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Abstract
We aim to design strategies for sequential decision making that adjust to the difficulty of the learn-
ing problem. We study this question both in the setting of prediction with expert advice, and for
more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax
regret rates, but we want our algorithms to perform significantly better on easy data. Two pop-
ular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The
underlying notions of ‘easy data’, which may be paraphrased as “the learning problem has small
variance” and “multiple decisions are useful”, are synergetic. But even though there are sophisti-
cated algorithms that exploit one of the two, no existing algorithm is able to adapt to both.

The difficulty in combining the two notions lies in tuning a parameter called the learning rate,
whose optimal value behaves non-monotonically. We introduce a potential function for which (very
surprisingly!) it is sufficient to simply put a prior on learning rates; an approach that does not work
for any previous method. By choosing the right prior we construct efficient algorithms and show
that they reap both benefits by proving the first bounds that are both second-order and incorporate
quantiles.
Keywords: Online learning, prediction with expert advice, combinatorial prediction, easy data

1. Introduction

We study the design of adaptive algorithms for online learning (Cesa-Bianchi and Lugosi, 2006).
Our work starts in the hedge setting (Freund and Schapire, 1997), a core instance of prediction with
expert advice (Vovk, 1990, 1998; Littlestone and Warmuth, 1994) and online convex optimization
(Shalev-Shwartz, 2011). Each round t = 1, 2, . . . the learner plays a probability vector wt on K
experts, the environment assigns a bounded loss to each expert in the form of a vector `t ∈ [0, 1]K ,
and the learner incurs loss given by the dot productwᵀ

t `t. The learner’s goal is to perform almost as
well as the best expert, without making any assumptions about the genesis of the losses. Specifically,
the learner’s performance compared to expert k is rkt = wᵀ

t `t − `kt , and after any number of rounds
T the goal is to have small regret RkT =

∑T
t=1 r

k
t with respect to every expert k.

The Hedge algorithm by Freund and Schapire (1997) ensures

classicRkT ≺
√
T lnK for each expert k (1)

(with ≺ denoting moral inequality, i.e. suppressing details inappropriate for this introduction),
which is tight for adversarial (worst-case) losses (Cesa-Bianchi and Lugosi, 2006). Yet one can
ask whether the worst case is also the common case, and indeed two lines of research show that
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this bound can be improved greatly in various important scenarios. The first line of approaches
(Cesa-Bianchi et al., 2007; Hazan and Kale, 2010; Chiang et al., 2012; Steinhardt and Liang, 2014;
De Rooij et al., 2014; Gaillard et al., 2014) obtains

RkT ≺
√
V k
T lnK for each expert k. (second order)

That is, T can be reduced to V k
T , which stands for some (there are various) kind of cumulative

variance or related second-order quantity. This variance is then often shown to be small V k
T � T

in important regimes like stochastic data (where it is typically bounded). The second line, inde-
pendently in parallel, shows how to reduce the dependence on the number of experts K whenever
multiple experts perform well. This is expected to occur, for example, when experts are constructed
by finely discretising the parameters of a (probabilistic) model, or when learning sub-algorithms are
used as experts. The resulting so-called quantile bounds (see Chaudhuri et al. 2009; Chernov and
Vovk 2010; Luo and Schapire 2014) of the form

min
k∈K

RkT ≺
√
T
(
− lnπ(K)

)
for each subset K of experts (quantile)

improve K to the reciprocal of the combined prior mass π(K), at the cost of now comparing to the
worst expert among K, so intuitively the best guarantee is obtained for K the set of “sufficiently
good” experts. (There is no requirement that the prior π(k) is uniform, and consequently quantile
bounds imply the closely related bounds with non-uniform priors, studied e.g. by Hutter and Poland
2005.) As these two types of improvement are complementary, we would like to combine them in
a single algorithm. However, the mentioned two approaches are based on incompatible techniques,
which until now have refused to coexist.

First Contribution We develop a new prediction strategy called Squint by putting priors on a
parameter called the learning rate and on experts. For Squint, we prove the first bounds that incor-
porate both quantile and variance guarantees at the same time:

RKT ≺
√
V KT
(
Clr − lnπ(K)

)
for each subset K of experts, (2)

where RKT = Eπ(k|K)RkT and V KT = Eπ(k|K) V k
T denote the average (under the prior) among the

reference experts k ∈ K of the regret RkT =
∑T

t=1 r
k
t and the (uncentered) variance of the excess

losses V k
T =

∑T
t=1(r

k
t )2. The overhead Clr for learning the optimal learning rate is specified below.

Some variance measures in the literature are easily interpretable functions of the data (Hazan and
Kale, 2010; Chiang et al., 2012; Steinhardt and Liang, 2014), but unfortunately such measures grow
linearly even when the learning problem is actually very easy in the sense that the best expert linearly
outperforms all others. Other variance measures, including our V KT , are more opaque, because in
addition to the data they also depend on the algorithm (Cesa-Bianchi et al., 2007; De Rooij et al.,
2014; Gaillard et al., 2014), but these measures have the advantage that variance and hence regret
stop accumulating whenever the weights concentrate, as will happen when one expert is clearly the
best. Furthermore, Gaillard et al. (2014) show that second-order bounds like (2) imply small regret
over experts with small losses (L∗T -bounds) and also guarantee bounded regret both in expectation
and with high probability in stochastic settings with a unique best expert. Finally, if we weaken V KT
in (2) using (rkt )2 ≤ |rkt |, then we recover the main result from independent concurrent work by
Luo and Schapire (2015, Theorem 1), which they apply to sleeping experts and tracking problems.
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We will instantiate our scheme three times, varying the prior distribution of the learning rate, to
obtain three interesting bounds. First, for the uniform prior, we obtain an efficient algorithm with
Clr = lnV KT . Then we consider a prior that we call the CV prior, because it was introduced by
Chernov and Vovk (2010) (to get quantile bounds), and we improve the bound to Clr = ln lnV KT .
As we consider ln lnx to be essentially constant, this algorithm achieves our goal of combining
the benefits of second-order bounds with quantiles, but unfortunately it does not have an efficient
implementation. Finally, by considering the improper(!) log-uniform prior, we get the best of both
worlds: an algorithm that is both efficient and achieves our goal with Clr = ln lnT . The efficient
algorithms for the uniform and the log-uniform prior both perform just K operations per round, and
are hence as widely applicable as vanilla Hedge.

