
JMLR: Workshop and Conference Proceedings vol 40:1–14, 2015

Hierarchical Label Queries with Data-Dependent Partitions

Samory Kpotufe SAMORY@PRINCETON.EDU
Princeton University, Operations Research and Financial Engineering

Ruth Urner RURNER@TUEBINGEN.MPG.DE
MPI for Intelligent Systems, Empirical Inference Department, Tübingen
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Abstract
Given a joint distribution PX,Y over a space X and a label set Y = {0, 1}, we consider the problem
of recovering the labels of an unlabeled sample with as few label queries as possible. The recovered
labels can be passed to a passive learner, thus turning the procedure into an active learning approach.

We analyze a family of labeling procedures based on a hierarchical clustering of the data. While
such labeling procedures have been studied in the past, we provide a new parametrization of PX,Y

that captures their behavior in general low-noise settings, and which accounts for data-dependent
clustering, thus providing new theoretical underpinning to practically used tools.

1. Introduction

Given a joint distribution over a space X and a label set Y = {0, 1}, we consider the problem of
recovering the labels of an unlabeled sample X1:n , {Xi}n1 with as few label queries as possible,
under a relaxed version of the cluster-assumption. Recovered labels can then be passed onto a
supervised learner.

The cluster-assumption, generally stated, reads as follows: the data X1:n, or the underlying data
space X , can be partitioned into clusters {Ci} such that points in each Ci, are very likely to have
the same label. If one knew the clusters {Ci}, then clearly the data X1:n could be cheaply labeled
by asking for a few labels from each Ci to determine its dominating label. We refer the reader to
an early rigorous work on the subject, Rigollet (2007), which analyzes possible gains in a setting
where clusters are defined as high density regions of µ.

In practice however, clusters might not be apparent in data (e.g., µ is uniform on X ), or apparent
clusters might not correspond to label boundaries. In the latter case, a procedure based on the
cluster-assumption will mislabel the data, hence the assumption can result in worse prediction,
which is hard to detect in such a setting with little label information.

A natural idea, recently analyzed in Dasgupta and Hsu (2008); Dasgupta (2011); Urner et al.
(2013) , is to recursively test the cluster-assumption over a hierarchical partitioning of the data:

Start by partitioning X1:n into large regions (or clusters), label these if they seem pure
after a few label queries, otherwise refine the partition into smaller clusters and repeat.

This hierarchical approach relaxes the need for apparent clusters: few labels are requested if suf-
ficiently large regions C of X admit a low-error label Y (C), without these regions being known
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a-priori. Furthermore, the procedure can be made safe by properly testing purity: if the cluster-
assumption does not hold, i.e. large regions are highly unpure, it simply requests labels for most
points in X1:n rather than mislabeling them.

The present work extends Dasgupta and Hsu (2008); Dasgupta (2011); Urner et al. (2013) and
further elucidates the conditions guaranteeing the success of the above procedure. In particular,
the guarantees of Dasgupta and Hsu (2008); Dasgupta (2011) are conditioned on the niceness of the
sample but do not characterize the distributions PX,Y for which such nice samples are likely to arise;
the subsequent work by Urner et al. (2013) derives the first distributional conditions guaranteeing
low label complexity, but disallows partitioning procedures built using the data. We prove guaran-
tees under more general conditions on PX,Y , while allowing more practical families of hierarchical
partitioning procedures (e.g. k-d trees).

Background and Overview of Results

The cluster-assumption is motivated by situations where labels are expensive to obtain. This is the
same motivation as in active learning, and in fact the approach considered here can be viewed as
an alternative to common active learners which operate by requesting labels in regions that increase
confidence in a choice of hypothesis out of a class H (see e.g. Balcan et al. (2006); Dasgupta
et al. (2007); Balcan et al. (2008); Hanneke (2009); Dasgupta (2011)). A practical advantage of
this approach, which perhaps explains its seemingly high appeal with practitioners, is its ease of
implementation. It has so far however received less theoretical attention.

