, the typical square-root rate of 1/2 per independent parameter dimension holds, i.e., a4 ≤
1
2#(indpt. parameter dimensions) holds.
14. Expectation w.r.t. the state transitions of mθ?
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4. Main Result

We are now in a position to state15 the main, top-level result of this paper.

Theorem 1 (Regret-type bound for TSMDP) Suppose Assumptions 1 through 5 hold. Let ε, δ ∈
(0, 1), and let c? be the unique optimal stationary policy for the true MDP mθ? . For the TSMDP
algorithm, there exists T0 ≡ T0(ε) > 0 such that with probability at least 1 − δ, it holds for all
T ≥ T0 that

T∑
t=1

1{At 6= c?(St)} ≤ B + C log T, (2)

where B = B(δ,mθ? , π) is a problem- and prior-dependent quantity independent of T , and C is the
value of the optimization problem16

max
∣∣∣∣x|C|−1

∣∣∣∣
1

s.t. xl ∈ R|C|+ , ∀l = 1, 2, . . . , |C| − 1,

xl(|C|) = 0, ∀l = 1, 2, . . . , |C| − 1,

xi ≥ xj , ∀1 ≤ j ≤ i ≤ |C| − 1,

xi(l) = xl(l), ∀i ≥ l, l = 1, 2, . . . , |C| − 1,

σ : {1, 2, . . . , |C| − 1} → C \ {c?} injective,

min
θ∈S′

σ(l)

xl ·D(θ?||θ) = (1 + a4)

(
1 + ε

1− ε

)
, ∀1 ≤ l ≤ |C| − 1.

(3)

Discussion. Theorem 1 gives a high-probability, logarithmic-in-T bound on the quantity∑T
t=1 1{At 6= c?(St)}, the number of time instants in 1, 2, . . . , T when a suboptimal choice of

action (w.r.t. c?) is made. This can be interpreted as a natural regret-minimization property of
the algorithm17. The optimization problem (3) and the bound (2) can be interpreted as a multi-
dimensional “game” in the space of (epoch) play counts of policies c ∈ C, with the following
“rules”: (1) Start growing the non-negative |C|-dimensional vector z of epoch play counts of all
policies, with initial value (0, 0, . . . , 0) (the |C|-th coordinate of z represents the number of plays
of the optimal policy c?, which is irrelevant as far as regret is concerned, and is thus pegged to 0
throughout), (2) Wait until the first time that some suboptimal policy c 6= c? is “eliminated”, in the
sense z · D(θ?||θ) ≈ log T ∀θ ∈ S′c, (3) Record σ(1) = c, z1 = z, (4) Impose the constraint that
no further growth is allowed to occur in z along dimension c in the future, and (5) Repeat growing
the play count vector z until the time all suboptimal policies c 6= c? are eliminated, and aim to
maximize the final ||z||1 when this occurs. An overview of how this optimization naturally arises as
a regret bound for Thompson sampling is provided in Section 5.

We also have the following square-root scaling for the usual notion of regret for MDPs (Jaksch
et al., 2010):

15. Due to space constraints, the proofs of all results are deferred to the appendix.
16. Note that a4 in (16) is the constant from Assumption 5(B).
17. In the case of a stochastic multi-armed bandit (|S| = 1 and r : A → R IID across time) with rewards bounded

in [0, 1], for instance, this quantity serves as an upper bound to the standard pseudo regret18 (Audibert and Bubeck,
2010), defined as

∑T
t=1 (E [r(a?)− r(At)])1{At 6= a?}, with a? := arg maxa∈A E [r(a)]
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Theorem 2 (Regret bound for TSMDP) Under the hypotheses of Theorem 1, with 0 < δ ≤ 1, for
the TSMDP algorithm, there exists T1 > 0 such that with probability at least 1−2δ, for all T ≥ T1,

Tµ? −
∑T

t=1 r(St, At) = O

(√
T
τ̄c?

log
(

log T
δ

))
.

This can be compared with the probability-at-least (1−δ) regret bound ofO
(
D|S|

√
|A|T log

(
T
δ

))
for UCRL2 (Jaksch et al., 2010, Theorem 4), with D being the diameter19 of the true MDP.

The following sections show how the conclusions of Theorem 1 are applicable to various MDPs
and illustrate the behavior of the scaling constant C, showing that significant gains are obtained in
the presence of correlated parameters.

4.1. Application: Discrete Parameter Spaces

We show here how the conclusion of Theorem 1 holds in a setting where there the true MDP is
known to be one among finitely many candidate models (MDPs).

Assumption 6 (Finitely many parameters, “Grain of truth” prior) The prior probability distri-
bution π is supported on finitely many parameters: |Θ| <∞. Moreover, π({θ?}) > 0.

Theorem 3 (Regret-type bound for TSMDP, Finite parameter setting) Suppose Assumptions 1,
2, 3 and 6 hold. Then, with ε′ = 0, (a) Assumption 4 holds, and (b) Assumption 5 holds with a2 = 0
and a4 = 0. Consequently, the conclusion of Theorem 1 holds, namely: Let ε, δ ∈ (0, 1), and
let c? be the unique optimal stationary policy for the true MDP mθ? . For the TSMDP algorithm,
there exists T0 ≡ T0(ε) > 0 such that with probability at least 1 − δ, it holds for all T ≥ T0 that∑T

t=1 1{At 6= c?(St)} ≤ B + C log T , where B = B(δ,mθ? , π) is a problem- and prior-dependent
quantity independent of T , and C is the value of the optimization problem (3) with a4 = 0.

4.2. Application: Continuous Parameter Spaces

To illustrate the generality of our result, we apply our main result (Theorem 1) to obtain a regret
bound for Thompson Sampling with a continuous prior, i.e., Θ ∈ Rp, and π a probability density20

on Rp. For ease of exposition, let us consider a 2-state, 2-action MDP: S = {1, 2}, A = {1, 2} (the
theory can be applied in general to finite-state, finite-action MDPs). The (known) reward in state
si is ri, i ∈ {1, 2}, irrespective of the action played, i.e., r(i, a) = ri, ∀i ∈ {1, 2}, a ∈ A, with
r1 < r2. All the uncertainty is in the transition kernel of the MDP, parameterized by the canonical
parameters (p(1, a, 2), p(2, a, 1))a=1,2. Hence, we take the parameter space to be Θ = [0, 1]4, with

the identification21 θ =
(
θ

(1)
12 , θ

(1)
21 , θ

(2)
12 , θ

(2)
21

)
∈ Θ and θ(i)

jl = pθ(j, i, l) ∀i, j, l. It follows that the
optimal policy for a parameter θ is one that maximizes the probability of staying at state 2:

cOPT(θ) ≡ (c(1), c(2)) = (j1, j2), j1 = arg max
i
θ

(i)
12 , j2 = arg min

i
θ

(i)
21 .

19. The diameter D is the time it takes to move from any state s to any other state s′, using an appropriate policy for each
pair of states s, s′.

20. By a probability density on Rp, we mean a probability measure absolutely continuous w.r.t. Lebesgue measure on
Rp.

21. Note that we retain only 4 independent parameters of the MDP model.
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Imagine that the TSMDP algorithm is run with initial/recurrence state 1 and prior π as the uniform
density on the sub-cube [υ, 1 − υ]4, 0 < υ < 1/2 on the MDP mθ? , θ? ∈ Θ. Also, without
loss of generality, let υ < θ

?(2)
12 < θ

?(1)
12 < 1 − υ, υ < θ

?(1)
21 < θ

?(2)
21 < 1 − υ, implying that

c? ≡ cOPT(θ?) = (1, 1), i.e., the optimal policy is to always play action 1. It can be checked
that under this setup, Assumptions 1, 2 and 3 hold. The following result establishes the validity of
Assumptions 4 and 5 in this continuous prior setting.

Theorem 4 (Regret-type bound for TSMDP, Continuous parameter/prior setting) In the above
MDP, with ε′ > 0 small enough, (a) Assumption 4 holds, and (b) Assumption 5 holds with a2 = 2
and a4 = 1. Consequently, the conclusion of Theorem 1 holds.

4.3. Dependence of the Regret Scaling on MDP and Parameter Structure

We derive the following consequence of Theorem 1, useful in its own right, that explicitly guarantees
an improvement in regret directly based on the Kullback-Leibler resolvability of parameters in the
parameter space – a measure of the coupling across policies in the MDP.

Theorem 5 (Explicit Regret Improvement due to shared Marginal KL-Divergences) Suppose
that ∆ > 0 and the integer L ∈ Z+ are such that

∀c 6= c?, θ ∈ S′c |{ĉ ∈ C : ĉ 6= c?, Dĉ(θ
?||θ) ≥ ∆}| ≥ L,

i.e., at least L coordinates22 of D(θ?||θ) are at least ∆. Then, the multiplicative scaling factor C in
(2) satisfies C ≤

(
|C|−L

∆̃

)
2(1+a4)(1+ε)

1−ε ,where ∆̃ := min
{

∆,minc6=c?,θ∈S′c Dc(θ
?||θ)

}
.

The result assures a non-trivial additive reduction of Ω
(
L
∆ log T

)
from the naive decoupled regret,

whenever any suboptimal model in Θ can be resolved apart from θ? by at least L actions in the
sense of marginal KL-divergences of their observations.

Although the net number of decision vectors xl in (3) is nearly |C| = O(|A|S), the scale of C
can be significantly less than the number of policies |C| owing to the fact that the posterior proba-
bility of several parameters is driven down simultaneously via the marginal K-L divergence terms
D(θ?||θ). Put differently, using a standard bandit algorithm (e.g., UCB) naively with each arm be-
ing a stationary policy will perform much worse with a scaling like |C| log(T ). We show (Appendix
E) an example of an MDP in which the number of states can be arbitrarily large but which has only
one uncertain scalar parameter, for which Thompson sampling achieves a much better regret scaling
than its frequentist counterparts like UCRL2 (Jaksch et al., 2010) which are forced to explore all
possible state transitions in isolation.

5. Sketch of Proof and Techniques used to show Theorem 1

At the outset, TSMDP is a randomized algorithm, whose decision is based on a random sample from
the parameter space Θ. The essence of Thompson sampling performance lies in understanding how
the posterior distribution evolves as time progresses.

