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Abstract
This paper revisits the online PCA problem. Given a stream of n vectors xt ∈ Rd (columns of X)
the algorithm must output yt ∈ R` (columns of Y ) before receiving xt+1. The goal of online PCA
is to simultaneously minimize the target dimension ` and the error ‖X − (XY +)Y ‖2. We describe
two simple and deterministic algorithms. The first, receives a parameter ∆ and guarantees that
‖X − (XY +)Y ‖2 is not significantly larger than ∆. It requires a target dimension of ` = O(k/ε)
for any k, ε such that ∆ ≥ εσ2

1 + σ2
k+1, with σi being the i’th singular value of X . The second

receives k and ε and guarantees that ‖X−(XY +)Y ‖2 ≤ εσ2
1 +σ2

k+1. It requires a target dimension
of O(k log n/ε2). Different models and algorithms for Online PCA were considered in the past.
This is the first that achieves a bound on the spectral norm of the residual matrix.
Keywords: Online, PCA, SVD, Principal Component Analysis, Dimension Reduction

1. Introduction

Principal Component Analysis (PCA) is an algebraic technique used for countless purposes, across
multiple fields of study. Its importance for scientific computing, statistics, engineering and computer
science cannot be overstated. Among others, it is used for statistical inference, dimension reduction,
factor analysis, signal processing, topic modeling, and visualization. A convenient definition of it,
for our setup, is achieved by viewing it as an optimization problem in the context of dimension
reduction. PCA can be seen as minimizing an objective function describing a reconstruction error.
Given a matrix X ∈ Rd×n with n columns consisting of d-dimensional vectors, compute a matrix
Y ∈ Rk×n whose columns reside in a low dimensional space k � d minimizing

‖X − (XY +)Y ‖2F or ‖X − (XY +)Y ‖2 .

Here, and throughout, A+ stands for the Moore Penrose inverse or pseudo-inverse of A, ‖A‖F =
(
∑

ij A
2
ij)

1/2 its Frobenius norm and ‖A‖ = maxx6=0 ‖Ax‖/‖x‖ its spectral norm. Recall that if σi

denotes the i’th singular value of A then ‖A‖ = σ1 and ‖A‖F =
√∑

i σ
2
i . It is well known that

a truncated Singular Value Decomposition (SVD) of X can solve both problems simultaneously.
Namely, let Q denote the matrix whose columns are the k left singular vectors of X corresponding
to its largest singular values. Then, setting Y = QTX simultaneously gives the optimal solution for
both objective functions. Given the importance of this problem, a significant amount of research was
dedicated to reducing the complexity of obtaining a good approximation to Q in one pass by Frieze
et al. (1998); Drineas and Kannan (2003); Deshpande and Vempala (2006); Sarlós (2006); Rudelson
and Vershynin (2007); Liberty et al. (2007); Liberty (2013); Ghashami and Phillips (2014b). Yet,
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even when Q is computed (or approximated) in one pass, a second pass is needed to produce the
reduced dimension matrix Y , that is, to compute yt ← QTxt. Here xt and yt correspond to the
columns of X and Y respectively.