Once the unlabeled data X1:n is fully labeled, say within error ε w.r.t. a fixed unknown labeling
Y1:n, it can be passed onto a passive learner, e.g., an empirical risk minimizer over some H, which
then returns a hypothesis with excess risk O(ε), assuming a sample size n = Ω

(
V C(H)/ε2

)
. The

goal of the labeler is to request less than the number of labels required in passive learning: it can
be shown that, if the Bayes classifier is not in H, even in low or no noise situations (i.e. E [Y |x] is
close to 0 or 1), passive learning requires Ω

(
V C(H)/ε2

)
labels in order to return an h ∈ H with

excess error O(ε) (Urner et al., 2013; Ben-David and Urner, 2014).
The procedure considered here was first properly formalized in Dasgupta and Hsu (2008); Das-

gupta (2011). They show that, given data X1:n (with a fixed unknown labeling Y1:n) and a hierar-
chical partitioning T of X1:n, if most clusters (leaves) of some subtree T ′ are nearly pure (i.e. the
minority label in a cluster occurs with proportion o(ε)), then such a procedure guarantees a labeling
error O(ε) w.r.t. Y1:n, after O(|T ′| /ε) label requests.

The subsequent work of Urner et al. (2013), rather than conditioning on the purity of the sam-
ple X1:n at hand, derives sufficient conditions on the distribution PX,Y that ensures similar (ex-
pected) label complexity. More precisely, in a deterministic setting (E [Y |x] is 0 or 1), they de-
rive a nice parametrization Λ(r) of PX,Y , Λ ∈ [0, 1], called Probabilistic Lipschitzness, which
encodes how likely Y is to change over regions of X of diameter r. They show that, given a par-
tition T independent of the data, such a procedure guarantees a labeling error O(ε) while querying
O
(
infr |Tr| /ε+ Λ(r)/ε2

)
labels, Tr being the level of T with clusters of diameter less than r.

The niceness parameter Λ(r) is understood to decrease as r → 0, while |Tr| increases as r → 0.
Therefore fewer labels are requested when Λ(r) decreases fast with r (i.e. the cluster-assumption
holds over large unknown regions of X ), and |Tr| slowly increases as r → 0, i.e., the partitioning
procedure T refines the data X1:n into small regions using small size partitions.
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This dependence on how fast the partitioning tree T grows is intrinsic to the labeling approach
and is illustrated in Figure 1. Unfortunately trees that are built independent of X1:n (e.g. dyadic
partitions ofX ) might yield unnecessarily large partitions. In fact it is common in practice to repeat-
edly cluster the data till one finds a tree that yields good data-quantization. A main motivation for
the present paper is therefore to allow practical data-dependent trees, e.g., (randomized) k-d trees,
RP trees, which are more likely to remain small by better fitting the data. However, allowing T to
depend on X1:n introduces additional interdependencies between iterative steps of the hierarchical
labeling procedure. This raises questions on the stability of such an instantiation w.r.t. to the random
sample, and introduces new technical difficulties in the analysis.

Furthermore, while the cluster-assumption is inherently a low or no noise assumption (i.e. it
assumes one label has low error), it is conceivable that some amount of noise might be tolerable
by a labeling procedure. In particular, as in Dasgupta and Hsu (2008), if most clusters admit a
labeling with error o(ε) for some target ε, then label savings should be possible, whether labels are
deterministic or not. We therefore consider a general parametrization of PX,Y which allows for
nondeterministic labels, i.e., allows for E [Y |x] ∈ [0, 1].

We adopt a simple parametrization Γ that directly encodes how likely it is, under PX,Y , that a
labeling of a large region C of X has low error (equivalently E [Y |C] has margin away from 1/2).
Γ also captures how well a hierarchical procedure aligns with good regions of PX,Y in terms of the
clusters it might produce on a random sample. Our bound on labels requested takes the form

O
(

inf
r
|Tr| · n · ε+ n · Γ(τε, r)