22. Note that the coordinate corresponding to the optimal policy c? is excluded from the condition.

10



THOMPSON SAMPLING FOR LEARNING PARAMETERIZED MDPS

Let us assume, for ease of exposition, that we have finitely many parameters, |Θ| <∞. Writing
out the expression for the posterior density at time t using Bayes’ rule, we have, ∀θ ∈ Θ,

πt+1(dθ) ∝ pθ(St, At+1, St+1)πt(dθ) = exp

(
−

t−1∑
i=0

log
pθ?(St, At+1, St+1)

pθ(St, At+1, St+1)

)
π0(dθ).

The sum in the exponent above can be rearranged into

∑
c∈C

Vc(t)
∑
s1∈S

Vs1,c(t)

Vc(t)

∑
s2∈S

1

Vs1,c(t)

t−1∑
i=0

1{(Si+1, Si) = (s2, s1) , Ce(i) = c} log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)
,

in which Vc(t) :=
∑t−1

i=0 1{Ce(i) = c}, and Vs1,c(t) :=
∑t−1

i=0 1{Ce(i) = c, Si = s1}.The above
sum is an empirical quantity depending on the (random) sample path S0, A1, S1, A2, . . . To gain a
clear understanding of the posterior evolution, let us replace the empirical terms in the above sum by
their “ergodic averages” (i.e., expected value under the respective invariant distribution) under the
respective policies. In other words, for each c ∈ C and s1 ∈ S , let us approximate Vs1,c(t)

Vc(t)
≈ π

(c)
s1 ,

the stationary probability of state s1 when the policy c is applied to the true MDP mθ? . In the

same way, we approximate
∑t−1
i=0 1{Si+1=s2,Si=s1,Ĉi=c}

Vs1,c(t)
≈ pθ?(s1, c(s1), s2).With these “typical”

estimates, our approximation to the posterior density simply becomes

πt+1(dθ) ∝∼ e
−
∑
c∈C Vc(t)Dc(θ

?||θ) π0(dθ), (4)

Expression (4) is the result of effectively eliminating one of the two sources of randomness in
the dynamics of the TSMDP algorithm – the variability of the environment, i.e., state transitions.
The other source of randomness arises due to the algorithm’s sampling behavior from the posterior
distribution. We use approximation (4) to extract two basic insights that determine the posterior
shrinkage and regret performance of TSMDP even for general parameter spaces: For a total time
horizon of T steps, we claim Property 1. The true model always has “high” posterior mass.
Assuming π0({θ?}) > 0 (the discrete “grain of truth” property), observe that (4) implies πt({θ?}) ≥∫
θ? e
−

∑
c∈C Vc(t)Dc(θ

?||θ)π0(dθ)∫
Θ e0π(dθ)

= π0({θ?}) > 0 at all times t. Thus, roughly, the true parameter

θ? is sampled by TSMDP with a frequency at least π0(θ?) > 0 during the entire horizon, i.e.,
Vc?(t) ≥ tπ0(θ?) ∀t. We also have Property 2. Suboptimal models are sampled only as long as
their posterior probability is above 1

T . The total number of times a parameter with posterior mass
less than 1

T can be picked in Thompson sampling is at most 1
T × T = O(1), which is irrelevant as

far as the scaling of the regret with T is concerned.
With these two insights, we can now estimate the net number of times bad parameters may be

chosen. To this end, partition the parameter space Θ into the optimal decision regions {Sc}c∈C ,
setting S′c := {θ ∈ Sc : Dc?(θ

?||θ) = 0} and S′′c := Sc \ S′c. Now, for each c 6= c? and θ ∈ S′′c ,
Dc?(θ) is positive; thus, since Θ is finite, ∃ξ > 0 such that Dc?(θ) > ξ uniformly across all such
θ. But this in turn implies, using Property 1 and (4), that the posterior probability of θ decays
exponentially with time t: πt+1(dθ) ≤ π0(θ)

π0(θ?)e
−tπ0(θ?)ξ. Hence, such parameters θ ∈ S′′c , c 6= c?

are sampled at most a constant number of times in any time horizon with high probability and do
not contribute to the overall regret scaling.

The interesting and non-trivial contribution to the regret comes from the amount that parameters
from S′c, c 6= c? are sampled. To see this, let us follow the vector of play counts of policies, i.e.,

11
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(Vc(t))c6=c? as it starts growing from the all-zeros vector at t = 0, increasing by 1 in some coordinate
at each time step t. By Property 2 above, once

∑
c∈C Vc(t)Dc(θ

?||θ) ≈ log T is reached, sampling
from S′c effectively ceases. Thus, considering the “worst-case” path that (Vc(t))c can follow to delay
this condition for the longest time across all c 6= c?, we arrive (approximately) at the optimization
problem (3) stated in Theorem 1.

Though the argument above was based on rather coarse approximations to empirical, path-based
quantities, the underlying intuition holds true and is made rigorous (Appendix A) to show that this
is indeed the right scaling of the regret. This involves several technical tools tailored for the analysis
of Thompson sampling in MDPs, including (a) the development of self-normalized concentration
inequalities for sub-exponential IID random variables (epoch-related quantities), and (b) control of
the posterior probability using properties of the prior in Kullback-Leibler neighborhoods of the true
parameter, using techniques analogous to those used to establish frequentist consistency of Bayesian
procedures (Ghosal et al., 2000; Choi and Ramamoorthi, 2008).

6. Related Work & Future Directions

A line of recent work (Agrawal and Goyal, 2012; Kaufmann et al., 2012; Korda et al., 2013; Agrawal
and Goyal, 2013; Gopalan et al., 2014) has demonstrated that Thompson sampling enjoys near-
optimal regret guarantees for multi-armed bandits – a widely studied subclass of reinforcement
learning problems.

The work of Osband et al. (2013), perhaps the most relevant to us, studies the Bayesian regret of
Thompson sampling for MDPs. While useful, this is arguably weaker than the standard frequentist
notion of regret in that it is an averaged notion of standard regret (w.r.t. the specific prior), and
moreover is not indicative of how the structure of the MDP exactly influences regret performance.
Subsequent work (Osband and Van Roy, 2014; Osband and Roy, 2014) investigates more structured
MDPs and develops Bayes regret bounds in terms of the eluder dimension. Moreover, the learning
model considered in their work is episodic with fixed-length episodes and resets, as opposed to the
non-episodic learning setting treated in this work, where we are able to show the first known struc-
tural (“gap-dependent”) regret bounds for Thompson sampling in fixed but unknown parameterized
MDPs. Prior to this, Ortega and Braun (2010) investigate the consistency performance of posterior-
sampling based control rules, again in the fully Bayesian setting where nature’s prior is known.
Abbasi-Yadkori and Szepesvári (2014) design a lazy posterior sampling algorithm in the continuing
(non-episodic) learning setting with smoothly parameterized dynamics and show Bayesian regret
bounds under posterior concentration assumptions.

Several deterministic algorithms relying on the “optimism under uncertainty” philosophy have
been proposed for RL in the frequentist setup considered here (Brafman and Tennenholtz, 2003;
Jaksch et al., 2010; Bartlett and Tewari, 2009). These algorithms work by maintaining confidence
intervals for each transition probability and reward, computing the most optimistic MDP satisfying
all confidence intervals and adaptively shrinking the confidence intervals each time the relevant state
transition occurs. This strategy is potentially inefficient in parameterized MDPs where, potentially,
observing a particular state transition can give information about other parts of the MDP as well.

Future Directions: Moving forward, it would be useful to extend the performance results for
Thompson sampling to continuous parameter spaces, as well as understand what happens when
feedback can be delayed. Specific applications to reinforcement learning problems with additional
structure would also prove insightful. In particular, studying the regret of Thompson Sampling for
MDPs with linear function approximation (Melo et al., 2008) would be of interest.
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Appendices for the paper Thompson Sampling for Learning Parameterized Markov
Decision Processes

Appendix A. Proof of Theorem 1

A.1. Expressing the “posterior” distribution

At time t, the “posterior distribution” πt that TSMDP uses can be expressed by iterating Bayes’ rule
(1):

∀M ⊆ Θ πt(M) =
Wt(M)

Wt(Θ)
=

∫
MWt(θ)π(dθ)∫
ΘWt(θ)π(dθ)

,

with the posterior density or weight Wt(θ) simply being the likelihood ratio of the entire observed
history up to t under the MDPs mθ and mθ? , i.e.,

Wt(θ) :=

t−1∏
i=0

pθ(Si, Ai+1, Si+1)

pθ?(Si, Ai+1, Si+1)

= exp

(∑
c∈C

t−1∑
i=0

1{Ce(i) = c} log
pθ(Si, Ai+1, Si+1)

pθ?(Si, Ai+1, Si+1)

)

= exp

∑
c∈C

∑
(s1,s2)∈S2

t−1∑
i=0

1
{
Ce(i) = c, (Si, Si+1) = (s1, s2)

}
log

pθ(s1, c(s1), s2)

pθ?(s1, c(s1), s2)


= exp

−∑
c∈C

Vc(t)
∑

(s1,s2)∈S2

t−1∑
i=0

1
{
Ce(i) = c, (Si, Si+1) = (s1, s2)

}
Vc(t)

log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

 ,

(5)

where Vc(t) :=
∑t−1

i=0 1
{
Ce(i) = c

}
is the total number of time instants up to t for which the epoch

policy c was used.
We will find it convenient in the sequel to introduce the following decomposition of the number

of epochs up to epoch k for which c was chosen to be the epoch policy:

Nc(k) :=
k∑
l=1

1{θl ∈ Sc} = N ′c(k) +N ′′c (k), (6)

N ′c(k) :=

k∑
l=1

1{θl ∈ S′c}, N ′′c (k) :=

k∑
l=1

1{θl ∈ S′′c }.
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A.2. An alternative probability space

In order to analyze the dynamics of the TSMDP algorithm, it is useful to work in an equivalent prob-
ability space defined as follows. Define a∞× |C| random matrix Q with elements in S × A × R.
The rows of Q are indexed by sampling indices l = 1, 2, . . ., and the columns by policies in C. For
each c ∈ C, independently generate the c-th column of Q by applying the stationary policy c to
the MDP mθ? , starting from initial state s0, and noting down the resulting (state, action, reward)

sequence, i.e., Q(l, c) ≡ (Q1(l, c), Q2(l, c), Q3(l, c)) := (Sθ
?,c
l , Aθ

?,c
l , Rθ

?,c
l ). For the c-th column

of Q, we let τ̃0,c := 0, and τ̃k,c := min{l ≥ τ̃k−1,c : Q1(l, c) = s0} ∀k ≥ 1. In words, τ̃k,c is the
k-th successive “virtual time” at which the MDP mθ? under policy c returns to the start state s0. We
thus have that the expected first return time to s0, defined earlier in Section 3, satisfies τ̄c = Ẽ[τ̃1,c].