1.1. Online PCA with Frobenius Norm Bounds

Several authors investigated online PCA with respect to the Frobenius norm of the residual. Re-
cently, Arora et al. (2013); Mitliagkas et al. (2013) and Balsubramani et al. (2013) investigated the
stochastic model where xt are assumed to be drawn from the same (unknown) distribution. This is
a natural assumption in machine learning, for example, but uncommon in numerical linear algebra
and in the literature of online algorithms as a whole. Warmuth and Kuzmin (2007) and Nie et al.
(2013) considered the general adversarial case but their definition of online PCA is a quite different
than ours. At each point in time they commit to a rank k projection Pt before observing xt. Their
cost function incurs a cost of ‖(I − Pt)xt‖2. Unfortunately, this kind of result cannot be converted
to one that outputs yt (along the way) with reconstruction guarantees. In particular, their setting is
on the one hand easier than ours as they do not need to commit to a single reconstruction matrix,
and on the other hand more difficult as they need to commit to Pt before seeing the current vector
xt. These differences lead to the use very different tools and methods compared to our paper. Sarlós
(2006) and later Clarkson and Woodruff (2009) show that minimizing ‖X − (XY +)Y ‖2F can be
done online in a surprisingly simple manner. Let S ∈ Rd×` be a matrix with i.i.d. gaussian dis-
tributed entries. Then setting yt = STxt yields a 1 + ε multiplicative approximation to the optimal
value of ‖X − (XY +)Y ‖2F for some ` ∈ O(k/ε) with constant probability. Recently, Boutsidis
et al. (2015) considered minimizing minΦ ‖X − ΦY ‖2F online where Φ is restricted to being an
isometry1. Notice that Φ′ = XY + is the minimizer of the above expression among all matrices of
appropriate dimensions but it is not an isometry in general. Hence, the requirement for Φ being an
isometry introduces a new challenge. There are good reasons for preferring an isometric registra-
tion matrix Φ but this discussion goes beyond the scope of this paper. Boutsidis et al. (2015) show
that one can obtain an approximate solution online and deterministically with an additive error of
ε‖X‖2F , compared to the offline optimal solution of SVD with dimension k and a target dimension
of Õ(k/ε2).

1.2. Our Contribution: Online PCA with Spectral Norm Bounds

To the best of our knowledge, this paper is the first to consider online PCA with respect to the
spectral norm

‖X − (XY +)Y ‖2 .

As stated above, the exact solution to this problem can be found (offline) by a partial SVD. However,
while the exact minimizer of ‖X−(XY +)Y ‖2F is also the minimizer of ‖X−(XY +)Y ‖2, the same
cannot be said about their approximate solutions. To make this point clear, consider an input matrix
X whose first k singular values are equal to 1 and the rest are equal to 1/2. We denote by σi the
i’th singular value of X sorted in descending magnitude order. For this matrix

min
Y
‖X − (XY +)Y ‖2F =

d∑
i=k+1

σ2
i = (d− k)/4 .

1. An isometry or an isometric matrix Φ is a matrix such that ΦT Φ = I or alternatively, ∀z‖Φz‖ = ‖z‖.
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On the other hand, for any matrix Y ,

‖X − (XY +)Y ‖2F ≤ ‖X‖2F = (d− k)/4 + k .

Here, any solution Y is 1 + ε approximation so long as d ≥ 5k/ε. This is not the case when
considering the spectral norm. The optimal Y perfectly captures the signal and

min
Y
‖X − (XY +)Y ‖2 = σ2

k+1 = 1/4 .

In sharp contrast to the above, obtaining Y such that ‖X− (XY +)Y ‖2 ≤ 1/4+ε is far from trivial.
It does not hold for a random Y and it does not hold for Y = STX where S is random as in Sarlós
(2006) and Clarkson and Woodruff (2009).

One might argue that such matrices are uncommon or that they are unreasonable inputs for PCA.
We argue that both statements are incorrect. ConsiderX such thatX = S+N where S corresponds
to a low dimensional signal and N to (roughly) isotropic noise. PCA can approximately recover S
from X if the singular values of S are above ‖N‖. Note that the spectrum of X is potentially very
similar to that of the hard example above. This is, practically, the working model for statistical
signal processing or factor analysis, and it is in this context that PCA excels as an analytic tool.

We propose two algorithms, each tailored to a slightly different scenario. The first scenario is the
fixed error setting (Section 3), we are given as input a fixed bound ∆ on the required spectral norm
of the error matrix. Our goal is to provide reduced dimension vectors yt such that ‖X− (XY +)Y ‖2
meets the error requirement while requiring a small target dimension. The second scenario is the
adaptive error setting (Section 4); we are given ε > 0 and k, the target dimension of the offline
optimal solution (SVD) we wish to compete with. Our objective is to use a small as possible target
dimension while keeping the spectral norm of the error bounded by σ2

k+1 + εσ2
1 .