Combinatorial games We then consider a more sophisticated setting, where instead of experts
k ∈ {1, . . . ,K}, the elementary actions are combinatorial concepts from some class C ⊆ {0, 1}K .
Many theoretically interesting and important real-world online decision problems are of this form,
for example subsets (sub-problem of Principal Component Analysis), lists (or ranking), permuta-
tions (scheduling), spanning trees (communication), paths through a fixed graph (routing), etc. (see
for instance Takimoto and Warmuth 2003; Kalai and Vempala 2005; Warmuth and Kuzmin 2008;
Helmbold and Warmuth 2009; Cesa-Bianchi and Lugosi 2012; Warmuth et al. 2014; Audibert et al.
2014). The combinatorial structure is reflected in the loss, which decomposes into a sum of coor-
dinate losses. That is, the loss of concept c ∈ C is cᵀ` for some loss vector ` ∈ [0, 1]K . This is
natural: for example the loss of a path is the total loss of its edges. Koolen et al. (2010) develop
Component Hedge (of the Mirror Descent family), with regret at most

Rc
T ≺

√
TKcomp(C) for each concept c ∈ C, (3)

where comp(C), the analog of lnK for experts, measures the complexity (entropy) of the combina-
torial class C. Luo and Schapire (2014) derive

√
T quantile bounds for online convex optimization,

but no second-order quantile methods were previously known for combinatorial games.

Second Contribution We extend our approach to combinatorial games and obtain the first al-
gorithm with a second-order quantile regret bound. In the combinatorial domain, the role of the
reference set of experts K is subsumed by a “mean concept” vector v in the convex hull conv(C)
of C, where vk represents the probability of including coordinate k, and the regret becomes the
coordinate-wise average regret Rv

T =
∑

t,k vkr
k
t . Our new predictor Component iProd keeps this

regret below

Rv
T ≺

√
V v
T

(
comp(v) +KClr

)
for each v ∈ conv(C). (4)

Component iProd is a computationally efficient drop-in replacement for Component Hedge, which
improves the factor TK to the averaged variance V v

T =
∑

t,k vk(r
k
t )2 and the complexity comp(C)

of the whole class C to the prior entropy comp(v).
Even if we disregard computational efficiency, our bound (4) is not a straightforward conse-

quence of the experts bound (2) applied with one expert for each concept, paralleling the fact that
(3) does not follow from (1). The reason is that we would obtain a bound with per-concept variance∑

t(
∑

k vkr
k
t )2 instead, which can overshoot even the straight-up worst-case bound (3) by a factor

of
√
K (Koolen et al. (2010) call this the range factor problem). To avoid this problem, our method

is “collapsed” (like Component Hedge): it only maintains first and second order statistics about the
K coordinates separately, not about concepts as a whole.
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Related work Obtaining bounds for easy data in the experts setting is typically achieved by adap-
tively tuning a learning rate, which is a parameter found in many algorithms. Schemes for choosing
the learning rate on-line are built by Auer et al. (2002); Cesa-Bianchi et al. (2007); Hazan and Kale
(2010); De Rooij et al. (2014); Gaillard et al. (2014); Wintenberger (2014). These schemes typically
choose a monotonically decreasing sequence of learning rates to prove a certain regret bound.

Other approaches try to aggregate multiple learning rates. The motivations and techniques here
show extreme diversity, ranging from drifting games by Chaudhuri et al. (2009); Luo and Schapire
(2014), and defensive forecasting by Chernov and Vovk (2010) to minimax relaxations by Rakhlin
et al. (2013) and budgeted timesharing by Koolen et al. (2014). The last scheme is of note, as it
does not aggregate to reproduce a bound of a certain form, but rather to compete with the optimally
tuned learning rate for the Hedge algorithm.

In the related setting of statistical learning, Grünwald has been able to compete with the op-
timally tuned learning rate by measuring the (lack of) empirical convexity of statistical models
(Grünwald, 2011), and through a method based on online-to-batch conversion (Grünwald, 2012).

Outline We introduce the Squint prediction rule for experts in Section 2. In Section 3 we motivate
three choices for the prior on the learning rate, discuss the resulting algorithms and prove second-
order quantile regret bounds. In Section 4 we extend Squint to combinatorial prediction tasks. We
conclude with open problems in Section 5.

2. Squint: a Second-order Quantile Method for Experts

Let us review the expert setting protocol to fix notation. In round t the algorithm plays a probability
distribution wt on K experts and encounters loss `t ∈ [0, 1]K . The instantaneous regret of the
algorithm compared to expert k is rkt = wᵀ

t `t − `kt = (wt − ek)ᵀ`t, where ek is the unit vector
in direction k ∈ {1, . . . ,K}. Let RkT =

∑T
t=1 r

k
t be the total regret compared to expert k and let

V k
T =

∑T
t=1(r

k
t )2 be the cumulative uncentered variance of the instantaneous regrets.

The central building block of our approach is a potential function Φ that maps sequences of
instantaneous regret vectors r1:T = 〈r1, . . . , rT 〉 of any length T ≥ 0 to numbers. Potential
functions are staple online learning tools (Cesa-Bianchi and Lugosi, 2006; Abernethy et al., 2014).
We advance the following schema, which we call Squint (for second-order quantile integral). It
consists of the potential function and associated prediction rule

Φ(r1:T ) = E
π(k)γ(η)

[
eηR

k
T−η

2V kT − 1
]
, wT+1 =

Eπ(k)γ(η)
[
eηR

k
T−η

2V kT ηek

]
Eπ(k)γ(η)

[
eηR

k
T−η2V

k
T η
] , (5)

where the expectation is taken under prior distributions π on experts k ∈ {1, . . . ,K} and γ on
learning rates η ∈ [0, 1/2] that are parameters of Squint. Although we always take these priors to
be independent, our results generalize to dependent priors as well1. We will show in a moment that
Squint ensures that the potential remains Φ(r1:T ) ≤ 0 non-positive. Let us first investigate why non-
positivity is desirable. To gain a quick-and-dirty appreciation for this, suppose thatK ⊆ {1, . . . ,K}
is the reference set of experts with good performance. Let us abbreviate their average regret and
variance to R = RKT = Eπ(k|K)RkT and V = V KT = Eπ(k|K) V k

T . Furthermore, imagine for

1. Dependent priors might sometimes be useful: singling out a single expert k∗ and putting prior mass 1− 1/T on the
pair (k, η) = (k∗, 1/T ) recovers the bound of (A,B)-Prod by Sani et al. (2014).
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simplicity that an oracle would tell us the optimized learning rate η̂ = R
2V and that the prior γ would

put all its mass on η̂. Then non-positive potential Φ(r1:T ) ≤ 0 implies

1 ≥ E
π(k)

[
eη̂R

k
T−η̂

2V kT

]
≥ π(K) E

π(k|K)