Given the matrix Q, we can alternatively simulate the TSMDP algorithm operating in the MDP
mθ? as follows. At each round t ≥ 1 with the epoch index e(t) = k, if the epoch policy in effect is
Ck = c, then the action At = Q2(τ̃Nc(k),c + t − tk, c) is played, with the next state (resp. reward)
being St = Q1(τ̃Nc(k),c + t− tk, c) (resp. Rt = Q3(τ̃Nc(k),c + t− tk, c)).

Let P̃ denote the probability measure for the alternative probability space described above. The
following equivalence lemma records the fact that the distributions of the (state, action, reward)
sample path seen by the TSMDP algorithm under the original probability measure P and under in
the alternative measure P̃ are both identical.

Lemma 1 (Equivalence of probability spaces) For each (state, action, reward) sequence
{(st, at, rt)}Tt=1, we have, under the TSMDP algorithm,

P̃ [∀1 ≤ t ≤ T (St, At, Rt) = (st, at, rt)] = P [∀1 ≤ t ≤ T (St, At, Rt) = (st, at, rt)] .

Henceforth, we will work in the alternative space with measure P̃ but will dispense with the tilde
for ease of notation.

We now develop some useful concentration estimates for the random sample path matrix Q.
Define the following empirical estimates:

• U(s1,s2)(j, c) := 1
j

∑j
l=1 1 {Q1(l − 1, c) = s1, Q1(l, c) = s2}, s1, s2 ∈ S, j ≥ 1, denote the

empirical mean number of state transitions s1 → s2 down column c of Q (or the pairwise
empirical frequency),

• U(j, c) :=
(
U(s1,s2)(j, c)

)
s1,s2∈S

denote the empirical state transition vector for policy c,

• Us1(j, c) :=
∑

s2∈S U(s1,s2)(j, c), s1 ∈ S, j ≥ 1, be the marginal empirical frequency, and

• Us2|s1(j, c) :=
U(s1,s2)(j,c)

Us1 (j,c) , s1 ∈ S, s2 ∈ S, j ≥ 1, be the conditional empirical frequency
(whenever Us1(j, c) > 0; defined to be 0 otherwise)

in j virtual time steps. With this alternative view of the TSMDP execution, equation (5) for the
posterior probability density Wt at time t becomes

− logWt(θ) =
∑
c∈C

Vc(t)
∑

(s1,s2)∈S2

U(s1,s2) (Vc(t), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)
. (7)
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The following key self-normalized uniform bound controls the large deviation behavior of the
empirical means U(s1,s2)(j, c) and the return times τ̃k,c. It may be interpreted as a finite-sample
version of the Law of the Iterated Logarithm (LIL).

Proposition 2 (Uniform concentration for empirical means) Fix δ ∈ [0, 1]. Then, there exist
constants d1 ≥ 0, d2 ≥ 0 such that the following estimates hold with probability at least 1 − δ for
all k ≥ 1, c ∈ C, s1, s2 ∈ S:

|τ̃k,c − kτ̄c| ≤

√
kd1 log

(
|C||S|2d2 log k

δ

)
, (8)

∣∣∣τ̃k,c · U(s1,s2)(τ̃k,c, c)− kτ̄c · π
(c)
(s1,s2)

∣∣∣ ≤√kd1 log

(
|C||S|2d2 log k

δ

)
, (9)

∣∣∣τ̃k,c · Us1(τ̃k,c, c)− kτ̄c · π(c)
s1

∣∣∣ ≤√kd1 log

(
|C||S|2d2 log k

δ

)
. (10)

Proof By the Markov property, it follows that the (non-negative) random variables τ̃1,c, (τ̃2,c− τ̃1,c),
(τ̃3,c−τ̃2,c), . . ., (τ̃k,c−τ̃k−1,c) are IID. From standard arguments for finite-state, irreducible Markov
chains Lee et al. (2013, Lemma 7), we have that the recurrence times to s0 have exponential tails:

∀v ≥ 0 P [τ̃1,c > v] ≤ 2 · 2−
(

v
2τ̄max

)
, (11)

where τ̄max is the maximum expected hitting time, over states in the same communicating class as
s0, to s0. We also have E [τ̃1,c] = τ̄c.

On the other hand, using the definition of U(s1,s2)(τ̃k,c, c), we can write

τ̃k,c · U(s1,s2)(τ̃k,c, c) =

k∑
j=1

Bc,s1,s2(τ̃j−1,c + 1, τ̃j,c),

where the partial sums

Bc,s1,s2(τ̃j−1,c + 1, τ̃j,c) :=

τ̃j,c∑
l=τ̃j−1,c+1

1 {Q1(l − 1) = s1, Q1(l) = s2} , j = 1, 2, . . . , k

are again non-negative IID random variables due to the Markov property, and are bounded by the
corresponding cycle lengths (τ̃j,c − τ̃j−1,c). Thus, Bc,s1,s2(1, τ̃1,c) also satisfies the exponential tail

inequality (11) satisfied by τ̃1,c, with mean23 E [Bc,s1,s2(1, τ̃1,c)] =
π

(c)
(s1,s2)

πs0 (θ?,c) = τ̄c · π(c)
(s1,s2).

The conclusions of the proposition now follow by (a) appealing to the maximal concentration
inequality of Lemma 3, and (b) taking a union bound over all c ∈ C, s1, s2 ∈ S with the least
possible uniform upper bounds on the constants η1 and η2 guaranteed by Lemma 3.

23. The expectation can be computed via the renewal-reward theorem (Grimmett and Stirzaker, 1992) and Markov chain
ergodicity.
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Lemma 3 below gives a concentration bound for the entire sample path of the empirical mean of
an IID process, and may be viewed as a finite-sample analog of the asymptotic Law of the Iterated
Logarithm (LIL).

Lemma 3 (A maximal concentration inequality for random walks with sub-exponential increments)
Let X1, X2, . . . be a sequence of IID random variables such that P [|X1| > v] ≤ α1e

−α2v for some
α1, α2 > 0, and fix δ ∈ [0, 1]. Then, there exist constants η1 ≥ 0, η2 ≥ 0 such that the following
event occurs with probability at least 1− δ:

∀k ≥ 1

∣∣∣∣∣
k∑
i=1

Xi − kE [X1]

∣∣∣∣∣ ≤
√
η1k log

(
η2 log k

δ

)
.

Proof We begin by noticing that the exponential tail property implies finiteness of the moment
generating function in a neighborhood of zero: for any λ ∈ (0, α2),

eΛX1
(λ) := E

[
eλX1

]
=

∫ ∞
0

P
[
eλX1 > y

]
dy

≤ 1 +

∫ ∞
1

P
[
eλX1 > y

]
dy

≤ 1 +

∫ ∞
1

α1y
−α2/λdy <∞.

This allows us to take a second-order Taylor series expansion of ΛX1(λ) around λ = 0, to get that
∃β ∈ R such that ΛX1(λ) ≤ λE [X1] + β2λ2

2 ∀λ ∈
[
−α2

2 ,
α2
2

]
. As a consequence,

Mt := exp

(
λ

t∑
i=1

Xi − λtE [X1]− tβ2λ2

2

)
, t = 0, 1, 2, . . .

is a non-negative supermartingale for each λ ∈
[
−α2

2 ,
α2
2

]
. Applying the method of mixtures tech-

nique for martingale suprema (de la Peña et al., 2007, Example 2.5) (due, in turn, to the pioneering
work of Robbins and Siegmund (1970, Example 4)), we obtain the bound

P

[
k∑
i=1

Xi − kE [X1] ≥ gk for some k ≥ 1

]
≤ δ,

with gk :=

√
γ2β2k log

(
γ1 log(β2k)

δ

)
for some constants γ1 ≥ 0, γ2 ≥ 0. This finishes one half

of the proof for the “positive tail”
∑k

i=1Xi . The other half follows in an analogous fashion by
considering the negated random variables {−Xi}i.

We henceforth consider as fixed the confidence parameter δ ∈ [0, 1], and denote ρ(x) ≡

ρδ(x) :=

√
d1 log

(
|C||S|2d2 log x

δ

)
, x ≥ 1. Note that ρ(x) = O

(√
log log(x)

)
as a function of

x.
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Definition 4 (“Typical” trajectories) Let

G :=


|τ̃k,c − kτ̄c| ≤ ρ(k)

√
k,

∀c ∈ C ∀s1, s2 ∈ S ∀k ≥ 1 :
∣∣∣τ̃k,cU(s1,s2)(τ̃k,c, c)− kτ̄cπ

(c)
(s1,s2)

∣∣∣ ≤ ρ(k)
√
k,∣∣∣τ̃k,cUs1(τ̃k,c, c)− kτ̄cπ

(c)
s1

∣∣∣ ≤ ρ(k)
√
k


be the event that the random matrix Q from Section A.2 satisfies (8) and (9) (“near-ideal” sample
paths).

We thus have, by our previous estimates, that

P [G] ≥ 1− δ. (12)

The crux of the proof of Theorem 1 is in controlling regret of two kinds.

1. Regret due to sampling parameters from S′′c , c 6= c?: We will show that the true parameter θ?

is sampled at least a constant fraction (bounded away from 0) of times in 0, 1, . . . , T . This
implies that parameters in S′′c are sampled at most a constant number of times.

2. Regret due to sampling parameters from S′c, c 6= c?: We will establish that the number of
times that parameters from S′c are sampled is the claimed logarithmic bound in Theorem 1.

A.3. Regret due to sampling from S′′c

In this section, our goal is to show

Proposition 5 (O(1) samples from S′′c whp.) There exists α <∞ such that

P

[
∃c 6= c?

∞∑
k=1

1{θk ∈ S′′c } >
α|C|
δ

∣∣ G] ≤ δ.
Let J(s1,s2)(kc, c) denote the number of instants that the state transition s1 → s2 occurs in kc

successive epoch uses of policy c.