Our algorithms operate online; they receive the vectors xt ∈ Rd one by one in an arbitrary
order and deterministically yield yt ∈ R` before receiving xt+1. In the fixed error setting the target
dimension of our algorithm is bounded byO(k/ε) for any k for which σ2

k+1 < ∆ and corresponding
ε = (∆ − σ2

k+1)/σ2
1 . In the adaptive error setting the target dimension is O(log(n)k/ε2) in the

worst case, but can potentially improve up to O(k/ε) given a crude estimate of σ2
k+1 + εσ2

k+1 or of
σ2

1/σ
2
k+1. In both settings the algorithm returns an isometric registration matrix U .

Our algorithm is inspired by that of Boutsidis et al. (2015) and should be considered a direct
continuation of their work. Much like theirs, our algorithm works with an ever growing orthogonal
basis U , and a new direction ui is added once enough energy is observed in that direction. In fact,
although it is not proven in their paper, their algorithm can also be adapted to provide spectral
norm bounds. Even so, the properties of our algorithm make it preferable to that of Boutsidis
et al. (2015) for several reasons. First, in order to reduce computational resources, both algorithms
require a covariance sketch. Our algorithm can provably operate with any covariance sketch while
the latter is limited to Frequent-Directions (See Liberty (2013)). This both simplifies the proof and
enables a wider range of different implementations. Second, it sketches the original matrix X (and
not its residual) which potentially reduces the sketching running time by utilizing the sparsity of
xt. Finally, it requires no special algorithmic handling of large normed vectors which used to be
somewhat of a delicate issue implementation-wise.

1.3. Covariance Sketches

Let At1:t2 stand for the matrix whose columns are at1 , . . . , at2 where at are the columns of A. A
covariance sketch of a matrix A with an error bound ρ is an algorithm that receives the columns of
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A one by one and maintains a sketch matrix B such that

max
t
‖A1:tA

T
1:t −BtB

T
t ‖ ≤ ρ (1)

where Bt stands for the state of the sketch at time t. Note that one can trivially keep A1:t as its own
“sketch” with error bound ρ = 0. This will trivially require O(d) time to update and Θ(dn) space.
One could also keep the covariance of A exactly with error bound ρ = 0. This brings the memory
requirement down to Θ(d2) but increases the update time to Θ(d2), potentially.

There are several, much more efficient sketching techniques with ρ > 0, and any of them
would suffice for our analysis to go through. To understand the guarantees offered we provide
two examples. The most efficient algorithm in terms of space is Frequent Directions (See Liberty
(2013); Ghashami and Phillips (2014a); Ghashami et al. (2015)). It requires O(d‖A‖2F /ρ) space
and O(d‖A‖2F /ρ) floating point operations to add a vector to the sketch. In terms of update time
the most efficient sketch is column sampling based on the work of Frieze et al. (1998); Drineas and
Kannan (2003); Rudelson and Vershynin (2007). It exhibits update time proportional to the number
of non zeros in the added vector. A somewhat relaxed but sufficient bound on its space requirement
is O(d‖A‖4F /ρ2). As a remark, sampling is straight forward to implement efficiently (see the last
appendix of Achlioptas et al. (2013)) and a natural choice in practice.

2. Fixed Error: A Conceptual Algorithm

Algorithm 1 is conceptually very simple. It is given as input a parameter ∆ and ensures that the
spectral norm of the error matrix does not significantly exceed ∆. Our guarantees regarding the
target dimension, denoted by `, are given with respect to the minimal k such that σ2

k+1 ≤ ∆.
Algorithm 1 is provably correct but is wasteful with computational resources. Specifically it must
maintain the entire history X1:t throughout the algorithm. Nevertheless, the reader is encouraged
to keep this algorithm in mind as the blueprint for its modified and more efficient counterpart. The
proof of its correctness is deferred to Section 3 because Algorithm 1 is identical to Algorithm 2 with
the substitution of Bt = X1:t and ρ = 0.