)
,

for an unlabeled sample size n = Ω(1/ε2), and a noise margin τε = 1/2 − O(ε). |Tr| is the data-
dependent size of a partition fitted from the sample X1:n. Γ is smallest for partitioning procedures
likely to produce clusters well aligned with good regions of X . However, it can be shown to be
small independent of the partitioning procedure, under sufficient conditions on just PX,Y . In our
nondeterministic setting, we need two complementary such conditions. First, just as in Urner et al.
(2013), we use Probabilistic Lipschiztness to capture how likely it is that E [Y |x] − 1/2 changes
sign over large regions of X . However, this is no longer enough since E [Y |x] − 1/2 can keep the
same sign over some C ⊂ X , but remain close to 0, in which case any labeling of C will have high
error above our target ε. Therefore we also need to parametrize the level of noise in Y , i.e. how
likely it is for E [Y |x] to be close to 0 or 1. We can then show that, under Probabilistic Lipschitzness
and low-noise Tsybakov’s conditions w.r.t. to ε (essentially large regions admit a labeling with error
o(ε)), the above bound on label-complexity recovers the form of the results of Urner et al. (2013). In
particular, for a fixed ε, the results show a labeling complexity in the continuum between O(CT /ε)
and O(1/ε2), as Lipschiztness decreases and noise level increases. Here CT can be viewed as the
size of the smallest partition of the tree T (first level).

Finally, to mitigate algorithmic stability issues arising from dependencies on data, we require
that the partitioning procedure T be unlikely to produce clusters of high complexity. Relevant
subsets of X can then be shown to have low-complexity allowing for the stability of labels over
data-dependent clusters. This allows for high probability bounds on label requests, by properly
conditioning on relevant events that decouple the interdependencies between labeling steps.
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Figure 1: Two clustersC1, C2. Label 0 dominates inC1 while label 1 dominates inC2. The error of
the best label is shown for both. ForC1, P (1|C1) is close to 1/2 far above ε, so there is no
labeling of C1 with error less than ε. A safe labeling procedure must request all labels for
points in C1 (or refine C1). However, C2 can be labeled 1 with error below ε. Detecting
this requires O(1/ε) label requests. Thus, for total error

∑
i Pr(Ci)err(Y (Ci)) ≤ ε on a

partition {Ci}, a labeling procedure ends up requesting O(1/ε) labels on most clusters of
the partition, hence the need for small partition sizes.

2. Preliminaries

2.1. Admissible Hierarchical Partitioning Procedures

We will consider the following type of hierarchical clustering of data into a tree T . The tree T is
allowed to be randomized (e.g. randomized k-d trees). We let ρ denote this randomness.

Definition 1 Given an unlabeled sample X1:n = {Xi}ni=1, and random bits ρ, a hierarchical-
clustering procedure is a function T : (ρ;X1:n) 7→ T (ρ;X1:n) , {Tl(ρ;X1:n)}l∈N mapping
(ρ;X1:n) to a hierarchical collection of partitions (clusterings) of the data. Formally, level l of such
a tree, Tl(ρ;X1:n), is a collection of disjoint subsets C of X such that
• For every cluster C, C ∩X1:n 6= ∅, and diam(C) , supx,x′∈C ‖x− x′‖ ≤ 2−l,
• X1:n ⊆

⋃
C∈Tl(ρ;X1:n)

C.
• ∀l > 0, every C ∈ Tl(ρ;X1:n) has a parent C ′ ∈ Tl−1(ρ;X1:n), s.t. (C ∩X1:n) ⊂ (C ′ ∩X1:n).
We sometimes drop the parameters ρ and X1:n when these are understood from context.

The requirement that the diameters of the clusters decrease may appear to exclude trees such as
randomized k-d trees where only the diameter of the data might decrease. Such are easily converted
to satisfy the Definition 1 (Section 5.2). The statistical complexity of a tree T , is captured by both
the number of clusters produced at each level of the tree, and the complexity of the cluster shapes.

Definition 2 The hierarchical-clustering T (ρ;X1:n) has tree-growth rate κ ≥ 1 on the sample
X1:n if, ∀l ∈ N, |Tl(ρ;X1:n)| ≤ 2κl.