[
eη̂R

k
T−η̂

2V kT

] Jensen

≥ π(K)eη̂R−η̂
2V = π(K)e

R2

4V , (6)

which immediately yields the desired variance-with-quantiles bound

RKT ≤ 2
√
V KT (− lnπ(K)). (oracle learning rate)

This motivates that Φ(r1:T ) ≤ 0 is desirable, which Squint achieves by always decreasing it:

Lemma 1 Let γ(η) be supported on [0, 1/2]. Then Squint (5) ensures that, for any loss sequence
`1, . . . , `T in [0, 1]K ,

Φ(r1:T ) ≤ . . . ≤ Φ(∅) = 0. (7)

Proof The key role is played by the upper bound (Cesa-Bianchi and Lugosi, 2006, Lemma 2.4)

ex−x
2 − 1 ≤ x for x ≥ −1/2. (8)

Applying this to ηrkT+1 ≥ −1/2, we bound the increase Φ(r1:T+1)− Φ(r1:T ) of the potential by

E
π(k)γ(η)

[
eηR

k
T−η

2V kT

(
eηr

k
T+1−(ηr

k
T+1)

2

− 1
)] (8)

≤ E
π(k)γ(η)

[
eηR

k
T−η

2V kT η(wT+1 − ek)ᵀ`T+1

]
= 0,

where the last identity holds because the algorithm’s weights (5) have been chosen to satisfy it.

In Section 3 we will make the proof sketch from (6) rigorous. We pursue priors γ(η) that (a)
pack plenty of mass close to η̂, wherever it may end up; and (b) admit efficient computation of the
weightswT+1 by means of a closed-form formula for its integrals over η. We conclude this section
by putting Squint in context.

Discussion The Squint potential is a function of the vector
∑T

t=1 rt of cumulative regrets, but also
of its sum of squares, which is essential for second-order bounds. Squint is an anytime algorithm,
i.e. it has no built-in dependence on an eventual time horizon, and its regret bounds hold at any time
T of evaluation. In addition Squint is timeless in the sense of De Rooij et al. (2014), meaning that
its predictions (current and future) are unaffected by inserting rounds with ` = 0.

The Squint potential is an average of exponentiated negative “losses” (derived from the regret)
under product prior π(k)γ(η), reminiscent of the exponential weights analysis potential. Our Squint
weights could be viewed as exponential weights, but, intriguingly, for another prior, with γ(η)
replaced by γ(η)η. Mysteriously, playing the latter controls the former.

The bound (8) is hard-coded in our Squint potential function and algorithm. To instead delay
this bound to the analysis, we might introduce the alternative iProd (for integrated products) scheme

Φ(r1:T ) = E
π(k)γ(η)

[(
T∏
t=1

(1 + ηrkt )

)
− 1

]
, wT+1 =

Eπ(k)γ(η)
[(∏T

t=1(1 + ηrkt )
)
ηek

]
Eπ(k)γ(η)

[(∏T
t=1(1 + ηrkt )

)
η
] . (9)

The iProd weights keep the iProd potential identically zero, above the Squint potential by (8), and
Squint’s regret bounds hence transfer to iProd. We champion Squint over the purer iProd because
Squint’s weights admit efficient closed form evaluation, as shown in the next section. For γ a
point-mass on a fixed choice of η this advantage disappears, and iProd reduces to Modified Prod by
Gaillard et al. (2014), whereas Squint becomes very similar to the OBA algorithm of Wintenberger
(2014).
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3. Three Choices of the Prior on Learning Rates

We will now consider different choices for the prior γ on η ∈ [0, 1/2]. In each case the proof of the
corresponding regret bound elaborates on the argument in (6), showing that the priors place suffi-
cient mass in a neighbourhood of the optimized learning rate η̂. This might be viewed as performing
a Laplace approximation of the integral over η, although the details vary slightly depending on the
prior γ. The prior π on experts remains completely general. The proofs can be found in Appendix A.

3.1. Conjugate Prior

First we consider a conjugate prior γ with density

dγ

dη
=
eaη−bη

2

Z(a, b)
where Z(a, b) =

∫ 1/2

0
eaη−bη

2
dη (10)

for parameters a, b ∈ R. The uniform prior, mentioned in the introduction, corresponds to the
special case a = b = 0, for which Z(a, b) = 1/2. Abbreviating x = a + RkT and y = b + V k

T , the
Squint predictions (5) then specialize to become proportional to

wkT+1 ∝ π(k)

∫ 1
2

0
eηx−η

2yη dη = π(k)

e
x2

4y
√
πx
(

erf
(

x
2
√
y

)
− erf

(
x−y
2
√
y

))
4y3/2

+
1− e

x
2
− y

4

2y

 .

(11)
These weights can be computed efficiently (but see Appendix B for numerically stable evaluation).
For this prior, we obtain the following bound:

Theorem 2 (Conjugate Prior) Let ln+(x) = ln(max{x, 1}). Then the regret of Squint (5) with
conjugate prior (10) (with respect to any subset of experts K) is bounded by

RKT ≤ 2

√√√√√(V KT + b
)1

2
+ ln+

Z(a, b)
√

2(V KT + b)

π(K)

+ 5 ln+

(
2
√

5Z(a, b)

π(K)

)
− a. (12)

The oracle tuning a = 0 and b = V KT results in Z(a, b) ≤
√
π

2
√
V KT

. Plugging this in we find that the

main term in (12) becomes

2

√
2V KT

(
1

2
+ ln+

( √
π

π(K)

))
,

which is of the form (2) that we are after, with constant overhead Clr for learning the learning rate.
Of course, the fact that we do not know V KT in advance makes this tuning impossible, and for any
constant parameters a and b we get a factor of order Clr = lnV KT .

3.2. A Good Prior in Theory

The reason the conjugate prior does not achieve the optimal bound is that it does not put sufficient
mass in a neighbourhood of the optimal learning rate η̂ that maximizes eηR

K
T−η

2V KT . To see how we
could address this issue, observe that we can plug αη̂ instead of η̂ into (6) for some scaling factor

6
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α ∈ (0, 1), and still obtain the desired regret bound up to a constant factor (which depends on α).
This implies that, if we could find a prior that puts a constant amount of mass on the interval [αη̂, η̂],
independent of η̂, then we would only pay a constant cost Clr to learn the learning rate, at the price
of having a slightly worse constant factor.

A prior that puts constant mass on any interval [αη̂, η̂] should have a distribution function of the
form a ln(η) + b for some constants a and b, and hence its density should be proportional to 1/η.
But here we run into a problem, because, unfortunately, 1/η does not have a finite integral over
η ∈ [0, 1/2] and hence no such prior exists!