Lemma 6 Under the event G, for each θ ∈ Θ satisfying π(θ) > 0, each c ∈ C and k ≥ 1,

1. The following lower bound holds on the negative log-density.

− logWtk(θ) ≥ Nc(k)τ̄c ·Dc(θ
?||θ)− Γ|S|2ρ(Nc(k))

√
Nc(k).

2. The following upper bound holds on the negative log-density.

− logWtk(θ) ≤ Nc(k)τ̄c ·Dc(θ
?||θ) + Γ|S|2ρ(Nc(k))

√
Nc(k).
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Proof Since tk is an epoch boundary, Vc(tk) = τ̃k′c,c for k′c := Nc(k). Using (7), we can write

− logWtk(θ) = Vc(tk)
∑

(s1,s2)∈S2

U(s1,s2) (Vc(tk), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

=
∑

(s1,s2)∈S2

τ̃k′c,c · U(s1,s2)

(
τ̃k′c,c, c

)
log

pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

=
∑

(s1,s2)∈S2

[
τ̃k′c,c · U(s1,s2)

(
τ̃k′c,c, c

)
− k′cτ̄c · π

(c)
(s1,s2)

]
log

pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

+
∑

(s1,s2)∈S2

k′cτ̄c · π
(c)
(s1,s2) log

pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

≥ −
∑

(s1,s2)∈S2

ρ(k′c)
√
k′c ·

∣∣∣∣log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

∣∣∣∣
+ k′cτ̄c

∑
s1∈S

π(c)
s1

∑
s2∈S

π
(c)
(s1,s2)

π
(c)
s1

log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

≥ k′cτ̄c ·Dc(θ
?||θ)− Γ|S|2ρ(k′c)

√
k′c, (13)

where the final line is by the definition of event G and by using Assumption 2. This proves the
first assertion of the lemma. The second assertion follows in a similar fashion.

Lemma 7 (Bounded ratio of Log-likelihood and KL-divergence) Denote, for policy c ∈ C and
parameter θ ∈ Θ,

Lc(θ) :=
∑

(s1,s2)∈S2

∣∣∣∣log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

∣∣∣∣ .
There exists a universal constant g such that

sup
θ∈Θ,c∈C

Dc(θ?||θ)>0

Lc(θ)√
Dc(θ?||θ)

≤ g <∞.

Proof By Assumption 2, Lc(θ) ≤ Γ|S|2, so it only suffices to bound from above the ratio
Lc(θ)/Dc(θ

?||θ) for θ → θ?. In this case, it is not hard to see that for θ = θ? + δ′ for |δ′|
small enough, Lc(θ) = O(δ′) while24 Dc(θ

?||θ) = O(δ′2). Hence, the ratio Lc(θ)/Dc(θ
?||θ) is

bounded above by a universal constant, which completes the proof of the lemma.

Let Θ1 := {θ ∈ Θ :
∑

c∈C Nc(k)τ̄cDc(θ
?||θ) ≤ 1}. By Assumption 5A, π(Θ1) ≥ a1k

−a2 .

24. This is the standard phenomenon of the “local” || · ||22-like behaviour of the KL-divergence.
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By the penultimate inequality in the derivation of Lemma 6, we have that under the event G, for
any θ ∈ Θ1,

− logWtk(θ) ≤
∑
c∈C

Nc(k)τ̄cDc(θ
?||θ) +

∑
c∈C

ρ(Nc(k))
√
Nc(k)Lc(θ)

≤ 1 +
∑
c∈C

ρ(Nc(k))
√
Nc(k)Lc(θ) (since θ ∈ Θ1)

≤ 1 +

√∑
c∈C

Nc(k)τ̄cDc(θ?||θ)
√∑

c∈C

ρ2(Nc(k))

τ̄c
· L2

c(θ)

Dc(θ?||θ)
(Cauchy-Schwarz inequality)

≤ 1 + ρ(k)

√∑
c∈C

L2
c(θ)

Dc(θ?||θ)
(since τ̄c ≥ 1 ∀c ∈ C)

≤ 1 + ρ(k)g
√
|C|,

where g is the constant guaranteed by Lemma 7. Thus, under G,∫
Θ
Wtk(θ′)π(dθ′) ≥

∫
Θ1

Wtk(θ′)π(dθ′)

≥
∫

Θ1

e−1−ρ(k)g
√
|C| π(dθ′)

= e−1−ρ(k)g
√
|C| π(Θ1)

≥ e−1−ρ(k)g
√
|C|a1k

−a2 ≥ a′1k−a
′
2 (14)

for some suitable constants a′1, a
′
2.

We proceed to bound from above the posterior probability of S′′c , c 6= c? under the event G. To
this end, write

Wtk(θ)∫
ΘWtk(θ′)π(dθ′)

≤ Wtk(θ)

a′1k
−a′2

=
1

a′1k
−a′2

exp

[
−
∑
c∈C

Vc(tk)
∑
s1,s2

U(s1,s2) (Vc(tk), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

]

≤ 1

a′1k
−a′2

exp
[
−Nc?(k)τ̄c? ·Dc?(θ

?||θ) + Γ|S|2ρ(Nc?(k))
√
Nc?(k)

]
,

where, from Section 3, Nc?(k) is the number of epochs up until epoch k (i.e., until time instant
tk) in which the optimal policy c? is chosen. The first inequality is by (14). The second inequality
results by applying the conclusion of Lemma 6 to all policies c 6= c?. Using the uniform lower
bound Dc?(θ

?||θ) ≥ ε′ ∀θ ∈ S′′c and integrating the above inequality over θ ∈ S′′c gives the bound

πtk(S′′c ) ≤ νk exp
[
−ε′Nc?(k)τ̄c? + Γ|S|2ρ(Nc?(k))

√
Nc?(k)

]
,

with νk := 1

a′1k
−a′2

. The key property of the above estimate is that it decays exponentially with

Nc?(k). (Intuitively, since θ? is sampled with frequency at least p?, we expect that Nc?(k) ≈ kp?,
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and thus the estimate is also exponential in k.)

Proof [Proof of Proposition 5] We begin by estimating the moment generating function of Nc?(k).
Let Ft denote the σ-algebra generated by the history of the algorithm up to time t and state St, i.e.,
the σ-algebra generated by the random variables

{(S0, A0, R0), . . . , (St−1, At−1, Rt−1), St} .

We have

E
[
e−ε

′Nc? (k)
∣∣ G] = E

[
E
[
e−ε

′Nc? (k)
∣∣ Ftk−1

, G
] ∣∣ G]

= E
[
e−ε

′Nc? (k−1)E
[
e−ε

′
1{Ck=c?} ∣∣ Ftk , G] ∣∣ G]

≤ E
[
e−ε

′Nc? (k−1)E
[
e−ε

′
1{θtk∈Sc?}

∣∣ Ftk , G] ∣∣ G]
≤ E

[
e−ε

′Nc? (k−1)
(
p?e−ε

′
+ 1− p?

) ∣∣ G]
=
(
p?e−ε

′
+ 1− p?

)
E
[
e−ε

′Nc? (k−1)
∣∣ G] ,

where, in the penultimate step, we have used the fact that the probability of sampling θ? under G is
at least p? at all epoch boundaries (Assumption 4). Iterating the estimate further gives

E
[
e−ε

′Nc? (k)
∣∣ G] ≤ (p?e−ε′ + 1− p?

)k
.

Using this with the conditional version of Markov’s inequality, we have, for c 6= c? and χ > 0,

P

[ ∞∑
k=1

1{θk ∈ S′′c } > χ
∣∣ G] ≤ χ−1E

[ ∞∑
k=1

1{θk ∈ S′′c } > χ
∣∣ G]

= χ−1
∞∑
k=1

E
[
1{θk ∈ S′′c } > χ

∣∣ G]
≤ χ−1

∞∑
k=1

(
1 ∧ E

[
νke
−ε′Nc? (k)τ̄c?+Γ|S|2ρ(Nc? (k))

√
Nc? (k)

∣∣ G])
≤ χ−1

∞∑
k=1

(
1 ∧ E

[
νke
−ε′Nc? (k)τ̄c?+Γ|S|2ρ(k)

√
k
∣∣ G])

≤ χ−1
∞∑
k=1

(
1 ∧ νk

(
p?e−ε

′
+ 1− p?

)k
eΓ|S|2ρ(k)

√
k

)
.

Note that since p? and ε′ are positive, p?e−ε
′
+ 1 − p? < 1. Moreover, since both ρ(k)

√
k = o(k)

and log νk = o(k), the sum above is dominated by a convergent geometric series after finitely many
k, and is thus a finite quantity α <∞. Taking a union bound over all c 6= c? completes the proof of
Proposition 5.
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A.4. Regret due to sampling from S′c

We now turn to bounding the number of times that parameters from S′c with c 6= c? are sampled by
the TSMDP algorithm.

We begin with the following key lemma, which helps to give a more refined estimate of the
posterior weight exponent compared to Lemma 6.

Lemma 8 Fix ε ∈ (0, 1). By Assumption 1 and Lemma 7, it holds under the event G that for each
θ ∈ Θ, c ∈ C and T ≥ n ≥ 1,

Vc(tk)
∑

(s1,s2)∈S2

U(s1,s2) (Vc(tk), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

≥ (1− ε)Nc(k)τ̄cDc(θ
?||θ)− g2d1

4ε
log

(
|C||S|2d2 log T

δ

)
.

The usefulness of the result stems from the fact that the left-hand term (which in fact helps to
form the posterior log-density of θ) can be approximated by a constant fraction of the marginal KL
divergence Dc(θ

?||θ), with the approximation error being only O
(

log log T
ε

)
.