Note that sinceX1:n contains at most n points, for every such tree, from some level l on, there are at
most n clusters in each level and each cluster contains a single point of X1:n. Next, we characterize
the complexity of the cluster shapes. Intuitively, clusters of simple shape yield better generalization.
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Definition 3 (VC of clusters) Consider a hierarchical-clustering procedure T . For given random
bits ρ, let CT (ρ) ,

⋃
X1:n∈Xn {C ∈ Tl(ρ;X1:n) : l ∈ N} denote the class of all possible clusters of

T (ρ; ·). Let VC(CT (ρ)) denote the Vapnik-Chervonenkis dimension of this class. Given 0 < δ < 1,
the procedure T has VC-cluster dimension VT,δ if Pρ (VC(CT (ρ)) ≤ VT,δ) ≥ 1− δ.

2.2. Distributional properties

We consider a binary classification problem where the r.v.s X ∈ X , and Y ∈ {0, 1}, are jointly
distributed. The space X has diameter 1, i.e. supx,x′∈X ‖x− x′‖ = 1. We denote the marginal
measure on X by µ, and X can be viewed as the support of µ. The following quantities measure the
noise in Y : η(x) , P (1|x) and for any C ⊂ X , ηC , P (1|x ∈ C) .

The behavior of the algorithm will depend on how well labels cluster under the given hierarchi-
cal procedure. Thus, we want to capture the clusterability of labels in terms of properties on the
unknown distribution PX,Y and the choice of clustering procedures. While it might be unlikely that
labels cluster well on large clusters, it is reasonable to expect that, for most procedures T , labels
might cluster well in sufficiently small clusters. For instance, suppose the Bayes decision boundary
is sufficiently smooth, then in most small clusters, independent of shape, one label will dominate.
We use the following parametrization to capture the above ideas.

Definition 4 (Clusterability of labels) Let τ > 0 and 0 < r ≤ 1. Fix a hierarchical clustering
procedure T . For any point x ∈ X , let CT,r(x) denote the set of clusters C ∈ ∪ρCT (ρ) containing x
and of diameter supx,x′∈C ‖x− x′‖ at most r. Set Γ(τ, r) , PX (∃C ∈ CT,r(X), |ηC − 1/2| < τ) .
Notice that the functions Γ(τ, ·) and Γ(·, r) are nondecreasing, respectively for τ and r fixed.

Thus the function Γ(·, ·) (that exists whenever the sets in ∪ρCT (ρ) are measurable), parametrizes
the pairing PX,Y , T . We want Γ(τ, ·) and Γ(·, r) to decrease fast as r → 0 or τ → 0. If PX,Y is
sufficiently benign, then Γ decreases fast for admissible tree-procedures T . Lemma 10 shows that
the rate of decrease can be upper bounded under low noise and Lipschitzness type conditions on η.

3. Labeling Procedure

Algorithm 1 defines a family of labeling procedures indexed by the particular hierararchical clus-
tering T instantiated. It proceeds level by level by refining each cluster if it is deemed unpure. To
detect purity of a cluster, it requestsO(1/ε) labels from the sample points in the cluster and declares
it pure if the minority label is at most O(ε). For robustness, it only labels clusters containing at least
n · ε points, where n itself needs to be sufficiently large w.r.t. tree complexity VT,δ (see Theorem 7).

4. Results

4.1. Error bound

Definition 5 (Underlying labeling)

• Given an unlabeled sequence X1:n, Y1:n
.
= {Yi}n1 denotes a labeling of X1:n (drawn by

PY |X ; so given Xi, Yi is a Bernoulli random variable).

• The labeling error of a sequence of labels Y1:n′
.
= {Y ′i }

n
1 on Y1:n is the average disagreement

between Y1:n and Y1:n′. Namely, 1
n

∑
i 1{Yi 6=Y ′i }.
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Algorithm 1 Labeler (X1:n, T (ρ;X1:n), ε, δ)
Initialize: l = 0, Active cluster set Cl = T0(ρ;X1:n)
for l = 0, 1, 2, . . . ,∞ do
δl ← δ/

∣∣Cl∣∣ 2l+1

nl(ε)← 9 ln(8/δl)/ε
for each C ∈ Cl do

if µn(C) < ε then
Request all labels for points in C ∩X1:n, and skip to the next cluster in Cl

S ≡ labeled sample from C ∩X1:n (with replacement) of size nl(ε)
// At any time in the procedure, the same label is returned each time the same X is sampled
η̂S ← probablity of label 1 over S
if min {η̂S , 1− η̂S} ≤ ε/3 then