Algorithm 1 Online PCA, Fixed error: Conceptual algorithm
input: X , ∆
U ← all zeros matrix
for xt ∈ X do

while ‖(I − UUT )X1:t‖2 ≥ ∆
Add the top left singular vector of (I − UUT )X1:t to U

yield yt = UTxt
end for

3. Fixed Error: A Space Efficient Algorithm

In this section we present Algorithm 2, tailored for the fixed error setting. In order to avoid keeping
the matrix X1:t in memory, Algorithm 2 uses covariance sketching (see section 1.3). We denote by
ρ the sketching approximation guarantee as detailed in Equation (1). We use Et for the sketching
error matrix Et = X1:tX

T
1:t − BtB

T
t . Recall that the guarantees of the sketch producing B dictate
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that ‖Et‖ ≤ ρ for all t. Note that one can store the covariance matrix X1:tX
T
1:t exactly and gain

ρ = 0 at the cost of using Θ(d2) space.

Algorithm 2 Online PCA, Fixed error: a space efficient algorithm
input: X , ∆
U ← all zeros matrix
B ← a covariance sketch with precision ρ
for xt ∈ X do

Add xt to the sketch B
while ‖(I − UUT )B‖2 ≥ ∆

Add the top left singular vector of (I − UUT )B to U
yield yt = UTxt

end for

We denote by Ut and Bt the values taken by the matrices U , B at the end of iteration t in
Algorithm 2. That is, Ut is the matrix used for computing yt = UT

t xt. In particular as n denotes the
length of the stream, Un is the state of U at the end of the stream. We denote by ui the i’th column
of the matrix U and ti the time of its insertion. That is, for t < ti the i’th column of Ut is equal to
zero and for t ≥ ti it is ui.

Lemma 1 Let ` denote the number of vectors u added by algorithm 2. Let σi be the singular values
of X in descending magnitude order. Then for any k ≤ `, assuming ∆ > σ2

k+1 + ρ, it holds that

` ≤
k(σ2

1 − σ2
k+1)

∆− ρ− σ2
k+1

Proof First, notice that ‖uT
i X‖2 ≥ ∆− ρ. To verify that,

‖uT
i X‖2 = ‖uT

i X1:ti‖2 + ‖uT
i Xti+1:n‖2 ≥ uT

i X1:tiX
T
1:tiui

= uT
i BtiB

T
tiui − u

T
i Etiui

(i)

≥ ‖uT
i (I − Uti−1U

T
ti−1)Bti‖2 − ρ ≥ ∆− ρ

Inequality (i) follows from ‖Eti‖ ≤ ρ and the columns of U being orthonormal. This orthonormal-
ity is guaranteed from the construction of U , as each new column ui is the top singular vector, and
in particular in the column span, of (I−Uti−1U

T
ti−1)Bti . Summing the inequality ∆−ρ ≤ ‖uT

i X‖2
over the ` different vectors ui we obtain:

`(∆− ρ) ≤
∑̀
i=1

‖uT
i X‖2 = ‖UT

nX‖2F ≤
∑̀
i=1

σ2
i ≤ kσ2

1 + (`− k)σ2
k+1

Rearranging the inequality above completes the proof.

Lemma 2 Let R be the residual matrix whose t’th column is rt = xt − UtU
T
t xt. Then

‖X − (XY +)Y ‖22 ≤ ‖R‖22 .
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Proof First, trivially ‖X − (XY +)Y ‖22 ≤ ‖X − UnY ‖22. Second, notice that X − UnY = R.
The t’th columns of X − UnY is equal to xt − UnU

T
t xt = xt − UtU

T
t xt = rt. The fact that

UnU
T
t = UtU

T
t is because UnU

T
t =

∑`t
i=1 uiu

T
i +

∑`n
i=`t+1 ui · 0T

d = UtU
T
t . Here, `t is the number

of vectors u added by time t and 0d is the all zeros vector in dimension d.

Given the above lemma we proceed to bound the norm ofR. To do so we consider the vectors of
Un and their completion to an orthonormal basis spanning the d-dimensional space. In the following
we present observations showing that (1) ‖uTR‖ is bounded for each of these vectors, and that (2)
every pair uTR, (u′)TR is almost orthogonal.

Observation 3 At the conclusion of every time step, we have ‖(I − UtU
T
t )Bt‖2 ≤ ∆. This is an

immediate consequence of the algorithm exiting the inner “while” loop at every time step.