The solution we adopt in this section will be to adjust the density 1/η just a tiny amount so that
it does integrate. Let γ have density

dγ

dη
=

ln 2

η ln2(η)
, (13)

where ln2(x) =
(

ln(x)
)2. We call this the CV prior, because it has previously been used to get

quantile bounds by Chernov and Vovk (2010). The additional factor 1/ ln2(η) in the prior only leads

to an extra factor of
√

ln lnV KT in the bound, which we consider to be essentially a constant.
Although the motivation above suggests that we might obtain a suboptimal constant factor (de-

pending on α), a more careful analysis shows that this does not even happen: apart from the effect
of the 1/ ln2(η) term in prior, we obtain the optimal multiplicative constant.

Theorem 3 (CV Prior) Let ln+(x) = ln(max{x, 1}). Then the regret of Squint (5) with CV prior
(13) (with respect to any subset of experts K) is bounded by

RKT ≤
√

2V KT

1 +

√√√√√√2 ln+

 ln2
+

(
2
√
V KT

2−
√
2

)
π(K) ln(2)


− 5 lnπ(K) + 4. (14)

3.3. Improper Prior

In the last section we argued that we needed a density proportional to 1/η on η ∈ [0, 1/2]. Such a
density would not integrate, and we studied the CV prior density instead. However, we could be bold
and see what breaks if we use the improper 1/η density anyway. We should be highly suspicious
though, because this density is improper of the worst kind: the integral

∫ 1/2
0 eηRT−η

2VT 1
η dη diverges

no matter how many rounds of data we process (a Bayesian would say: “the posterior remains
improper”). Yet it turns out that we hit no essential impossibilities: the improper prior 1/η cancels
with the η present in the Squint rule (5), and the predictions are always well-defined. As we will
see, we still get desirable regret bounds, but, equally important, we regain a closed-form integral for
our weight computation. The Squint prediction (5) specializes to

wkT+1 ∝ π(k)

∫ 1/2

0
eηR

k
T−η

2V kT dη = π(k)

√
πe

(RkT )2

4V k
T

(
erf

(
RkT

2
√
V kT

)
− erf

(
RkT−V

k
T

2
√
V kT

))
2
√
V k
T

. (15)

(We look at numerical stability in Appendix B.) This strategy provides the following guarantee:
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Theorem 4 (Improper Prior) The regret of Squint with improper prior (15) (with respect to any
subset of experts K) is bounded by

RKT ≤
√

2V KT

1 +

√√√√2 ln

(
1
2 + ln(T + 1)

π(K)

)+ 5 ln

(
1 +

1 + 2 ln(T + 1)

π(K)

)
. (16)

4. Component iProd: a Second-order Quantile Method for Combinatorial Games

In the combinatorial setting the elementary actions are combinatorial concepts from some class
C ⊆ {0, 1}K . The combinatorial structure is reflected in the loss, which decomposes into a sum of
coordinate losses. That is, the loss of concept c ∈ C is cᵀ` for some loss vector ` ∈ [0, 1]K . For
example, the loss of a path is the total loss of its edges. We allow the learner to play a distribution
p on C and incur the expected loss Ep(c) [cᵀ`] = Ep(c) [c]ᵀ ` . This means that the loss of p is
determined by its mean, which is called the usage of p. We can therefore simplify the setup by
having the learner play a usage vector u ∈ U , where U = conv(C) ⊆ [0, 1]K is the polytope of
valid usages. The loss then becomes uᵀ`.

Koolen et al. (2010) point out that the Hedge algorithm with the concepts as experts guarantees

Expanded HedgeRc
T ≺ K

√
T comp(C), (17)

upon proper tuning, where comp(C) is some appropriate notion of the complexity of the combina-
torial class C. (This is exactly (1), where the additional factor K comes from the fact that the loss
of a single concept now ranges over [0,K] instead of [0, 1].) The computationally efficient Follow
the Perturbed Leader strategy has the same bound. However, Koolen et al. (2010) show that this
bound has a fundamentally suboptimal dependence on the loss range, which they call the range
factor problem. Properly tuned, their Component Hedge algorithm (a particular instance of Mirror
Descent) keeps the regret below

Component HedgeRc
T ≺

√
TKcomp(C), (18)

the improvement being due to the algorithm exploiting the sum structure of the loss. To show that
this cannot be improved further, Koolen et al. (2010) exhibit matching lower bounds for a variety
of combinatorial domains. Audibert et al. (2014) give an example where the upper bound (17) for
Expanded Hedge is tight, so the range factor problem cannot be solved by a better analysis.

In this section we aim to develop efficient algorithms for combinatorial prediction that obtain the
second-order and quantile improvements of (18), but do not suffer from the range factor problem.

It is instructive to see that our bounds (2) for Squint/iProd, when applied with a separate expert
for each concept, indeed also suffer from a suboptimal loss range dependence. We find

Expanded Squint/iProdRc
T ≺

√
V c
T (comp(C) + tuning cost),

where V c
T =

∑T
t=1(r

c
T )2 =

∑T
t=1(

∑K
k=1 r

k
t )2 with rkt ∈ [−1, 1] may now be as large as K2T ,

whereas we know KT suffices. The reason for this is that V c
T measures the variance of the concept

as a whole, whereas the sum structure of the loss makes it possible to replace V c
T by the sum of the

variances of the components. In the analysis, this problem shows up when we apply the bound (8).
To fix it, we must therefore rearrange the algorithm to be able to apply (8) once per component.
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Algorithm 1: Component iProd. Required subroutines are the relative entropy projection step (3)
and the decomposition step (5). For polytopes U that can be represented by few linear inequalities
these can be deferred to general-purpose convex and linear optimizers. See Koolen et al. (2010) for
more details, and for ideas regarding more efficient implementations for particular concept classes.