Proof Denote Lc(θ) :=
∑

(s1,s2)∈S2

∣∣∣log pθ? (s1,c(s1),s2)
pθ(s1,c(s1),s2)

∣∣∣. By the penultimate inequality in the
derivation of Lemma 6, we have that under the event G,

Vc(tk)
∑

(s1,s2)∈S2

U(s1,s2) (Vc(tk), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

≥ k′cτ̄c ·Dc(θ
?||θ)− ρ(k′c)

√
k′c

∑
(s1,s2)∈S2

∣∣∣∣log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

∣∣∣∣ ,
where k′c := Nc(k). The right hand side of the inequality above is of the form ax− bρ(x)

√
x if we

identify x ≡ k′c ∈ [0, T ], a ≡ τ̄c ·Dc(θ
?||θ) and b ≡ Lc(θ). To prove the lemma, it is enough to find

γ such that ax− bρ(x)
√
x ≥ (1− ε)ax− γ for every choice of θ ∈ Θ and c ∈ C. This is equivalent

to requiring that γ ≥ −εax+ bρ(x)
√
x. Consider now

sup
T≥x≥0

[
−εax+ bρ(x)

√
x
]
≤ sup

T≥x≥0

[
−εax+ b

√
d1x log

(
|C||S|2d2 log x

δ

)]

≤ sup
T≥x≥0

[
−εax+ b

√
d1x log

(
|C||S|2d2 log T

δ

)]

≤ sup
x∈R

[
−εax+ b

√
d1x log

(
|C||S|2d2 log T

δ

)]

=
b2d1 log

(
|C||S|2d2 log T

δ

)
4εa

,
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where the final step simply finds the maximum of the quadratic function over x. The only quantities
depending on θ in the right hand side above are a and b, so maximizing over θ ∈ Θ for which
a ≡ τ̄c ·Dc(θ

?||θ) > 0, we further obtain

sup
θ∈Θ,c∈C

Dc(θ?||θ)>0

sup
T≥x≥0

[
−εax+ bρ(x)

√
x
]
≤ d1

4ε
log

(
|C||S|2d2 log T

δ

)
sup

θ∈Θ,c∈C
Dc(θ?||θ)>0

(
L2
c(θ)

τ̄cDc(θ?||θ)

)

≤ g2d1

4ε
log

(
|C||S|2d2 log T

δ

)
,

where we have used Assumption 1 and Lemma 7 in the final step. This proves the statement of the
lemma.

We will henceforth fix ε ∈ (0, 1) as per Lemma 8. A consequence of Lemma 8 is the following
bound, under the event G, on the posterior density for any parameter θ ∈ Θ at the epoch boundary
times {tk}:

Wtk(θ)1G ≤ e−
∑
c∈C φθ,c(Nc(k)) ≤ e−

∑
c∈C φθ,c(N

′
c(k)), (15)

where for each θ and c, φθ,c(x) := (1 − ε)xτ̄cDc(θ
?||θ) − g2d1

4ε log
(
|C||S|2d2 log T

δ

)
:= (1 −

ε)xτ̄cDc(θ
?||θ)− ψε,T , and with the O

(
log log T

ε

)
correction term ψε,T thanks to Lemma 8.

We proceed to define the following sequence of non-decreasing stopping times (more precisely,
stopping epochs), which we term “elimination times”, and their associated policies in S .

Let τ̂0 := 0, M ′0 := (0, 0, . . . , 0) ∈ R|C|, and C0 := ∅. For each l = 1, . . . , |C| − 1, set

τ̂l := min k ≥ τ̂l−1

s.t. ∃cl ∈ C \ (Cl−1 ∪ {c?}) ∀θ ∈ S′cl :

l−1∑
m=1

M ′cm(τ̂m)τ̄cmDcm(θ) +
∑
c/∈Cl−1

N ′c(k)τ̄cDc(θ
?||θ) ≥ (1 + a4)

(
1 + ε

1− ε

)
log T,

(16)

Cl := Cl−1 ∪ {cl}, (17)

[Note that a4 in (16) is the constant from Assumption 5(B).] and where the |C|-dimensional non-
negative vector M ′(τ̂l) ≡ (M ′c(τ̂l))c∈C is defined as follows. For each cm such that m ≤ l − 1,
define M ′cm(τ̂l) := M ′cm(τ̂m). Recall that Cτ̂l denotes the policy which was played at epoch τ̂l, and
which led to the stopping time τ̂l being reached by satisfying inequality (16). For each c 6= Cl−1

and c 6= Cτ̂l , let M ′c(τ̂l) := N ′c(τ̂l). Finally, for c = Cτ̂l , put M ′c(τ̂l) := x, where x is the unique
real number in the interval [N ′c(τ̂l)− 1, N ′c(τ̂l)] that satisfies25

∑
c 6=Cτ̂l

M ′c(τ̂l)τ̄cDc(θ) + x · τ̄Cτ̂lDCτ̂l
(θ) = (1 + a4)

(
1 + ε

1− ε

)
log T. (18)

25. In case of non-uniqueness, i.e., if more than one cl ∈ C \ (Cl−1 ∪ {c?}) exists that satisfies (16) at epoch τ̂l, then we
proceed by choosing cl for which the value of x in (18) is the least.
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Remark: The purpose of defining the vectors M ′(τ̂l), l = 1, 2, . . . , |C| − 1 is to essentially convert
the inequality in (16) to the equality (18) by relaxing from integers N ′ to reals M ′. At the same
time, we maintain the point-wise dominance M ′(τ̂l) ≤ N ′(τ̂l). We will require precisely these
properties in the proof of Proposition 12.

In other words, for each l, Cl represents the set of the first l “eliminated” suboptimal policies.
τ̂l is the first time26 after τ̂l−1, when some suboptimal policy (which is not already eliminated)
gets eliminated27 by satisfying the inequality in (16). Essentially, the inequality checks whether the
condition ∑

c

N ′c(k)τ̄cDc(θ
?||θ) ≈ log T

is satisfied for all particles θ ∈ S′cl at epoch k, with two slight modifications – (a) the play count
N ′c(k) is “frozen” to N ′c(τ̂m) if action c has been eliminated at an earlier time τ̂m ≤ k, and (b)
paying a multiplicative penalty factor of (1 + a4)

(
1+ε
1−ε

)
on the right hand side.

Thus, τ̂0 ≤ τ̂1 ≤ . . . ≤ τ̂|C|−1, and C0 ⊆ C1 ⊆ . . . ⊆ C|C|−1 = C \ {c?}. For each policy c 6= c?,
by our definitions above, there exists a unique τ̂l at which c is eliminated at τ̂l, i.e., cl = c. Let the
notation τ̂(c) := τ̂l denote the elimination time for policy c.

Definition 9 (Minimum “resolvability” of suboptimal actions) We define

εmin := min
c∈C,c 6=c?

min
θ∈S′c

Dc(θ
?||θ).

Observe that if εmin = 0, then the optimization problem (3) in the regret bound of Theorem 1
has value∞. This is because if Dc(θ

?||θ) = 0 for some θ ∈ S′c with c 6= c?, then one can obtain
arbitrarily large solutions to (3) simply by considering all vectors xl ∈ R|C|+ , l = 1, 2, . . . , |C| − 1,
to be of the form (x, 0, . . . , 0).

Thus, we proceed by assuming that the regions S′c and S′′c , c ∈ C (induced by the parameter ε′)
are such that the minimum resolvability parameter εmin is a positive quantity.

Lemma 10 We have that

N ′cl(τ̂l) ≤
⌈

(1 + a4)(1 + ε)

εmin(1− ε)
log T

⌉
+ 1

for each l = 1, 2, . . . , |C| − 1.

Proof Assuming the contrary leads to equation (16) being contradicted.

The following important lemma states that after a policy c is eliminated, the TSMDP algorithm
does not sample parameters from the region S′c for too many epochs, with high probability.

26. All the τ̂l, l ≥ 0 index epochs w.r.t. the TSMDP algorithm, but we will refer to them as “times”. This distinction
should be clear throughout.

27. In case more than one suboptimal policy is eliminated at some τ̂l, we use a predetermined tie-breaking rule among C
to resolve the tie.
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Lemma 11 (At most O(1) samples from S′c after policy c is eliminated) For ε ∈ (0, 1) and T
large enough so that C

(
1 +

⌈
(1+a4)(1+ε)
εmin(1−ε) log T

⌉)
≤ log2(T ), it holds that

P

∃l ∈ {1, 2, . . . , |C| − 1}
∑

k≥τ̂l+1

1{θk ∈ S′cl} >
|C|
δa3

+ o(1)
∣∣ G
 ≤ δ.

Proof Whenever k > τ̂l, we have that every θ ∈ S′cl satisfies

Wtk(θ)1G ≤ exp

(
−
∑
c∈C

φθ,c(N
′
c(k))

)

= exp

(
−
∑
c∈C

(
(1− ε)N ′c(k)τ̄cDc(θ

?||θ)− ψε,T
))

= exp

(
−(1− ε)

∑
c∈C

N ′c(k)τ̄cDc(θ
?||θ) + ψε,T |C|

)

≤ exp

−(1− ε)
∑
c∈Cl−1

N ′cτ̄c(τ̂(c))Dc(θ)− (1− ε)
∑
c/∈Cl−1

N ′c(k)τ̄cDc(θ
?||θ) + ψε,T |C|


≤ exp

(
−(1− ε)(1 + a4)

(
1 + ε

1− ε

)
log T + ψε,T |C|

)
=
eψε,T |C|

T 1+a4
e−ε(1+a4) log T

≤ T−(1+a4). (19)

The first inequality in the display above follows from (15). The second inequality is due to the
fact that for any m ≤ l, we have τ̂m ≤ τ̂l ≤ k, implying that ∀c ∈ Cl−1, N ′c(k) ≥ N ′c(τ̂(c)). The
third inequality follows from (16). The final inequality above holds for T large enough such that

ε(1 + a4) log T ≥ ψε,T =
g2d1

4ε
log

(
|C||S|2d2 log T

δ

)
.

Now, define the nonnegative integer-valued random variable

KB = min

k ≥ 0 :
∑
c 6=c?

Nc(k) > 3 log2(T )

 ,
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i.e., KB is the first epoch at which suboptimal policies have been chosen in at least 2 log2(T )
previous epochs. Let us estimate

E
[
1{k > τ̂l}1{θk ∈ S′cl}1{k < KB}

∣∣ G]
= E

[
E
[
1{k > τ̂l}1{θk ∈ S′cl}1{k < KB}

∣∣ G,Ftk] ∣∣ G]
= E

[
1{k > τ̂l}1{k < KB}πtk(S′cl)

∣∣ G] = E

1{k > τ̂l}1{k < KB}

∫
S′
cl

Wtk(θ)π(dθ)∫
ΘWtk(θ)π(dθ)

∣∣ G


≤ E

1{k > τ̂l}

∫
S′
cl

Wtk(θ)π(dθ)

a3T−a4

∣∣ G
 (by Assumption 5(B))

≤ 1

a3T 1+a4−a4
=

1

a3T
(by (19)). (20)

Together with the fact that the epoch index is at most T for a time horizon of T time steps, this
implies that

E

 ∑
T≥k≥τ̂l+1

1{θk ∈ S′cl}1{k < KB}
∣∣ G


=

T∑
k=1

E
[
1{k > τ̂l}1{θk ∈ S′cl}1{k < KB}

∣∣ G] ≤ T · 1

a3T
=

1

a3
. (21)

In a similar fashion, considering plays of all suboptimal policies C \ {c?} post their respective
elimination times, we can write

E

|C|−1∑
l=1

∑
T≥k≥τ̂l+1

1{θk ∈ S′cl}1{k ≥ KB}
∣∣ G


= E

|C|−1∑
l=1

T∑
k=1

1{k > τ̂l}1{θk ∈ S′cl}1{k ≥ KB}
∣∣ G
 ≤ E

[
T∑
k=1

1{KB < T}
∣∣ G]

= TP
[
KB < T

∣∣ G] . (22)

We have

P
[
KB < T

∣∣ G] = P

∃1 ≤ k ≤ T :
∑
c 6=c?