Label all C ∩X1:n with the majority label from S
else

Add children of C to Cl+1.
if all of X1:n is labeled then

return labeled sample X

The number of errors that the labeler makes is measured with respect to the above underlying
labeling (Definition 5). We show that with high probability Algorithm 1 makes few label errors.
The proof is in the appendix (long version)

Theorem 6 (Labeling error) Let 0 < ε, δ < 1. Suppose Y1:n
.
= {Yi}n1 is defined as in Definition

5. Let Y1:n′
.
= {Y ′i }

n
1 be the labeling obtained by Algorithm 1. With probability at least 1 − δ, the

labeling error of the algorithm, i.e. 1
n

∑
i 1{Yi 6=Y ′i }, is at most ε.

Since the labeling returned by the procedure has error at most ε with respect to i.i.d labels Y1:n,
the labeled sample (X1:n, Y1:n

′) can therefore be used as input to a noise tolerant supervised learner,
whose generalization error is then worsened by at most cε for some small constant c. Consider for
instance the case of ERM over a hypothesis class H. Given Ω(V C(H)/ε2) unlabeled samples, we
will then return a hypothesis with error at most infh∈H err(h) + 2ε while requesting a number of
labels potentially much less than O(V C(H)/ε2).

4.2. Label query bound

We now present and discuss our main result, namely bounding the number of label queries that our
procedure will make. The main idea behind the label-complexity analysis is to consider the number
of labels requested at any given level and bound the numbers of labels yet to request. This idea is
borrowed from Urner et al. (2013). However, the analysis in Urner et al. (2013) only handles the
case where labels are deterministic and provides bounds in expectation. It can therefore avoid the
various inter-dependencies introduced by the labeling decisions and the fact that the clusters C can
depend on the data X1:n.

Here we give a high probability result where the main technicality is in handling the various
interdependencies. This is done by properly conditioning on key events and bounding the VC-
dimension of some important subsets of the support X . The theorem is proved in Section 6.

Theorem 7 Let 0 < ε, δ < 1/2. The following holds with probability at least 1− 8δ. Suppose the
hierarchical-clustering T (ρ;X1:n) has tree-growth rate κ onX1:n. Let αn = (ln 2n+ ln(8/δ)) /n,
and assume n ≥ 81 (16VT,δ ln 2n+ ln(8/δ)) /ε2. Let τε , 1/2 − ε/162. The number of labels
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requested by Algorithm 1 is at most

inf
l∈N

2κl(2κl) · n · ε+ n ·
(

Γ
(
τε, 2

−l
)

+
√

Γ (τε, 2−l) · αn + αn

)
.

The bound in Theorem 7 depends on the complexity of the clustering procedure T , as captured
by VT,δ, and the size of the clustering produced on the data X1:n, as captured by κ. The infimum
is taken over all levels of l of the tree, so the bound is best when Γ decreases quickly in l. Γ
expectedly depends on ε since the inherent assumption in hierarchical labeling is that there exists
regions C that admit a label Y (C) of error o(ε). In the worst case when Γ is large, i.e., the relaxed
cluster assumption fails to hold, the procedure never queries more than n points, so is safe.

To best understand the above bound, we instantiate it in the next section under more com-
mon noise parametrizations, namely Tsybakov’s low noise conditions and Probabilistic Lipschitz-
ness. This is followed by a discussion of values of κ that might be expected in practice with data-
dependent trees such as RP-tree and other randomized k-d trees.

5. Instantiation of results

5.1. Clusterability of labels under common data assumptions

The following definition captures the distribution of the noise margin |η − 1/2|.

Definition 8 (Noise level) For τ > 0, define ∆(τ)
.
= PX (|η(X)− 1/2| < τ) . Note that ∆ is

nondecreasing.

The Tsybakov low-noise condition is a probabilistic relaxation of the stronger condition that ∆(τ) =
0 for all τ less than some τ0 (Massart and Nedelec (2006)). It simply sates that ∆(τ) ≤ cτβ for some
c, β > 0 (Mammen and Tsybakov (1999); Tsybakov (2004)). The Tsybakov condition becomes
stronger for large values of β.