Input: Combinatorial class C ⊆ {0, 1}K with convex hull U = conv(C)
Input: Prior distribution γ on a discrete grid G ⊂ [0, 1/2] and prior vector π ∈ [0, 1]K

1: For each η ∈ G, initialize ũη1 = π and Lη1 = − ln
(
γ(η)η

)
. (21)

2: for t = 1, 2, . . . do
3: For each η ∈ G, project uηt = minu∈U 42(u‖ũt) . (21a)

4: Compute usage ut =
∑

η e
−Lηtuηt

/∑
η e
−Lηt . (23)

5: Decompose ut =
∑

i pict,i into a convex combination of concepts ct,i ∈ C
6: Play ct,i with probability pi
7: Receive loss vector `t, incur expected loss uᵀ

t `t

8: For each η ∈ G and k, update ũη,kt+1 = uη,kt
1+η(ukt−1)`kt

1+η(ukt−u
η,k
t )`kt

. (21b),(33),(24),(22)

9: For each η ∈ G, update Lηt+1 = Lηt −
∑K

k=1
1
K ln

(
1 + η

(
ukt − u

η,k
t

)
`kt
)

. (20),(24),(22)
10: end for

Outlook Our approach will be based on a new potential function that aggregates over learning
rates η explicitly and over the concept class C implicitly. Our inspiration for the latter comes from
rewriting the factor featuring inside the Eγ(η) expectation in the iProd potential (9) as

E
π(k)

[
T∏
t=1

(1 + ηrkt )

]
=

T∏
t=1

Eπ(k)
[∏t

s=1(1 + ηrks )
]

Eπ(k)
[∏t−1

s=1(1 + ηrks )
] = e−

∑T
t=1 `mix(p

η
t ,x

η
t ), (19)

which we interpret as the mix loss (see De Rooij et al. 2014) of the exponential weights distribution
pηt on auxiliary losses:

`mix(p,x) = − ln E
p(k)

[
e−x

k
]
, pηt (k) =

π(k)e−
∑t−1
s=1 x

η,k
s

Eπ(k)
[
e−
∑t−1
s=1 x

η,k
s

] , xη,kt = − ln(1 + ηrkt ).

Thus, for each fixed η, we have identified a sub-module in which the loss is the mix loss. It turns
out that the Squint/iProd regret bounds can be reinterpreted as arising from (quantile) mix loss re-
gret bounds for exponential weights in this sub-module. For combinatorial games, we hence need
to upgrade exponential weights to a combinatorial algorithm for mix loss. No such algorithm was
readily available, so we derive a new algorithm that we call Component Bayes (a variant of Com-
ponent Hedge) in Section 4.1, and prove a quantile mix loss regret bound for it. Then in Section 4.2
we show that Component iProd, obtained by substituting Component Bayes for exponential weights
in the sub-module above, inherits all of iProd’s desirable features. That is, by aggregating the above
sub-module over learning rates the Component iProd predictor delivers low second-order quantile
regret. Component iProd is summarized as Algorithm 1. Proofs can be found in Appendix A.
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4.1. Component Bayes

In this section we describe a combinatorial algorithm for mix loss, which will then be an essential
subroutine in our Component iProd algorithm. We take as our action space some closed convex
U ⊆ [0, 1]K . The game then proceeds in rounds. Each round t the learner plays ut ∈ U , which
we interpret as making K independent plays in K parallel two-expert sub-games, putting weight ukt
and 1−ukt on experts 1 and 0 in sub-game k. The environment reveals a loss vector xt ∈ RK×{0,1}
(we use x for the loss in this auxiliary game, and reserve ` for the loss in the main game), and the
loss of the learner is the sum of per-coordinate mix losses:

`mix(u,x) =

K∑
k=1

− ln
(
uke−x

k,1
+ (1− uk)e−xk,0

)
. (20)

The goal is to compete with the best element v ∈ U . We define Component Bayes2 inductively as
follows. We set ũ1 = π ∈ [0, 1]K to some prior vector of our choice (which does not have to be a
usage in U), and then alternate

ut = arg min
u∈U

42(u‖ũt) (21a)

ũt+1 = arg min
u∈[0,1]K

42(u‖ut) +

K∑
k=1

(ukxk,1t + (1− uk)xk,0t ), (21b)

where 42 denotes the binary relative entropy, defined from scalars x to y and vectors v to u by
42(x‖y) = x ln x

y + (1− x) ln 1−x
1−y and42(v‖u) =

∑K
k=142(v

k‖uk). This simple scheme is all
it takes to adapt to the combinatorial domain.

Lemma 5 Fix any closed convex U ⊆ [0, 1]K . For any loss sequence x1, . . . ,xT in RK×{0,1}, the
mix loss regret of Component Bayes (21) with prior π ∈ [0, 1]K compared to any v ∈ U is at most

T∑
t=1

`mix(ut,xt)−
T∑
t=1

K∑
k=1

(
vkxk,1t + (1− vk)xk,0t

)
≤ 42(v‖π).

The practicality of Component Bayes does depend on the computational cost of computing the bi-
nary relative entropy projection onto the convex set U . Fortunately, in many applications U has a
compact representation by means of a few linear inequalities; e.g. the Birkhoff polytope (permuta-
tions) and the Flow polytope (paths). See (Koolen et al., 2010) for examples. Component Bayes
may then be implemented using off-the-shelf convex optimization subroutines like CVX.

4.2. Component iProd

We now return to our original problem of combinatorial prediction with linear loss. Using Compo-
nent Bayes (which is for mix loss) as a sub-module, we construct an algorithm with second-order
quantile bounds. We first have to extend our notion of regret vector . Suppose the learner predicts

2. Ignoring a small technically convenient switch from generalized to binary relative entropy we find that Component
Bayes equals Component Hedge of Koolen et al. (2010). The new name stresses an important distinction in the game
protocol: Component Hedge guarantees low linear loss regret, Component Bayes guarantees low mix loss regret.

10
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usage ut ∈ U ⊆ [0, 1]K and encounters loss vector `t ∈ [−1,+1]K . We then define the regret
vector rt ∈ [− 1,+1]K×{0,1} by

rk,1t = ukt `
k
t − `kt and rk,0t = ukt `

k
t . (22)

Fix a prior vector π ∈ [0, 1]K and prior distribution γ on [0, 1/2]. We define the Component iProd
potential function and predictor by

Φ(r1:T ) = E
γ(η)

[
e−

1
K

∑T
t=1 `mix(u

η
t ,x

η
t ) − 1

]
, uT =

Eγ(η)
[
e−

1
K

∑T−1
t=1 `mix(u

η
t ,x

η
t )ηuηT

]
Eγ(η)

[
e−

1
K

∑T−1
t=1 `mix(u

η
t ,x

η
t )η
] , (23)

where uη1,u
η
2, . . . denote the usages of Component Bayes with prior π on losses xη1,x

η
2, . . . set to

xη,k,bt = − ln
(

1 + ηrk,bt

)
(24)

Note that uT ∈ U is a bona fide action, as it is a convex combination of uηT ∈ U . As can be seen
from (19), this potential generalizes iProd (9): in the base case K = 1 and C = {0, 1} Component
iProd reduces to iProd (9) onK = 2 experts if we set the loss for Component iProd to the difference
of the losses for iProd. We will now show that Component iProd has the desired regret guarantee.

Lemma 6 Fix any closed convex U ⊆ [0, 1]K . Component iProd (23) ensures that for any loss
sequence `1, . . . , `T in [−1,+1]K we have Φ(r1:T ) ≤ . . . ≤ Φ(∅) = 0 .

