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Abstract
There has been much work on extending the prediction with expert advice methodology to the
case when experts are composed of components and there are combinatorially many such experts.
One of the core examples is the Online Shortest Path problem where the components are edges
and the experts are paths. In this note we revisit this online routing problem in the case where in
each trial some of the edges or components are sabotaged / blocked. In the vanilla expert setting a
known method can solve this extension where experts are now awake or asleep in each trial. We ask
whether this technology can be upgraded efficiently to the case when at each trial every component
can be awake or asleep. It is easy get to get an initial regret bound by using combinatorially many
experts. However it is open whether there are efficient algorithms achieving the same regret.
Keywords: Online learning, combinatorial experts, specialist, sleeping.

Introduction Online Shortest Path is one of the core combinatorial prediction problems in online
learning. In this note we consider a natural extension of this problem with sabotage. Imagine a
commuter who travels from her home to her office every day. In the morning she turns on the radio
and hears about all the roads that are sabotaged (due to accidents, maintenance, tornados, ...) in her
area. She then chooses a route to work that avoids all sabotaged roads. Her cost is the sum of the
driving times encountered along the chosen route. We assume, for simplicity that she has an app
that at the end of the day obtains the driving times of all edges in the road network and can use this
“full” information to improve her decisions in the future. Knowing a little bit about online learning,
she proclaims her goal to be to spend almost as little time in traffic as any fixed route in hindsight.
There is a snag though: how to evaluate the cost of a route that is sabotaged some of the time?

In this note we formalize this problem and call it Online Sabotaged Shortest Path. We then show
how the use of specialists experts (a known tool explained below), yields a baseline answer. We
argue that this baseline is rather poor: both its performance guarantee and run-time are sub-optimal.
We pose improving either as intriguing open problems. We chose the iconic Online Shortest Path
problem as a representative member of the family of online combinatorial decision making problems
(Takimoto and Warmuth, 2003; Kalai and Vempala, 2005; Audibert et al., 2014). Any problem
where the target expert is composed of components (such as matchings, fixed size subsets, spanning
trees) can be extended to the case where individual components may be sabotaged.

The Problem Online Sabotaged Shortest Path is played on a fixed directed graph with designated
source and sink nodes. Two players, learner and adversary, play a sequence of rounds. Each round
the learner travels from the source to the sink, and the adversary sets the delays of all the edges.
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Input: Directed graph G = (V,E) with designated source and sink nodes.

Each round t = 1, 2, . . .

• The adversary reveals a set At ⊆ E of available / awake edges. The missing edges
E \At are said to be sabotaged / asleep.

• The learner plays a path Pt from the source to the sink in the sub-graph (V,At) of
available / awake edges. (If source and sink are disconnected we ignore this round.)

• The adversary reveals the loss `t ∈ [0, 1]At of the available / awake edges.

• The learner incurs Pt ·`t :=
∑

e∈Pt
`t,e the sum of the losses along the chosen path.

Figure 1: Online Sabotaged Shortest Path

The new ingredient is that the adversary, at the start of each round, gets to sabotage a subset of
edges. More precisely, the protocol is as shown in Figure 1. As often, randomized players have
the advantage, so we allow the learner to randomize and consider the resulting expected loss. The
original shortest path problem is recovered when all edges are available At = E every round.

The objective of the learner is to incur low total loss compared to how well she could have done
with hindsight. We formalize this by measuring her regret. To do so, we have to decide how to deal
with sabotage. Let us say that a path P is available / awake if all of its edges are awake (so that a
path is sabotaged if any of its edges is). We define the regret compared to a path P to be the loss of
the learner minus the loss of the path P , measured on the rounds where that path was awake:

RegretT (P ) := E
∑

t ∈ {1, . . . , T} s.t.
P awake at t

(
Pt · `t − P · `t

)
, (1)

where the expectation E scopes the learner’s randomized choices of the paths Pt. The goal is then
to find an efficient strategy for the learner that keeps RegretT (P ) small for all reference paths P
simultaneously. Note that our regret (1) differs from the ranking-based policy regret introduced
by Kleinberg et al. (2010), which compares the total loss incurred by the learner to that of the
best fixed policy for choosing available paths given the set of awake edges. Neu and Valko (2014)
obtain efficient algorithms for policy regret in the combinatorial case under stochastic sabotage, but
Kanade and Steinke (2014) prove hardness under adversarial sabotage. We are looking for intuitive
but less expressive objectives like (1) that render the problem tractable in full adversariality.

Initial Approach Using Specialists In this section we approach Online Sabotaged Shortest Path
using the specialist framework introduced by Freund et al. (1997). Specialists are an extension
of prediction with expert advice where the experts (now called specialists) are allowed to abstain
(or sleep). One application of specialists is where experts are themselves algorithms that may not
complete within a fixed time budget. We first briefly review the basic regret bound from specialists,
and then reduce sabotage to specialists to get a first (horribly!) rough algorithm and regret bound.

The specialists problem is an extension of the vanilla N -experts problem. To deal with spe-
cialists the canonical multiplicative weight algorithm is generalized slightly: the awake specialist
weights are updated multiplicatively and renormalized within the awake experts, the weights of
asleep experts are not changed. This scheme guarantees (see Freund et al. 1997; Cesa-bianchi et al.
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2012)1 that the the regret compared to each reference specialist i ∈ {1, . . . , N} is bounded by
E
∑

t:i∈At

(
`t,it − `t,i

)
≤
√
T lnN where the sum is taken over the rounds where expert i was

awake, and the expectation E scopes the algorithm’s random choice of expert it. Note that this
regret has the same shape as (1). The algorithm runs in time O(N) per round and uses O(N) space.

Sabotage can be reduced to specialists quite naturally as follows. We enumerate all source-sink
paths P1, . . . , PD (note that D can be exponential in the size of the graph). We then use these
paths as specialists, where a path P is awake at time t iff all its edges e ∈ P are awake e ∈ At.
Disregarding gross inefficiency, the specialists algorithm would deliver the following regret bound.
For any comparator path P , the expected regret (1) is bounded by RegretT (P ) ≤ K

√
T lnD where

K is the length of the longest path (i.e. the loss range).

Discussion This regret bound has two issues. First, we know that its regret bound is sub-optimal.
In the simple case where no edges are sabotaged, the Component Hedge algorithm (instance of
mirror descent) improves the regret by a factor

√
K for many graphs. This is due to the so-called

range factor problem discussed by Koolen et al. (2010) that arises from the fact that the algorithm
does not take advantage of the fact that paths may overlap, and that their losses cannot be controlled
independently. Second, and perhaps more importantly, the running time is horrible as one parameter
is maintained per path. We have efficient algorithms for combinatorial settings without sleeping.
These algorithms are “collapsed”: they maintain one parameter per edge. The question is hence
whether and how this methodology can be extended to incorporate sabotaged / sleeping edges.

We believe that Online Sabotaged Shortest Path a core problem which will become a starting
point for various orthogonal extension such as switching between paths, semi-bandit feedback, etc.
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1. Fancier bounds with mixture comparators and relative entropy are also available, but outside the scope of this note.
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