Nc(k) > 3 log2(T )
∣∣ G
 (by the defn. of KB).
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Continuing the calculation further, we can write

P

∃1 ≤ k ≤ T :
∑
c 6=c?

Nc(k) > 3 log2(T )
∣∣ G


= P

∃1 ≤ k ≤ T : k ≤ KB,
∑
c 6=c?

N ′c(k) +
∑
c 6=c?

N ′′c (k) > 3 log2(T )
∣∣ G


≤ P

∃1 ≤ k ≤ T : k ≤ KB,
∑
c6=c?

N ′c(k) > 2 log2(T )
∣∣ G
+ P

∑
c6=c?

N ′′c (T ) > log2(T )
∣∣ G


≤ P

∃1 ≤ k ≤ T : k ≤ KB,
∑
c6=c?

N ′c(τ̂(c)) +
∑
c 6=c?

[
N ′c(k)−N ′c(k ∧ τ̂(c))

]
> 2 log2(T )

∣∣ G


+ P

∑
c 6=c?

N ′′c (T ) > log2(T )
∣∣ G


(a)

≤ P

∃1 ≤ k ≤ T : k ≤ KB,
∑
c 6=c?

[
N ′c(k)−N ′c(k ∧ τ̂(c))

]
> log2(T )

∣∣ G


+ P

∑
c6=c?

N ′′c (T ) > log2(T )
∣∣ G


≤ P

∃1 ≤ k ≤ T : k ≤ KB,
∑
c 6=c?

k∑
j=τ̂(c)+1

1{θj ∈ S′c} > log2(T )
∣∣ G


+ P

∑
c6=c?

N ′′c (T ) > log2(T )
∣∣ G


(b)

≤ P

[
T∑
k=1

Qk > log2(T )

]
+ P

∑
c6=c?

N ′′c (T ) > log2(T )
∣∣ G
 , (23)

where {Qk} are IID Bernoulli random variables with success probability pQ := |C|
a3T

. Inequality
(a) follows from the assertion of Lemma 10 and the hypothesis that T is large enough to satisfy
C
(

1 +
⌈

(1+a4)(1+ε)
εmin(1−ε) log T

⌉)
≤ log2(T ). Inequality (b) is thanks to the observation that (i) as long

as τ̂(c) < j ≤ k ≤ KB , the probability of sampling θk ∈ S′c for any c 6= c?, underG, is at most 1
a3T

by (20), and (ii) then using a standard stochastic dominance argument after coupling 1{θj ∈ S′c} to

the IID Bernoulli
(
|C|
a3T

)
random variables {Qk}.

Estimating the first term in (23). We can now show that the first term in (23) is o(1) using
a version of Bernstein’s inequality (Boucheron et al., 2004): For zero-mean independent random
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variables Z1,Z2, . . . ,Zn almost surely bounded above by B, and Σ2 := 1
n

∑n
i=1 E

[
Z2
i

]
,

P

[
n∑
i=1

Zi ≥ nι

]
≤ exp

(
− nι2

2Σ2 + 2Bι/3

)
.

Applying this to our setting with Bernoulli random variables, B = 2 and Σ2 = pQ(1− pQ),

P

[
T∑
k=1

Qk > log2(T )

]
≤ P

[
T∑
k=1

Qk − TpQ > log2(T )

]

≤ exp

(
− log4(T )/T

2pQ(1− pQ) + 4 log2(T )/3T

)
≤ exp

(
− log4(T )/T

2|C|/a3T + 4 log2(T )/3T

)
= exp

(
− log4(T )

2|C|/a3 + 4 log2(T )/3

)
= exp

(
−1

2
Ω(log2(T ))

)
, (24)

provided T is large enough so that log2(T ) ≥ 3|C|/a3.

Estimating the second term in (23). The second term in (23) be dealt with in a similar fashion –
the probabilities P

[
1{θk ∈ S′′c }

∣∣ G], k ≥ 1, c 6= c?, decay exponentially in k as established in the
proof of Proposition 5. Hence, an application of Bernstein’s inequality as above gives

P

∑
c 6=c?

N ′′c (T ) > log2(T )
∣∣ G
 ≤ exp

(
−1

2
Ω(log2(T ))

)
(25)

for T large enough.
Combining (22)-(25) yields

E

|C|−1∑
l=1

∑
T≥k≥τ̂l+1

1{θk ∈ S′cl}1{k ≥ KB}
∣∣ G
 = 2T exp(−1

2
Ω(log2(T ))) = o(1).

This, together with (21) and a sum over all c 6= c? (i.e., l = 1, . . . , |C| − 1), finally gives us

E

|C|−1∑
l=1

∑
T≥k≥τ̂l+1

1{θk ∈ S′cl}
∣∣ G
 ≤ |C|

a3
+ o(1).

An application of Markov’s inequality completes the proof of the lemma.

We can now finally bound the number of samples of suboptimal policies to get our regret bound,
under the event

H := G
⋂∀c 6= c?

∑
k≥1

1{θk ∈ S′′c } ≤
α|C|
δ


⋂∀l ≤ |C| − 1

∑
k≥τ̂l+1

1{θk ∈ S′cl} ≤
|C|
δa1

+ o(1)

 ,
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which, according to the conclusions of Proposition 2, Proposition 5 and Lemma 11, occurs with
probability at least 1− 3δ. The only step that now remains to prove Theorem 1 is-

Proposition 12 (Bounding the # of plays of suboptimal policies in C) Under H ,

T∑
t=1

1{At 6= c?(St)} ≤ C log T +O(log T ),

where C solves

C := max

|C|−1∑
l=1

xl(l)

s.t. xl ∈ R|C|+ , ∀l = 1, 2, . . . , |C| − 1,

xi(l) = xl(l), ∀i ≥ l, l = 1, 2, . . . , |C| − 1,

xi ≥ xj , ∀1 ≤ j ≤ i ≤ |C| − 1,

σ : {1, 2, . . . , |C| − 1} → C \ {c?} injective,

min
θ∈S′

σ(l)

xl ·D(θ?||θ) =
1 + ε

1− ε
, ∀l = 1, 2, . . . , |C| − 1.

(26)

[Note: a(i) denotes the ith coordinate of the vector a; a · b is the standard inner product of vectors
a and b.]

Proof Under the event H , we have

T∑
t=1

1{At 6= c?(St)} ≤
T∑
t=1

∑
c∈C\{c?}

1{At = c(St)}

=

T∑
k=1

tk−1∑
t=tk−1

∑
c∈C\{c?}

1{Ck = c} =
∑

c∈C\{c?}

τ̃Nc(T ),c

≤
∑

c∈C\{c?}

(
Nc(T )τ̄c + ρ(Nc(T ))

√
Nc(T )

)

≤
∑

c∈C\{c?}

Nc(T )τ̄c +

√√√√ ∑
c∈C\{c?}

ρ2(Nc(T ))

τ̄c

√ ∑
c∈C\{c?}

Nc(T )τ̄c, (27)

where the penultimate line is thanks to Proposition 2, and the final line is by applying the Cauchy-
Schwarz inequality. Notice that the sum

∑
c∈C\{c?}

ρ2(Nc(T ))
τ̄c

is O(log log T ) by Proposition 2
(with δ fixed as usual). Hence, it is enough to show that the first sum

∑
c∈C\{c?}Nc(T )τ̄c is at most

C log T +O(1).
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Using our decomposition (16) of the epoch boundaries into the stopping times or stopping
epochs τ̂l, l = 1, 2, . . . , |C| − 1, we can write∑

c∈C\{c?}

Nc(T )τ̄c =
∑

c∈C\{c?}

N ′c(T )τ̄c +
∑

c∈C\{c?}

N ′′c (T )τ̄c

≤
∑

c∈C\{c?}

N ′c(T )τ̄c +
α|C|2

δ

≤
|C|−1∑
l=1

N ′cl(T )τ̄cl +
α|C|2

δ

=

|C|−1∑
l=1

N ′cl(τ̂l)τ̄cl +

|C|−1∑
l=1

(
N ′cl(T )−N ′cl(τ̂l)

)
τ̄cl +

α|C|2

δ

≤
|C|−1∑
l=1

N ′cl(τ̂l)τ̄cl +
|C|
δa3

+
α|C|2

δ

≤
|C|−1∑
l=1

M ′cl(τ̂l)τ̄cl +
∑
c∈C

τ̄c +
|C|
δa3

+
α|C|2

δ︸ ︷︷ ︸
O(1)

.

With regard to (16), let us now take

σ(l) = cl, 1 ≤ l ≤ |C| − 1,

and

xl(i) =


M ′
σ(i)

(τ̂i)τ̄σ(i)

log T , τ̂i ≤ τ̂l,

M ′
σ(i)

(τ̂l)τ̄σ(i)

log T , τ̂i > τ̂l.

From the construction (16), (17) and (18), it can be checked that the {xl} and σ satisfy the con-
straints of the optimization problem (26). This completes the proof of the proposition.

Appendix B. Proof of Theorem 3

To prove Theorem 3, we show that Assumptions 4 and 5 hold as stated.

Showing Assumption 4. The following lemma shows that under small deviations of the empirical
pair epoch counts J , we can bound the probability of sampling θ? from below.