Observation 4 For any vector ui ∈ U we have ‖uT
i R‖2 ≤ ∆ + ρ

‖uT
i R‖2 = ‖uT

i R1:ti−1‖2 = ‖uT
i X1:ti−1‖2 ≤ ‖uT

i Bti−1‖2 + ρ

= ‖uT
i (I − Uti−1U

T
ti−1)Bti−1‖2 + ρ ≤ ∆ + ρ

Similarly, for any unit vector u⊥ which is perpendicular to Un we have ‖uT
⊥R‖2 ≤ ∆ + ρ.

Lemma 5 Let ui be a vector in U and let u⊥ be a vector orthogonal to ui, then

uT
i RR

Tu⊥ ≤
(
ρ+ max

t
‖xt‖2

)
‖u⊥‖ .

Proof
uT
i RR

Tu⊥ = uT
i X1:ti−1X

T
1:ti−1u⊥ = uT

i X1:tiX
T
1:tiu⊥ − uT

i xtix
T
tiu⊥

= uT
i BtiB

T
tiu⊥ + uT

i Etiu⊥ − uT
i xtix

T
tiu⊥ = σ2uT

i u⊥ + uT
i (Eti − xtixT

ti)u⊥

= uT
i (Eti − xtixT

ti)u⊥ ≤
(
‖Eti‖+ ‖xtixT

ti‖
)
‖u⊥‖ ≤

(
ρ+ max

t
‖xt‖2

)
‖u⊥‖

We are now ready to bound the spectral norm of R.

Lemma 6 ‖R‖22 ≤ ∆ + ρ+ 2
√
`
(
ρ+ maxt ‖xt‖2

)
Proof Denote by z the top left singular vector of R and for notational convenience set u`+1 to be
a unit vector in the same direction as (I − UnU

T
n )z (if (I − UnU

T
n )z = 0 then u`+1 can be set

as an arbitrary unit vector orthogonal to Un). Since z is supported by u1, . . . , u`+1 we can write
z =

∑`+1
i=1 αiui. Since the u vectors are orthonormal and z is a unit vector we have

∑
i α

2
i = 1.

Using the observations above, it is possible to compute ‖zTR‖2 directly.
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zTRRTz =
∑
i

α2
i ‖uT

i R‖2 +
`+1∑
i=1

∑
j 6=i

αiαju
T
i RR

Tuj

= ∆ + ρ+ 2
∑̀
i=1

αiu
T
i RR

T (
∑
j>i

αjuj)

≤ ∆ + ρ+ 2
(
ρ+ max

t
‖xt‖2

)∑̀
i=1

|αi|

≤ ∆ + ρ+ 2
√
`
(
ρ+ max

t
‖xt‖2

)
Inequality (2) is due to Lemma 5 and the fact that

∑
j>i αjuj is a vector of norm at most 1. In-

equality (2) is due to ‖a‖1 ≤
√
`‖a‖2 for any vector of dimension `.

Theorem 7 Let X and ∆ be the inputs for Algorithm 2. Consider any k for which σ2
k+1 ≤ ∆ and

set ε such that εσ2
1 + σ2

k+1 = ∆. Assume poly(k, 1/ε) ·max ‖xt‖2 = o(σ2
1).2 There exists a class

of covariance sketches for which Algorithm 2 outputs Y such that

1. The target dimension ` is at most 2k/ε.

2. Either the algorithm uses O(d2) memory and outputs Y such that:

‖X − (XY +)Y ‖2 ≤ ‖X − UT
nY ‖2 ≤ ∆ + o(σ2

1)

3. Or, the algorithm uses O(dk/ε+ drk1/2/ε3/2) memory and outputs Y such that:

‖X − (XY +)Y ‖2 ≤ ‖X − UT
nY ‖2 ≤ ∆ + εσ2

1 + o(σ2
1)

Where r = ‖X‖2F /‖X‖2 is the numeric rank of X .3

Proof From Lemma 1 if the covariance sketch is of accuracy ρ ≤ εσ2
1 we get that ` ≤ 2k/ε. From

Lemma 6 if the exact covariance is kept in space O(d2) then ρ = 0. Using the assumption that
poly(k, 1/ε) · max ‖xt‖2 = o(σ2

1) completes the second claim. For ρ > 0, combining Lemma 6
and Lemma 2 we get that

‖X − (XY +)Y ‖22 ≤ ‖R‖22 ≤ ∆ + (1 + 2
√
`)ρ+ 2

√
`max

i
‖xi‖2 ≤ ∆ + εσ2

1 + o(σ2
1)

if ρ ≤ σ2
1(ε/3

√
`) which is possible by a Frequent-Directions sketch (see section 1.3) of size

O(drk1/2/ε3/2).