The next definition relaxes Lipschitzness. Recall that a function η is L-Lipschitz if, for all
x, x′ ∈ X , |η(x)− η(x′)| ≤ L · ‖x− x′‖.

Definition 9 (Probabilistic Lipschitzness (PL) on η) For λ > 0 define
Λ(λ)

.
= PX

(
PX′

(
|η(X)− η(X ′)| > 1

λ ‖X −X
′‖
)
> 0
)
. Note that Λ is nondecreasing.

In Urner et al. (2013) label complexity reductions of active learning for VC-classes were shown
for the above condition with Λ(λ) ≤ λα, α > 0, (under the further assumption of deterministic Y ).
This PL condition gets stronger with larger values of α.

The next lemma shows how the parametrization Γ for the cluster-assumption can be bounded in
terms of the above two noise parameters.

Lemma 10 (Γ in terms of ∆ and Λ) Let τ, r > 0. We have Γ(τ, r) ≤ infλ>0 ∆(τ + r/λ) + Λ(λ).

Proof Let τ, r, λ > 0. Consider x ∈ X such that (1) |η(x)− 1/2| > τ , and (2) ∀µx′ ∈
X , |η(x)− η(x′)| ≤ 1/λ ‖x− x′‖.

We then have that ∀µx′ ∈ X satisfying ‖x− x′‖ ≤ r, |η(x)− η(x′)| ≤ r/λ, and hence
|η(x′)− 1/2| ≥ τ − r/λ. Therefore, any cluster C of T of diameter at most r containing x must
have |ηC − 1/2| ≥ τ − r/λ. Thus, ∀τ, r > 0, we have Γ(τ, r) ≤ infλ>0 ∆(τ + r/λ) + Λ(λ).
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Theorem 11 (Label complexity under low-noise and P-Lipschitzness conditions) Suppose the
noise in Y satisfies, for any τ, λ > 0,
(i) ∆(τ) ≤ cτβ for some c, β > 0, and (ii) Λ(λ) ≤ λα for some α > 0.

There exists C,C ′ > 0 such that the folowing holds. Let 0 < ε, δ < 1/2 and suppose n ≥
C · (1/ε2) · (VT,δ log(1/ε) + log(1/δ)). Then, with probability at least 1− 8δ, the number of labels
requested by Algorithm 1 is at most

C ′
(

2κα/(κ+α) · εα/(κ+α) · ln(1/ε) + e−εβ/162
)
· n.

Proof Pick 0 < λ ≤ 2. By assumption on ∆ and Λ, and by Lemma 10, for any level l ≥ log(2/λ),

Γ(τε, 2
−l) ≤ c

(
1/2− ε/162 + 2−l/λ

)β
+ λα ≤ c(1− ε/162)β + λα ≤ ce−εβ/162 + λα.

Therefore fix such an l = dlog(2/λ)e. First pick C such that the assumption of the theorem on n
also satisfies that of Theorem 7. Using the fact that for a, b ≥ 0, a+

√
ab+ b ≤ 2(a+ b), we have

by Theorem 7 that, with probability at least 1 − 8δ, the labeling requirement is at most (for some
universal C1, C2 > 0)

C1(2/λ)κ(2κ log(2/λ)) · n · ε+ 2cn · e−εβ/162 + 2n · λα + 2n · αn

≤ C2

(
(2/λ)κ · κ log(2/λ) · n · ε+ n · λα + n · e−εβ/162

)
,

provided C is large enough so that αn ≤ ε. To finish, set λ = 2κ/(κ+α) · ε1/(κ+α).

The first term of the above bound (Theorem 11) on label request depends just on α and recovers
the bounds of Urner et al. (2013) in a deterministic setting. This term dominates for sufficient low-
noise level w.r.t. ε, i.e., for β ≥ Ω(1/ε). This corresponds to situations where the Bayes classifier
1{η(x)>1/2} has error less than ε on much of X , i.e., often achieves margin of order 1/2− ε.