Lemma 13 (Uniform lower bound on pair-empirical KL divergence) Fix ε ∈ (0, 1). There ex-
ists λ <∞ such that for each θ ∈ Θ, c ∈ C and k ≥ 1, it holds that

Vc(tk)
∑

(s1,s2)∈S2

U(s1,s2) (Vc(tk), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)
≥ −λ
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whenever∣∣∣∣J(s1,s2)(kc, c)

kc
− τ̄c π(c)

(s1,s2)

∣∣∣∣ ≤
√
e1 log (e2 log kc)

kc
∀s1, s2 ∈ S, kc ≥ 1, c ∈ C, k =

∑
c∈C

kc.

Proof Set Vc(tk) = τ̃k′c,c for some integer k′c. We can write

Vc(tk)
∑

(s1,s2)∈S2

U(s1,s2) (Vc(tk), c) log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

=
∑

(s1,s2)∈S2

τ̃k′c,c · U(s1,s2)

(
τ̃k′c,c, c

)
log

pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

=
∑

(s1,s2)∈S2

[
τ̃k′c,c · U(s1,s2)

(
τ̃k′c,c, c

)
− k′cτ̄c · π

(c)
(s1,s2)

]
log

pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

+
∑

(s1,s2)∈S2

k′cτ̄c · π
(c)
(s1,s2) log

pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

≥ −
∑

(s1,s2)∈S2

ρe1,e2(k′c)
√
k′c ·

∣∣∣∣log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

∣∣∣∣
+ k′cτ̄c

∑
s1∈S

π(c)
s1

∑
s2∈S

π
(c)
(s1,s2)

π
(c)
s1

log
pθ?(s1, c(s1), s2)

pθ(s1, c(s1), s2)

≥ k′cτ̄c ·Dc(θ)− Γ|S|2ρe1,e2(k′c)
√
k′c, (28)

where ρe1,e2(x) :=
√
e1 log (e2 log x). The first inequality above is obtained thanks to (9) of Propo-

sition 2. For a fixed θ 6= θ? and c, the expression in (28) tends to∞ as k′c →∞. Denote the infimum
of the expression over all k′c ≥ 1 by −λθ,c. The lemma now follows by setting λ to be the largest
λθ,c across the finitely many θ and c.

Using the bound of Lemma 13 in the expression for the posterior density (7), we can bound the
posterior probability of {θ?} ⊆ Sc? from below as:

∀k ≥ 1 πtk(θ?) ≥ π(θ?)∫
Θ exp(λ|C|)π(dθ)

= π(θ?)e−λ|C| ≡ p? > 0.

Showing Assumption 5. Assumption 5 is naturally seen to hold here by observing that since
D(θ?||θ?) = 0 ∈ R|C|,

π

({
θ ∈ Θ :

∑
c∈C

kcτ̄cDc(θ
?||θ) ≤ 1

})
≥ π ({θ?}) > 0,

by Assumption 6 (grain of truth). Thus, Assumption 5 is seen to hold with a2 = a4 = 0. This
completes the proof of the theorem.
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Appendix C. Proof of Theorem 4

Showing Assumption 4. For kc epoch uses of policy c, and with k =
∑

c∈C kc, it is seen that
the posterior density factors into a product of truncated Beta densities, each for the 4 independent
components θ(i)

jl of the parameter θ, and where the truncation is simply the restriction to the interval
[υ, 1− υ] for each component.

Let us now assume that for kc epoch uses of policy c, the empirical state pair frequencies
J(s1,s2)(kc, c), s1, s2 ∈ S, c ∈ C, are “close to” their respective expectations, i.e.,

∣∣∣∣J(s1,s2)(kc, c)

kc
− τ̄c π(c)

(s1,s2)

∣∣∣∣ ≤ ρe1,e2(kc)√
kc

:=

√
e1 log (e2 log kc)

kc
∀s1, s2 ∈ S, kc ≥ 1, c ∈ C.

This, in turn, can be used to show that the parameters α(i)
jl , β

(i)
jl of the (truncated) Beta posterior

density for each component θ(i)
jl satisfy inequalities of the form∣∣∣∣∣∣ α

(i)
jl

α
(i)
jl + β

(i)
jl

− θ(i)
jl

∣∣∣∣∣∣ ≤ ρe′1,e′2(α
(i)
jl + β

(i)
jl )√

(α
(i)
jl + β

(i)
jl )

for some constants e′1, e
′
2 > 0, for all i, j, l ∈ {1, 2}, l 6= j.

Since Assumption 3 is satisfied for θ?, there must exist a closed || · ||∞ ball N around θ?,

N ≡
∏

i,j,l∈{1,2},l 6=j

N (i)
jl ,

such thatN ⊆ Sc? . We can bound from below the posterior probability of playing c? as πtk(Sc?) ≥
πtk(N ), after which the following lemma establishes a lower bound on the latter quantity, and hence
Assumption 4.

Lemma 14 (Concentration of Beta probability mass) For each m = 1, 2, . . ., let µm be a trun-
cated Beta(αm, βm), αm + βm = m, probability measure on [υ, 1 − υ], 0 < υ < 1/2, i.e., a
standard Beta(αm, βm) probability measure on [0, 1] restricted to [υ, 1 − υ] and normalized. Let
I ∈ [υ, 1− υ] be a sub-interval containing θ in its interior. If

∣∣αm
m − θ

∣∣ = o(logm)√
m

for all m, then

inf
m≥1

µm(I) > 0.

Proof Let q > 0 be such that the (1-dimensional) ball of radius q around θ, Ball(θ; q), is contained
in I . Since

∣∣αm
m − θ

∣∣ = o(logm)√
m

for allm, there existsm0 ≥ 1 such that for everym > m0, we have

(a) αm
m ∈ Ball(θ; q/2) and (b) 1√

2(m+1)
< q

2 . Since the mean of a Beta(αm, βm) distribution is
αm
m and its variance at most 1

4(m+1) , Chebyshev’s inequality can be used to argue that for m ≥ m0,
µm(I) ≥ µm(Ball(θ; q)) ≥ 1/2. The proof is complete by taking the minimum with the positive
probabilities µm(I), 1 ≤ m ≤ m0.
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Showing Assumption 5. Note that each marginal KL divergence, decouples additively across the
independent parameters: for each c ≡ (i, j),

τ̄cDc(θ
?||θ) = τ̄c

∑
s1∈S

π(c)
s1 KL (pθ?(s1, c(s1), ·) || pθ(s1, c(s1), ·))

=
τ̄cθ

?(j)
21

θ
?(i)
12 + θ

?(j)
21

KL
(
θ
?(i)
12 || θ

(i)
12

)
+

τ̄cθ
?(i)
12

θ
?(i)
12 + θ

?(j)
21

KL
(
θ
?(j)
21 || θ(j)

21

)
≡ ϕc(1) KL

(
θ
?(i)
12 || θ

(i)
12

)
+ ϕc(2) KL

(
θ
?(j)
21 || θ(j)

21

)
,

with ϕc(1) :=
τ̄cθ

?(j)
21

θ
?(i)
12 +θ

?(j)
21

, ϕc(2) :=
τ̄cθ

?(i)
12

θ
?(i)
12 +θ

?(j)
21

. Also, since Θ = [υ, 1 − υ]4, it follows by a Taylor

series expansion of the KL-divergence that there exists a constant % > 0 such that

KL
(
θ
?(i)
jl || x

)
≤ %

(
θ
?(i)
jl − x

)2
∀x ∈ [υ, 1− υ], ∀i, j, l, l 6= j.

With this observation, weighted KL divergence neighborhoods of θ? are seen to contain appropri-
ately scaled Euclidean neighborhoods of θ?. To show Assumption 5(A), we compute

π

({
θ ∈ Θ :

∑
c∈C

kcτ̄cDc(θ
?||θ) ≤ 1

})
≥ π

θ ∈ Θ :
∑
l 6=j,i

γ
(i)
jl

(
θ
?(i)
jl − θ

(i)
jl

)2
≤ 1

%τ̄max


 ,

where τ̄max := maxc τ̄c, and
∑

l 6=j,i γ
(i)
jl = 2

∑
c kc ≡ 2k, since each policy c is informative about

exactly 2 of the 4 independent parameter components. Using this fact, we can continue the bound
as follows.

π

θ ∈ Θ :
∑
l 6=j,i

γ
(i)
jl

(
θ
?(i)
jl − θ

(i)
jl

)2
≤ 1

%τ̄max


 ≥ π

θ ∈ Θ :
∑
l 6=j,i

(
θ
?(i)
jl − θ

(i)
jl

)2
≤ 1

2k%τ̄max




≥ a1k
−2

using the well-known volume of a multidimensional Euclidean ball.
Assumption 5(B) results from a calculation similar to the above, but by considering the el-

lipsoid
{
θ ∈ Θ :

∑
l 6=j,i γ

(i)
jl

(
θ
?(i)
jl − θ

(i)
jl

)2
≤ 1

%τ̄max

}
with a choice of weights γ(1)

21 = γ
(1)
21 ≥

k − 3 log2(k) and γ(2)
21 + γ

(2)
21 ≤ 6 log2(k), in which case the volume of the ellipsoid is at least

a3

√
k
−2

= a3k
−1.

Appendix D. Proof of Theorem 5

For each c 6= c?, let δc := minc 6=c?,θ∈S′c Dc(θ
?||θ). Consider a solution

(
(xl)

|C|−1
l=1 , σ

)
to the

optimization problem (3). Since

min
θ∈S′

σ(l)

xl ·D(θ?||θ) = (1 + a4)

(
1 + ε

1− ε

)
∀1 ≤ l ≤ |C| − 1, (29)
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we must have xl(l) = z◦(l) ≤ χ/∆̃ with χ := (1+a4)(1+ε)
1−ε ∀l = 1, . . . , |C| − 1.

Put z◦ := x|C|−1, c◦ := σ(|C| − 1). We claim that ||z||1 ≡ 1 · z ≤
(
|A|−L

∆̃

)
χ. If not, set

y◦ := χ

∆̃
(1, 1, . . . , 1, 0) ∈ R|C|, and28 D∆̃(θ?||θ) := min

(
D(θ?||θ), ∆̃× 1

)
. Let us estimate, for

θ ∈ S′c◦ that attains the minimum in (29) for l = |C| − 1,

(y◦ − z◦) ·D∆̃(θ?||θ) = y◦ ·D∆̃(θ?||θ)− z◦ ·D∆̃(θ?||θ)

≥ χ · L ·∆ · 1

∆
− χ = χ(L− 1). (30)

But then29,

(y◦ − z◦) · 1 = y◦ · 1− z◦ · 1

<
χ(|C| − 1)

∆̃
− χ(|C| − L)

∆̃
=
χ(L− 1)

∆̃

≤ (y◦ − z◦) ·D∆̃(θ?||θ)
∆̃

by (30)

≤ (y◦ − z◦) · (∆× 1)

∆
= (y◦ − z◦) · 1,

since D∆̃(θ?||θ) � ∆× 1 by definition, and z◦ � y◦ by hypothesis. This is a contradiction.