2. Notice that σ2
1 is linear in nwhile in any reasonable setting maxt ‖xt‖2 is bounded by a constant. Even if maxt ‖xt‖2

grows asymptotically like
√
n, still, the assumption will hold for some n ≥ poly(k, 1/ε).

3. The numeric rank of a matrix is a stable version of its algebraic rank. It is lower bounded by 1 and upper bounded by
the algebraic rank. Yet in many practical cases where X reflects data with some structure to it, the numeric rank of
X is significantly smaller than its algebraic counterpart.
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Notice that the running time of Algorithm 2 was not discussed. This is because, as written, the
algorithm requires computing the spectral norm of the matrix (I − UUT )B at every iteration. This
operation is a computational bottleneck. Other than this operation, the required running time is dom-
inated by the time required by the covariance sketch and the time required to compute yt = UTxt.
Using a simple “trick”, this norm computation can be avoided in the vast majority of the itera-
tions. This leads to a running time that is dominated by covariance sketching and by the mapping
yt = UTxt. Nevertheless, in this section, we chose to present the simpler version to make the
presentation more palpable.

In the following section we present Algorithm 3 which operates in the adaptive error setting. It
shows how to avoid checking the spectral norm of the matrix (I − UUT )B in most iterations. The
same technique can be easily adapted for Algorithm 2, leading to an asymptotic running time of
Tsketch(X, ρ) +O(` · nnz(X) + `2d log(`)). Here, Tsketch(X, ρ) is the time required for sketching
X to within accuracy ρ and nnz(X) is the number of non-zero entries in X . The additive term of
`2d log(`) reflects the time spent on computing top singular vectors of (I − UUT )B, as this can
occur at most ` times. Typically, ` · nnz(X) is the dominating term of the above expression.

4. Adaptive Error: A Time Efficient Algorithm

In this section we present Algorithm 3 which does not require as input a pre specified fixed error
bound ∆. Instead, one can specify an integer k and scalar ε > 0 and obtain Y such that ‖X −
(XY +)Y ‖2 ≤ σ2

k+1 + O(εσ2
1). We present an additional modification that allows a more efficient

running time. The bottleneck in terms of running time for Algorithm 2 is the need to check in each
iteration the norm of ‖(I − UUT )B‖. Our modification allows us to compute the norm only after
seeing a substantial amount of energy since the last time it was computed. In other words, there is a
computationally attractive way to maintain a loose upper bound for ‖(I−UUT )B‖ that allows us to
compute the actual value only o(n) times throughout the execution of the algorithm. Since our input
only includes k and ε, our challenge is to find the ‘correct’ value for ∆ they correspond to. This
is done via a doubling trick. Based on ‖x1‖2 we compute an initial value for ∆ and exponentially
increase it until reaching the desired value.

Denote by ∆t the value taken by ∆ at the end of iteration t. We follow the outline of the
analysis of Section 3 and begin with a proof that ‖(I − UtU

T
t )Bt‖2 is always bounded from above

by (roughly) ∆ despite the fact that we do not compute it in every iteration.

Lemma 8 At the conclusion of every time step, we have ‖(I − UtU
T
t )Bt‖2 ≤ ∆t + (2 + ε)ρ +

maxt ‖xt‖2.