We now establish that non-positive potential implies our desired regret bound. We express our quan-
tile bound in terms of the v-weighted cumulative coordinate-wise regret and uncentered variance

Rv
T =

T∑
t=1

K∑
k=1

(
vkrk,1t + (1− vk)rk,0t

) (22)
=

T∑
t=1

(ut − v)ᵀ`t,

V v
T =

T∑
t=1

K∑
k=1

(
vk(rk,1t )2 + (1− vk)(rk,0t )2

)
.

(25)

Lemma 7 Suppose γ is supported on a discrete grid G ⊂ [0, 1/2]. Component iProd (23) guaran-
tees that for every η ∈ G and for every comparator v ∈ U the regret is at most

ηRv
T − η2V v

T ≤ 42(v‖π)−K ln γ(η).

We now discuss the choice of the discrete prior γ on η. Here we face a trade-off between regret and
computation. More discretization points reduce the regret overhead for mis-tuning, but since we
need to run one instance of Component Bayes per grid point the computation time also grows lin-
early in the number of grid points. Fortunately, Lemma 7 implies that exponential spacing suffices,
as missing the optimal tuning η̂ =

Rv
T

2V v
T

by a constant factor affects the regret bound by another
constant factor. To see this, apply Lemma 7 to η = αη̂. We find

Rv
T ≤

2√
α(2− α)

√
V v
T

(
42(v‖π)−K ln γ(αη̂)

)
. (26)

It is therefore sufficient to choose η from an exponentially spaced grid:

11
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Theorem 8 Let U ⊆ [0, 1]K be closed and convex. Component iProd (23), with γ the uniform
prior on grid G = {2−i | i = 1, . . . , d1 + log2 T e} and arbitrary π ∈ [0, 1]K , ensures that, for any
sequence `1 . . . , `T of [−1,+1]-valued loss vectors, the regret compared to any v ∈ U is at most

Rv
T ≤

4√
3

√
V v
T

(
42(v‖π) +K lnd1 + log2 T e

)
+ 442(v‖π) +K max{4 lnd1 + log2 T e, 1}.

(27)

Discussion of Component iProd We showed that if we have an algorithm for keeping the mix loss
regret small compared to some concept class, we can run multiple instances, each with a different
learning rate factored into the losses, and as a result also keep the linear loss small with second order
quantile bounds. Another setting where this could be applied is to switching experts. The Fixed
Share algorithm by Herbster and Warmuth (1998) applies to all Vovk mixable losses, so in particular
to the mix loss, and delivers adaptive regret bounds (Adamskiy et al., 2012). Aggregating over
log2 T exponentially spaced η to learn the learning rate would indeed be very cheap. Yet another
setting is matrix-valued prediction under linear loss (Tsuda et al., 2005), where our method would
transport the mix loss bounds of Warmuth and Kuzmin (2010) to second-order quantile bounds.

In Lemma 7 we see that the cost − ln γ(η) for learning the learning rate η occurs multiplied by
the ambient dimension K. Intuitively this seems wasteful, as we are not trying to learn a separate
rate for each component. But we could not reduce K to 1. For example, defining the potential (23)
without the division by K escalates its dependency on the loss ` from linear to polynomial of order
K. Unfortunately this potential cannot be kept below zero even for K = 2.

5. Conclusion and Future Work

We have constructed second-order quantile methods for both the expert setting (Squint) and for
general combinatorial games (Component iProd). The key in both cases is the ability to learn the
appropriate learning rate, which is reflected by the integrals over η in our potential functions (5)
and (23). As discussed under related work, there is a whole variety of different ways to adapt to the
optimal η. This raises the question of whether there is a unifying perspective that explains when
and how it is possible to learn the learning rate in general.

Another issue for future work is to find matching lower bounds. Although lower bounds in
terms of

√
T lnK are available for the worst possible sequence (Cesa-Bianchi and Lugosi, 2006),

the issue is substantially more complex when considering either variances or quantiles. We are not
aware of any lower bounds in terms of the variance V k

T . Gofer and Mansour (2012) provide lower
bounds that hold for any sequence, in terms of the squared loss ranges in each round, but these do not
apply to methods that adaptively tune their learning rate. For quantile bounds, Koolen (2013) takes
a first step by characterizing the Pareto optimal quantile bounds for 2 experts in the

√
T regime.

Finally, we have assumed throughout that all losses are normalized to the range [0, 1]. But there
exist second-order methods that do not require this normalization and can adapt automatically to
the loss range (Cesa-Bianchi et al., 2007; De Rooij et al., 2014; Wintenberger, 2014). It is an open
question how such adaptive techniques can be incorporated elegantly into our methods.
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Appendix A. Proofs

This section collects the proofs omitted from Sections 3 and 4.

A.1. Theorem 2

Proof Abbreviate R = RKT + a and V = V KT + b. Then from (7) and Jensen’s inequality we obtain

1 ≥ E
π(k)γ(η)

[
eηR

k
T−η

2V kT

]
≥
π(K)Eπ(k|K)

∫ 1/2
0 eη(R

k
T+a)−η

2(V kT +b) dη

Z(a, b)
≥
π(K)

∫ 1/2
0 eηR−η

2V dη

Z(a, b)
.

The η that maximizes ηR − η2V is η̂ = R
2V . Without loss of generality, we can assume that η̂ ≥

1√
2V
≥ 0, because otherwise R ≤

√
2V , from which (12) follows directly. Now let [u, v] ⊆ [0, 12 ]

be any interval such that v ≤ η̂. Then, because ηR−η2V is non-decreasing in η for η ≤ η̂, we have∫ 1/2

0
eηR−η

2V dη ≥
∫ v

u
eηR−η

2V dη ≥ (v − u)euR−u
2V ,

so that the above two equations imply

uR− u2V ≤ ln

(
Z(a, b)

π(K)(v − u)

)
. (28)

Suppose first that η̂ ≤ 1/2. Then we take v = η̂ and u = η̂ − 1√
2V

. Plugging these into (28) we
obtain

R ≤ 2

√√√√V

(
1

2
+ ln

(
Z(a, b)

√
2V

π(K)

))
,

which implies (12). Alternatively, we may have η̂ > 1/2, which is equivalent to R > V . Then the
left-hand side of (28) is at least u(1− u)R and hence we obtain

R ≤ 1

(1− u)u
ln

(
Z(a, b)

π(K)(v − u)

)
.

Taking u = 5−
√
5

10 and v = 1/2 then leads to the bound

R ≤ 5 ln

(
2
√

5Z(a, b)

π(K)

)
,

which again implies (12).

