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Abstract

First-order convex minimization algorithms are currently the methods of choice for large-scale
sparse — and more generally parsimonious — regression models. We pose the question on the limits
of performance of black-box oriented methods for convex minimization in non-standard settings,
where the regularity of the objective is measured in a norm not necessarily induced by the feasible
domain. This question is studied for £, /¢,-settings, and their matrix analogues (Schatten norms),
where we find surprising gaps on lower bounds compared to state of the art methods. We propose
a conjecture on the optimal convergence rates for these settings, for which a positive answer would
lead to significant improvements on minimization algorithms for parsimonious regression models.

Let (E, | - ||) be a finite-dimensional normed space. Given parameters, 1 < x < 2, and L > 0, we
consider the class F .| (k, L) of convex functions that are (x, L)-smooth w.r.t. norm || - |. One such
function f : E — R satisfies that

IV(y) = V@)« < Lllz =y Va,y € E.

Notice that the case x — 1 corresponds essentially to nonsmooth (Lipschitz continuous) convex
functions, and k = 2 corresponds to smooth (with Lipschitz continuous gradients) convex functions.

Given a convex body X C E, we are interested on the complexity of the problem class P =
(F (8, L), X), comprised of optimization problems with objective f € F./(x, L)

Opt(f, X) = min{f(x) : x € X}. (Prx)

We study a black-box oracle model where most algorithms based on subgradient computations
can be implemented'. Here, an algorithm is allowed to perform queries 2 € E, and for any such
query the oracle returns O (z) (e.g., for first-order methods, Of(x) = V f(x)). The only assump-
tion on the oracle is locality: For any x € E and f, g € F such that there exists a neighborhood
B(z,6) where f = g, then O¢(z) = Oy(x).

Given T > 0, we consider an algorithm A whose output x” (A4, f) is only determined by T'
(adaptive) oracle queries. We define the accuracy of algorithm .4 on an instance f as (A, f) :=
F(@T(A, ) — Opt(f, X), if 2T (A, f) € X, otherwise £(A, f) = co. We characterize optimal

1. Notable exceptions are methods exploiting explicit saddle-point description, e.g., the smoothing technique by Nes-
terov (2005). Note however that such algorithms do not give improvement in the smooth case.
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algorithms in terms of the minimax risk,

Risk(P) = inf sup (A, f),
A rer

where the infimum is taken among all algorithms A performing only 7" queries. From now on, we
restrict our attention to the large-scale regime, where 7' < n.

Until very recently, tools for studying the oracle complexity of convex optimization beyond the
nonsmooth case were scarce. The only cases where there were nontrivial lower bounds were given
by convex quadratic minimization over a feasible domain given by an Euclidean ball. In Guzman
and Nemirovski (2015) and Guzman (2015) we provide new techniques and lower bounds for oracle
complexity of convex optimization.

Our results have interesting consequences for the £, / lg-setting, 1 < p,q < oo, where X =
R B} is the £}-ball of radius R, and (E, | - ||) = (R",|| - ||;). In short, the obtained risk lower
bounds, and the ratio w.r.t. fastest known methods, R(T"), can be seen in Table 1.
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Table 1: Minimax risk lower bounds for (, L)-smooth convex optimization in the ¢,,/{,-setting.

Similarly we can study the p/q Schatten norm setting?, where (E, || -||) = (R™*", |- Isch, )» and
X ={z e R"": ||z scn, < R}. We refer the reader to Guzmén (2015) for further discussions.

The reader may observe that when p > ¢ lower bounds are nearly-tight. However, when ¢ > p
we observe substantial gaps in the complexity, which worsen as the smoothness parameter x grows.
Best existing algorithms defining the ratio R(7’) are versions of Nesterov’s method Nemirovskii
and Nesterov (1985) for the standard ¢, //,-setting, which do not exploit the geometry of the much
smaller £;-ball when p < g. This observation, together with the gaps above, lead us to the following

2. Recall that the Schatten p-norm of a matrix € R™ " is given by |[zsen, = [>; oi(m)p]l/p, where
o1(x),...,on(z) are the singular values of X.
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Open Problem 1 What is the large-scale minimax risk of minimization within the class F., (k, L)
over the unit ball of {}; in the black-box oracle model? Can the rate obtained by Nesterov’s method
be significantly improved?

We finish this discussion by showing the importance of closing these gaps for certain classes
of regression problems. Our main motivation is the study of linear regression models, where we
search for a linear predictor within a norm-bounded set X, e.g., X C BZ’}; and the performance of
a predictor is measured by a loss function arising from random samples (a1,b1),. .., (@m,by) €
By x [—1,1]. Thus the empirical risk minimization problem we obtain, min{L > (ala — bj)?
|z||, < 1}, fits within the £,,/¢,-setting, with x =2and L = R = 1.

Perhaps the most important application of the regression model above is the case of compressed
sensing, where p = 1 and ¢ = 2 (we can also consider the matrix analog of nuclear norm mini-
mization for low-rank matrix recovery). In this case, Nesterov’s method gives a rate of convergence
O(1/T?), whereas our lower bound is (1/7%). Our conjecture says that the optimal convergence
rate here is better than O(1/T?), although to the best of our knowledge, results on sublinear algo-
rithms beyond this rate are nonexisting’. In this sense, we believe surpassing the O(1/T?) rate is
indeed an extremely challenging problem.

Finally, we believe any progress on designing faster algorithms in this setting, will not only
have an impact on compressed sensing and low-rank matrix recovery, but more broadly in convex
minimization methods for parsimonious regression models, and possibly to the stochastic and online
settings.
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3. Notice that in the case the objective satisfies a restricted strong convexity property then projected gradient descent
converges linearly up to the statistical error Agarwal et al. (2012). Our open problem considers models where we do
not have such nice properties.