Proof The statement clearly holds in iterations where the condition inside the ‘if’ statement is held.
Consider an iteration t where we did not enter the if statement. Let t′ < t be the last iteration where
we did enter the if statement, where t′ = 0 if no such iteration exists. For some unit vector v ∈ Rd
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Algorithm 3 Online PCA, Adaptive error: a time efficient algorithm
input: X , k, ε
U ← all zeros matrix
`← dk/εe
B ← a covariance sketch with guaranteed precision ρ
ω ← 0
∆← 2

√
`‖x1‖2

for xt ∈ X do
Add xt to the sketch B
ω ← ω + ‖(I − UUT )xt‖2
if ω > ε(∆ + ρ) then

while ‖(I − UUT )B‖2 ≥ ∆(1− ε) do
Add the top left singular vector of (I − UUT )B to U
If |U | increased by ` vectors since last update of ∆, ∆← ∆ · (1 + ε)

end while
ω ← 0

end if
yield yt = UTxt

end for

such that UT
t v = 0 we have that

‖(I − UtU
T
t )Bt‖2 = ‖vTBt‖2 ≤ ‖vTX1:t‖2 + ρ

≤ ‖vTX1:t′‖2 + ‖(I − UtU
T
t )Xt′+1:t‖2F + ρ

≤ ‖vTBt′‖2 + ε(∆t + ρ) + ‖xt‖2 + 2ρ

(i)

≤ ‖(I − Ut′U
T
t′ )Bt′‖2 + ε∆t + ‖xt‖2 + (2 + ε)ρ

≤ ∆t + (2 + ε)ρ+ ‖xt‖2 .

Inequality (i) is since Ut = Ut′ as we did not enter the while statement between iterations t′ and t.

Let ∆n denote the final value taken by ∆. Given Lemma 8 it is an easy exercise to prove
analogous results to those of Lemmas 2 and 6 in Section 3. These are expressed w.r.t ∆n, the largest
value taken by ∆. Formally, we have that

‖X − (XY +)Y ‖2 ≤ ∆n +
(
ε+ 3 + 2

√
¯̀
)(

ρ+ max
t
‖xt‖2

)
with ¯̀ being the target dimension, i.e. the total number of vectors eventually added to U . In the
following Lemma we provide the bound on ∆n, leading to a bound on ¯̀.

Lemma 9 It holds that

∆n ≤ max

{
√
`‖x1‖2, (1 + ε)

σ2
k+1 + ρ+ εσ2

1

1− ε

}
≤ σ2

k+1 + 5εσ2
1 +
√
`‖x1‖2 + 2ρ
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for ε ≤ 0.5 and ¯̀≤ ` log1+ε(∆n/∆0). Assuming that
∑n

t=1 ‖xt‖2/
√
`‖x1‖2 = nO(1), which in

particular occurs when all numbers are expressed with an accuracy of up to O(log(n)) bits, we
have ¯̀= O(` log(n)/ε).

Proof Let ∆t be first value taken by ∆ for which

∆t >
σ2
k+1 + ρ+ εσ2

1

1− ε

Let u be a vector added to U during the time where ∆ = ∆t, and let tu be the iteration number in
which u was inserted. We have,

‖uTX‖2 = ‖uTX1:tu‖2 + ‖uTXtu+1:n‖2 ≥ uTX1:tuX
T
1:tuu

= uTBtuB
T
tuu− u

TEtiu ≥ ‖uT (I − Utu−1U
T
tu−1)Btu‖2 − ρ

≥ ∆(1− ε)− ρ

Denote by u1, . . . , u`′ the vectors inserted to U during the time periods in which ∆ = ∆t. We
obtain, by summing the inequality ∆(1− ε)− ρ ≤ ‖uT

i X‖2 over the `′ different vectors ui, that

`′(σ2
k+1 + εσ2

1) < `′(∆(1− ε)− ρ) ≤
`′∑
i=1

‖uT
i X‖2 ≤

`′∑
i=1

σ2
i ≤ kσ2

1 + (`′ − k)σ2
k+1

Hence `′ < k/ε ≤ `, and it must be the case that ∆n = ∆t. Since the updates are multiplicative
with a factor of 1 + ε the bound for ∆n follows. The inequality ¯̀≤ ` + ` log1+ε(∆n/∆0), with
∆0 =

√
`‖x1‖2 being the initial value of ∆, is trivial due to the algorithm structure. A (very) crude

upper bound for ∆n is ‖X‖2F , and ∆n/∆0 is bounded by
∑n

t=1 ‖xt‖2/
√
`‖x1‖2. According to our

assumption we have that the mentioned quantity is upper bounded by nc for a small constant c (most
likely c = 1 + o(1)). The claim immediately follows.