A.2. Theorem 3

Proof Abbreviate R = RKT and V = V KT , and let η̂ = R
2V be the η that maximizes ηR−η2V . Then

ηR − η2V is non-decreasing in η for η ≤ η̂ and hence, for any interval [u, v] ⊆ [0, 1/2] such that
v ≤ η̂, we obtain from (7) and Jensen’s inequality that

1 ≥ π(K) E
π(k|K)γ(η)

[
eηR

k
T−η

2V kT

]
≥ π(K) E

γ(η)

[
eηR−η

2V
]
≥ π(K)γ([u, v])euR−u

2V , (29)
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where

γ([u, v]) =

∫ v

u

ln 2

η(ln η)2
dη =

ln(2)

ln( 1v )
− ln(2)

ln( 1
u)
≥

ln(2) ln( vu)

ln2( 1
u)

. (30)

If R ≤ 2
√
V , then (14) follows by considering the cases V ≤ 4 and V ≥ 4, so suppose that

R ≥ 2
√
V , which implies that η̂ ≥ 1√

2V
.

Now suppose first that η̂ ≤ 1/2. Then we take v = η̂ and u = η̂ − 1√
2V
≥ 0, for which

euR−u
2V ln( vu)

ln2( 1
u)

=

e
R2

4V
− 1

2 ln
(

1

1−
√
2V
R

)
ln2( 2V

R−
√
2V

)
≥
e
R2

4V
− 1

2 ln
(

1

1−
√
2V
R

)
ln2( 2

√
V

2−
√
2
)

,

where the inequality follows from R ≥ 2
√
V . By e

1
2
(x2−1) = e

1
2
(x−1)2ex−1 ≥ e

1
2
(x−1)2x and

ln 1
1−x ≥ x, we can lower bound the numerator with

e
R2

4V
− 1

2 ln
( 1

1−
√
2V
R

)
≥ e

1
2
( R√

2V
−1)2 R√

2V

√
2V
R = e

1
2
( R√

2V
−1)2

.

Putting everything together, we obtain

1 ≥ π(K) ln(2)e
1
2
( R√

2V
−1)2

ln2
(

2
√
V

2−
√
2

) ,

which implies

R ≤
√

2V

1 +

√√√√√2 ln

 ln2
(

2
√
V

2−
√
2

)
π(K) ln(2)


 ,

and (14) is satisfied.
It remains to consider the case η̂ > 1/2, which implies R > V . Then we take v = 1/2, and

(29) leads to

uR− u2V ≤ − lnπ(K)− ln
(

1− ln(2)

ln( 1
u)

)
.

Using R > V , the left-hand side is at most u(1 − u)R. The choice u = 5−
√
5

10 then again implies
(14), which completes the proof.

A.3. Theorem 4

Proof The proof of Lemma 1 goes through unchanged for the improper prior, but we have to be
careful, because we cannot pull out the constant 1 from the integral over η in the potential function
any more. So abbreviate R = RKT and V = V KT . Then, by (7), R ≥ −T , V ≤ T , and Jensen’s
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inequality,

0 ≥ Φ(r1:T ) = E
π(k)

[∫ 1/2

0

eηR
k
T−η

2V kT − 1

η
dη

]

≥ π(K) E
π(k|K)

[∫ 1/2

0

eηR
k
T−η

2V kT − 1

η
dη

]
+ (1− π(K))

∫ 1/2

0

e−ηT−η
2T − 1

η
dη

≥ π(K)

∫ 1/2

0

eηR−η
2V − 1

η
dη + (1− π(K))

∫ 1/2

0

e−ηT−η
2T − 1

η
dη.

Now first for the bad experts that are not in K, we will show that∫ 1/2

0

e−ηT−η
2T − 1

η
dη ≥ − 1

2
− ln(T + 1). (31)

Let ε ∈ [0, 1/2] be arbitrary. Then, using ex ≥ 1 + x and ex ≥ 0, we obtain∫ 1/2

0

e−ηT−η
2T − 1

η
dη =

∫ ε

0

e−ηT−η
2T − 1

η
dη +

∫ 1/2

ε

e−ηT−η
2T − 1

η
dη

≥
∫ ε

0

−ηT − η2T
η

dη +

∫ 1/2

ε

−1

η
dη = −εT − ε2

2
T + ln(2ε).

The choice ε = 1
2(T+1) implies (31) for all T ≥ 0.

Second, for the good experts that are in K, we proceed as follows. Let η̂ = R
2V be the η that

maximizes ηR− η2V . Then ηR− η2V is non-decreasing in η for η ≤ η̂ and hence, for any interval
[u, v] ⊆ [0, 1/2] such that v ≤ η̂,∫ 1/2

0

eηR−η
2V − 1

η
dη ≥

∫ u

0

e0R−0V − 1

η
dη + (euR−u

2V − 1)

∫ v

u

1

η
dη −

∫ 1/2

v

1

η
dη

=
(
euR−u

2V − 1
)

ln
v

u
+ ln(2v). (32)

We may assume without loss of generality that R ≥ 2
√
V (otherwise (16) follows directly), which

implies that η̂ ≥ 1√
2V

.

We now have two cases. Suppose first that η̂ ≤ 1/2. Then we plug in v = η̂ and u = η̂ − 1√
2V

and use R ≥ 2
√
V to find that∫ 1/2

0

eηR−η
2V − 1

η
dη ≥

(
e
R2

4V
− 1

2 − 1

)
ln

(
1

1−
√
2V
R

)
+ ln

(
R

V

)

≥
(
e
R2

4V
− 1

2 − 1

)
ln

(
1

1−
√
2V
R

)
− 1

2 ln

(
V

4

)
.

Using e
1
2
(x2−1) = e

1
2
(x−1)2ex−1 ≥ e

1
2
(x−1)2x, −1 ≥ − R√

2V
and ln 1

1−x ≥ x, we find(
e
R2

4V
− 1

2 − 1

)
ln

(
1

1−
√
2V
R

)
≥
(
e

1
2

(
R√
2V
−1
)2

R√
2V
− R√

2V

) √
2V

R
= e

1
2

(
R√
2V
−1
)2
− 1.
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Putting everything together and using V ≤ T together with 1 + 1
2 ln T

4 ≤
1
2 + ln(T + 1) for T ≥ 1,

we get

0 ≥ π(K)

(
e

1
2

(
R√
2V
−1
)2
− 1− 1

2 ln
V

4

)
− (1− π(K))

(
1
2 + ln(T + 1)

)
≥ π(K)

(
e

1
2

(
R√
2V
−1
)2)
−
(
1
2 + ln(T + 1)

)
,

which implies

R ≤
√

2V

1 +

√√√√2 ln

(
1
2 + ln(T + 1)

π(K)

) ,

and (16) follows.
It remains to consider the case that η̂ > 1/2, which implies R > V . We then use v = 1/2, for

which (32) leads to∫ 1/2

0

eηR−η
2V − 1

η
dη ≥ (euR−u

2V − 1) ln
1

2u
≥ (eu(1−u)R − 1) ln

1

2u
.