Appendix E. Example: Single Parameter Queueing MDP with a Large Number of
States (Section 4.3)

In this section, we show an MDP possessing a large number of states but only a small number of
uncertain parameters, in which the regret scaling with time can be demonstrated to not depend at all
on the number of states (and hence the number of possible stationary policies).

Consider learning to control a discrete time, two-server single queue MDP30, parameterized
by a single scalar parameter θ. The state space is S := {0, 1, 2, ...,M}, M a positive integer,
representing the occupancy of a size-at most-M queue of customers. A customer arrives to the
system independently each time with probability θ, i.e., arrivals to the queue follow a Bernoulli(θ)
probability distribution, where θ ∈ Θ := [υ, 1 − υ], 0 < υ � 1/2, is the unknown parameter for
the MDP. At each state, one of 2 actions – Action 1 (SLOW service) and Action 2 (FAST service)
may be chosen, i.e., A = {1, 2}. Applying SLOW (resp. FAST) service results in serving one
packet from the queue with probability µ1 (resp. µ2) if it is not empty, i.e., the service model is
Bernoulli(µi) where µi is the packet service probability under service type i = 1, 2. Actions 1 and
2 incur a per-instant cost of c1 and c2 units respectively. In addition to this cost, there is a holding
cost of c0 per packet in the queue at all times. The system gains a reward of r units whenever a
packet is served from the queue. Let us assume that µ1, µ2, c0, c1, c2 and r are known constants,
with the only uncertainty being in θ ∈ Θ. Thus, the true MDP is represented by some θ? ∈ Θ

28. min(x, y) for two vectors is to be interpreted as the pointwise minimum.
29. 1 represents the all-ones vector.
30. Such a model has been classically studied in queueing and control theory (Lin and Kumar, 1984; Koole, 1995) in the

planning context.
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with a corresponding optimal policy c? mapping each state to one of {µ1, µ2}. The total number of
policies is of order 2M , and the number of optimal policies |C| can potentially be of order M (this
occurs, for instance, if optimal policies are of threshold type w.r.t. the state space, and the threshold
monotonically increases from 0 to M as θ ranges in Θ (Lin and Kumar, 1984)).

With regard to the TSMDP algorithm, let us assume that the start state (and thus the epoch
demarcating state) is s0 := 0, and the prior a uniform probability distribution over Θ.
Analysis. Let us estimate the marginal KL divergence Dc(θ

?||θ) for a candidate parameter θ ∈ Θ
and a stationary policy c. First, notice that at each state 0 < s < M ,

KL (pθ?(s, µi, ·) || pθ?(s, µi, ·)) = KL
(
[µiθ̄?;µiθ

? + µ̄iθ̄?; µ̄iθ
?] || [µiθ̄;µiθ + µ̄iθ̄; µ̄iθ]

)
,

where x̄ denotes 1− x. This can be bounded from below using Pinsker’s inequality to get

KL (pθ?(s, µi, ·) || pθ?(s, µi, ·)) ≥
1

2

∣∣∣∣[µiθ̄?;µiθ? + µ̄iθ̄?; µ̄iθ
?]− [µiθ̄;µiθ + µ̄iθ̄; µ̄iθ]

∣∣∣∣2
1

=
1

2
(θ? − θ)2(1 + |2µi − 1|)2 ≥ a1(θ? − θ)2,

with a1 := 1
2 mini=1,2(1 + |2µi − 1|)2. Similarly, for states s ∈ {0,M},

KL (pθ?(s, µi, ·) || pθ?(s, µi, ·)) ≥ a2(θ? − θ)2

for some positive constant a2. Thus, we have Dc(θ
?||θ) ≥ a(θ? − θ)2 for a := min{a1, a2},

since Dc(θ
?||θ) by definition is a convex combination of individual KL divergence terms as above.

In particular, it follows that for each suboptimal parameter θ (i.e., θ ∈ Sc, c 6= c?), the vector
D(θ?||θ) of all Dc(θ

?||θ) values is such that each of its coordinates is at least a(θ? − θ)2. Let
θb := arg minθ∈Sc,c 6=c? |θ?−θ| be the closest suboptimal parameter to the true parameter θ?. Under
the non-degenerate case where the MDP parameterized by θ? possesses a unique optimal policy, we
must have δ? := (θb − θ?)2 > 0.

Theorem 5 can now be applied, with ∆ := δ? and L := |C| − 1, to get that the scaling constant
C satisfies C ≤ (1+a4)(1+ε)

δ?(1−ε) .
Thus, if all the assumptions required for Theorem 1 are satisfied31, then the regret scaling does

not depending on the number of policies (|C|). Using a naive bandit approach treating each policy
as an arm of the bandit (and thus completely ignoring the structure of the MDP) would, in contrast,
result in regret that scales at rate |C|δ? log T – a huge blowup compared to the former. In summary,

• The number of states |S| (and thus the number of possible optimal policies of the order of
Ω(|S|)) can potentially be very large, while the number of uncertain parameter dimensions
can be relatively much smaller. One can consider running a “flat” bandit algorithm on all pos-
sible optimal policies (order |C| = Ω(|S|) or larger). This will yield the standard decoupled
regret that is O

(
|C|
δ? log T

)
. Furthermore, even an MDP-specific algorithm like UCRL2, in

this setup, is unable to exploit the high amount of generalizability across states/actions, and
exhibits a regret scaling of O

(
D2|S|2|A| log(T )

g

)
(Jaksch et al., 2010, Theorem 4), where D is

the MDP diameter and g is the gap between the expected return of the best and second-best
policies.

31. These can be shown to be satisfied using techniques similar to those used to show Theorem 4.
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• Thompson Sampling for MDPs, with a prior on the uncertainty space of parameters, can yield
regret that scales as O

(
1
δ? log T

)
which is independent of |C|. This represents a dramatic

improvement in regret especially when |S| is large.

• Intuitively, the reason for the saving in regret is that with a prior over the structure of the
MDP, every transition/recurrence cycle in the Thompson Sampling algorithm (and the result-
ing posterior update) gives non-trivial information in resolving suboptimal models from the
true underlying model, This is completely ignored by a flat bandit algorithm across policies
which is forced to explore all available arms (policies).

Appendix F. Proof of Theorem 2

Lemma 15 (Concentration of the empirical reward process) Let δ ∈ (0, 1]. Then, there exist
positive d3, d4 such that the following bound holds with probability at least 1− δ over the choice of
the matrix Q,

∀k ≥ 1

τ̃k,c?∑
l=1

(µ? −Q3(l, c?)) <

√
d3k log

(
d4 log k

δ

)
. (31)

Proof The proof is along the same lines as that of Proposition 2. Break the sum on the left as∑τ̃k,c?

l=1 (µ? −Q3(l, c?)) =
∑k

l′=1 B̂l′ , where the cycle-based random variables

B̂l′ :=

τ̃l′,c?∑
l=τ̃l′−1,c?+1

(µ? −Q3(l, c?)), l′ = 1, 2, 3, . . . ,

are IID owing to the Markov property. Also, by the renewal-reward theorem (Grimmett and Stirza-
ker, 1992) and Markov chain ergodicity, it follows that E

[
B̂1

]
= 0. Most importantly, B̂1 is

stochastically dominated by 2rmaxτ̃1,c? , and thus possesses an exponentially decaying tail (11). An
application of Lemma 3 thus gives that for some d3, d4, with probability at least 1− δ,

∀k ≥ 1

k∑
l′=1

B̂l′ ≤

√
d3k log

(
d4 log k

δ

)
.

This proves the lemma.
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We decompose the regret along the trajectory up to time T as follows.

Tµ? −
T∑
t=1

r(St, At) =

e(T )∑
k=1

tk−1∑
t=tk−1

∑
c∈C

1{Ck = c}(r(St, At)− µ?)

=

e(T )∑
k=1

tk−1∑
t=tk−1

1{Ck = c?}(µ? − r(St, At)) +

e(T )∑
k=1

tk−1∑
t=tk−1

∑
c 6=c?

1{Ck = c}(µ? − r(St, At))

≤
e(T )∑
k=1

tk−1∑
t=tk−1

1{Ck = c?}(µ? − r(St, At)) + 2rmax

∑
c∈C\{c?}

τ̃Nc(T ),c

≤
e(T )∑
k=1

tk−1∑
t=tk−1

1{Ck = c?}(µ? − r(St, At)) + 2rmax(B + C log T ) (by Proposition 12)

=

τ̃Nc? (T ),c?∑
l=1

(µ? −Q3(l, c?)) + rmax(B + C log T ). (32)

The first step above uses the recurrence cycle structure of the TSMDP algorithm, rmax in the third
step is defined to be the maximum reward for any state-action pair: rmax := maxs∈S,a∈A r(s, a),
and in the final step we use the coupling with the alternative probability space described in Section
A.2.

Under the event G, we have the estimate

∀k τ̃k,c? ≥ kτ̄c? −

√
kd1 log

(
|C||S|2d2 log k

δ

)

⇒ T ≥ τ̃Nc? (T ),c? ≥ Nc?(T )τ̄c? −

√
Nc?(T )d1 log

(
|C||S|2d2 logNc?(T )

δ

)
.

The square-root correction term above is o(Nc?(T )), thus for any ε1 > 0, we have Nc?(T ) ≤
(1+ε1)T
τ̄c?

for T large enough.
Let G1 be the event, occurring with probability at least 1− δ, for which (31) is satisfied. Then,

the event G ∩ G1 occurs with probability at least 1 − 2δ by the union bound. Using the bound on
Nc?(T ) from the preceding paragraph in (32) thus gives that for T large enough, under the event
G ∩G1,

Tµ? −
T∑
t=1

r(St, At) ≤

√√√√√d3(1 + ε1)T

τ̄c?
log

d4 log
(

(1+ε1)T
τ̄c?

)
δ

+ rmaxB + rmaxC log T

= O

(√
T

τ̄c?
log

(
log T

δ

))
.
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