We are now done with the analysis of the quality of the output of the algorithm. The remaining
difference in the analysis of the improved algorithm and that of Section 3 is that of the running time.
We prove in the following that we do not need to compute the spectral norm of (I − UUT )B too
many times, hence the amortized update time is dominated by that of the sketching procedure.

Lemma 10 In Algorithm 3, after entering the code inside the if statement at most `d/ε times the
value of ∆ increases. In other words, the number of times the condition of the ‘if’ statement is true
is at most O(`d log(n)/ε2).

Proof Consider a time t in which ∆ = ∆t. Let t′ > t be an index of an iteration such that between
time t and t′ we entered the if statement d/ε times. To prove the claim it suffices to show that we
must have added a vector to U between times t and t′. Indeed, if this is the case then after `d/ε
times of entering the if statement we insert ` directions to U and ∆ is increased.

Let t1, . . . , tm for m ≥ d/ε be the iterations in which we entered the if statement after time t.
For ti, either a direction entered U between times t and ti or ‖(I − UtU

T
t )Xt:ti‖2F ≥ i · ε(∆ + ρ).

Hence, if we did not enter any direction to U at time tm we must have

‖(I − UtU
T
t )X1:tm‖2 ≥ ‖(I − UtU

T
t )Xt:tm‖2 ≥

10
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‖(I − Utm−1U
T
tm−1)Xt:tm‖2F /d ≥ ∆ + ρ

It follows that ‖(I − Utm−1U
T
tm−1)Btm‖2 > ∆ and a direction entered U at time tm ≤ t′.

Theorem 11 Combining the above we get the following: assume Algorithm 3 received as input pa-
rameters k, ε and a sketching algorithm with guarantee ρ, update time Tsketch(X, ρ) and a memory
requirement of Ssketch(X, ρ). We have

1. The target dimension of the sketch is O(k log(n)/ε2).

2. The running time is bounded by Tsketch(X, ρ) +O(nnz(X)k log(n)/ε2) +O
(
kd log(n)/ε3

)
where nnz(X) is the number of non-zero entries in X . For sufficiently large n (as common in
streaming scenarios) this quantity is in fact Tsketch(X, ρ) +O(nnz(X)k log(n)/ε2).

3. The space requirement of the algorithm is Ssketch(X, ρ) +O(kd log(n)/ε2).

4. The error of the output is bounded by

‖X−(XY +)Y ‖2 ≤ σ2
k+1+5εσ2

1+O
(√

k log(n)/ε2
(
ρ+ max

t
‖xt‖2

))
= σ2

k+1+O(εσ2
1) .

Possible improvements: Having prior knowledge about the matrix, two potential improvements
can be made. In some cases we have a crude approximation for ∆∗ = σ2

k+1 + εσ2
1 . By this

we mean having knowledge of a scalar ∆0 such that ∆0 ≤ ∆∗ but ∆0 ≥ ∆∗/c, for some large
constant c. If this happens to be the case we can initialize ∆ to be ∆0 and the log(n) terms in the
above theorems become log(c). The second improvement can be made when we have some lower
bound 1 < κ ≤ σ2

1/σ
2
k+1. First, notice that typically it makes sense to have an input k for which

σ2
k+1 � σ2

1 , hence κ can be potentially large. When having knowledge of such a parameter we can
set the multiplicative update of ∆ to grow by 1 + εκ rather than 1 + ε. The results stated above
regarding the error guarantee remain the same as long as κ ≤ σ2

1/σ
2
k+1; however, the running time,

memory complexity and target dimension are decrease by a factor of max{1/ε, κ}. To conclude, in
an optimistic, yet not unlikely scenario where we have knowledge of ∆0 = Ω(∆∗) and κ = Ω(ε−1)
we get a target dimension of O(k/ε).
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