Putting everything together then gives

R ≤ 1

u(1− u)
ln

(
1 +

(1− π(K))
(
1
2 + ln(T + 1)

)
− ln(2u)π(K)

)
≤ 1

u(1− u)
ln

(
1 +

1
2 + ln(T + 1)

− ln(2u)π(K)

)
.

And (16) follows by plugging in u = 5−
√
5

10 .

A.4. Lemma 5

Proof Note that (21b) is minimized at the independent component-wise posteriors

ũkt+1 =
ukt e
−xk,1t

ukt e
−xk,1t + (1− ukt )e−x

k,0
t

. (33)

The instantaneous mix loss regret in coordinate k in round t hence equals

− ln
(
ukt e
−xk,1t + (1− ukt )e−x

k,0
t

)
− vkxk,1t − (1− vk)xk,0t

= vk ln
ũkt+1

ukt
+ (1− vk) ln

1− ũkt+1

1− ukt
= 42(v

k‖ukt )−42(v
k‖ũkt+1),

and we can write the cumulative regret as

T∑
t=1

K∑
k=1

(
42(v

k‖ukt )−42(v
k‖ũkt+1)

)
=

T∑
t=1

(
42(v‖ut)−42(v‖ũt+1)

)
. (34)
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As42 is a Bregman divergence (for convex generator F (x) =
∑

k xk lnxk+(1−xk) ln(1−xk)),
it is non-negative and satisfies the generalized Pythagorean inequality for Bregman divergences
(Cesa-Bianchi and Lugosi, 2006, Lemma 11.3). Since v ∈ U and ut+1 is the projection of ũt+1

onto U , these properties together imply that

42(v‖ut+1) ≤ 42(v‖ut+1) +42(ut+1‖ũt+1) ≤ 42(v‖ũt+1).

Hence the cumulative mix loss regret satisfies

(34) ≤
T∑
t=1

(
42(v‖ut)−42(v‖ut+1)

)
= 42(v‖u1)−42(v‖uT+1) ≤ 42(v‖π),

as required.

A.5. Lemma 6

Proof First, observe that, for any η,

e−
1
K
`mix(u

η
t ,x

η
t )

(20), Jensen

≤ 1

K

K∑
k=1

(
uη,kt e−x

η,k,1
t + (1− uη,kt )e−x

η,k,0
t

)
(24)
=

1

K

K∑
k=1

(
uη,kt (1 + ηrk,1t ) + (1− uη,kt )(1 + ηrk,0t )

)
(22)
= 1 +

η

K

K∑
k=1

(
ukt − u

η,k
t

)
`kt = 1 +

η

K
(ut − uηt )

ᵀ
`t.

We hence have

Φ(r1:T+1)− Φ(r1:T ) = E
γ(η)

[
e−

1
K

∑T
t=1 `mix(u

η
t ,x

η)
(
e−

1
K
`mix(u

η
T+1,x

η
T+1) − 1

)]
≤ E

γ(η)

[
e−

1
K

∑T
t=1 `mix(u

η
t ,x

η) η

K

(
uT+1 − uηT+1

)ᵀ
`T+1

]
= 0,

where the last equality is by design of the weights (23).

A.6. Lemma 7

Proof Lemma 6 tells us that Component iProd ensures Φ(r1:T ) ≤ 0. For any η, this implies

−K ln γ(η)
Lemma 6

≥ −
T∑
t=1

`mix(uηt ,x
η
t )

Lemma 5

≥ −
T∑
t=1

K∑
k=1

(
vkxη,k,1t + (1− vk)xη,k,0t

)
−42(v‖π)

(24),(8)

≥ −
T∑
t=1

K∑
k=1

(
vk
(
η2(rk,1t )2 − ηrk,1t

)
+ (1− vk)

(
η2(rk,0t )2 − ηrk,0t

))
−42(v‖π)

(25)
= ηRv

T − η2V v
T −42(v‖π),
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from which the result follows.

A.7. Theorem 8

Proof The exponentially spaced grid of learning rates ensures that, for any η ∈ [ 1
2T ,

1
2 ], there

always exists an α ∈ [12 , 1] for which αη is a grid point. Hence, whenever η̂ =
Rv
T

2V v
T
∈ [ 1

2T , 1/2],
(26) implies that

Rv
T ≤

4√
3

√
V v
T

(
42(v‖π) +K lnd1 + log2 T e

)
,

and (27) is satisfied. Alternatively, if η̂ < 1
2T , then Rv

T < V v
T /T ≤ K, and (27) again holds.

Finally, supppose that η̂ > 1/2. Then Rv
T > V v

T , and plugging η = 1/2 into Lemma 7 results in

1

2
Rv
T −

1

4
V v
T ≤ 42(v‖π) +K lnd1 + log2 T e.

Using that Rv
T > V v

T , the left-hand side is at most 1
4R

v
T , from which (27) follows.

Appendix B. Numerical stability

Some care should be taken when evaluating the weight expressions for the conjugate prior (11) and
improper prior (15). Initially, and as long as V = 0, we have R = 0 and hence by (5) Squint sets
the weightsw equal to the prior π. We now assume V > 0, and look at (11) and (15). Both involve
a contribution of the form

√
πe

R2

4V

(
erf
(

R
2
√
V

)
− erf

(
R−V
2
√
V

))
2
√
V

. (35)

This expression is empirically numerically stable unless both erf arguments fall outside [−5, 5] to
the same side. In other words, it can be used when

− 5 ≤ R

2
√
V

and
R− V
2
√
V
≤ 5, that is R ∈ [−10

√
V , V + 10

√
V ]. (36)

If we are not in this range, then we are feeding extreme arguments into both erfs. Hence we may
Taylor expand (35) around R = ±∞ (both of which give the same result)3 to get

e
R
2
−V

4 − 1

R
(0th and 1st order) or

e
R
2
−V

4 (R+ V )−R
R2

(2nd order).

Note that this 0th order expansion is negative for R ∈ [0, V/2], but that falls well within the stable
range (36) where we should use (35) directly.

The range [−5, 5] can be extended to [−22, 22] by a careful use of the erfc function instead of
erf , but the case distinction cannot be avoided entirely.

3. Taylor expansion of f(x) around∞ can be defined as expanding f(1/x) around 0.
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