For any fixed ε, and n = Õ(1/ε2), the label complexity ranges in the continuum between
Õ(2κ/ε) to Õ(1/ε2) over different distributions as Lipschitzness decreases (α→ 0) and noise level
increases (β → 0). The best rate of Õ(2κ/ε) is attained for distributions with large α and β, in
which case the best possible dependence on tree-size is achieved (2κ captures the size of the first
level in a tree). Finally, recall that if the Bayes classifier is not in H, even under deterministic
labels (or β →∞), passive learning requires Ω(1/ε2) labels to achieve arbitrary small excess error
(Ben-David and Urner, 2014). As evidenced by Lemma 10, the conditions of Theorem 11, namely
low-noise and Lipschitzness, are stronger than the clusterability condition captured by Γ. Therefore,
as per Theorem 7, we may expect better label complexity in practice than illustrated by Theorem 11.

5.2. Practical Clustering procedures

So far we have been a bit informal about how our requirements on the clustering procedure T are
satisfied by state-of-the-art partitioning procedures. In other words, what can be said about the cell
complexity VT,δ and the tree-growth rate κ in general? In this section we tie these remaining loose-
ends. We will argue that both κ and VT,δ can be expected to be small when the data space X ⊂ RD
has low intrinsic dimension d� D.

Definition 12 (Intrinsic dimension) X has doubling dimension d if all ballsB(x, r), x ∈ X , r >
0, can be covered by (r/2)d balls of radius r/2.
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RP-TREES AND OTHER RANDOMIZED k-d TREES

Suppose X ⊂ RD has doubling dimension d � D. Consider RPtrees and randomly oriented k-d
trees. These are binary partitioning procedures with 2i cells at level i. It is known that, for some
κ = O(d log d), the diameter of the data (diam(C ∩ X1:n)) in each cell C at level i = l · κ is at
most 2−l. This is shown, w.h.p., for RPtree in Theorem 3 of Dasgupta and Freund (2008), and for
randomized k-d tree in Theorem 2 of Vempala et al. (2012)).

However, these trees do not directly satisfy our assumptions in that they create cells C whose
diameter diam(C) might never decrease. However, we can trivially extend them to trees where the
cell diameters diam(C) decrease by intersecting their cells with balls centered on points x ∈ X .
In other words, let T0 be the original tree procedure such as RPtree of randomized k-d tree. We
convert T0(X1:n) to T (X1:n) as follows. To build level l of T , replace every cell C at level i = l · κ
with C ∩B where B is the smallest enclosing ball of the data. C ∩B has diameter at most 2−l, and
the new tree has tree-growth rate κ = O(d log d).

Next we have to ensure that the VC complexity of cells of T has not increased too much. The
possible cells of T are obtained as CT (ρ) , {C ∩B(x, r) : C ∈ CT0(ρ), x ∈ X , r > 0}. Thus, let
B denote the set of balls centered on X , and let VB denote its VC dimension. It is well known that
VT,δ ≤ 2(VB+VT0,δ) log(VB+VT0,δ). For low-dimensionalX , we can expect VB = O(d). Last, the
complexity of cells of RPtree is shown in (Kpotufe and Dasgupta, 2012) to be at most O(d). This
also yields a bound on the complexity of cells of randomized k-d trees since RP-trees are simply a
more complex, randomized version of k-d trees.

AXIS PARALLEL TREES SUCH AS DYADIC TREES

The dyadic tree is a binary partitioning procedure with 2i cells at level i. It is generally not data
dependent, but partitions the original space X . In this case, for some κ0 = O(D), at level i = l ·κ0,
the diameters of the cells are at most 2−i. Thus a dyadic tree T0 is trivially converted to a tree T
satisfying our conditions by building the level l of T (X1:n) with the cells of level i = l · κ0 of T0.
Thus the tree-growth rate κ of T is at most κ0 = O(D). In fact it can be much better for large trees:
if X has low doubling dimension d, then most cells of a large tree T0 at level i = i(l) are empty.
Formally, as shown in Theorem 24 of Kpotufe and Dasgupta (2012), for a dyadic number 0 < r < 1
at most some r0, the number of non-empty cells of T0 of radius r is at most Cr−d (where C depends
on D). It follows that for all 0 < r < 1 the number of nonempty cells is at most C ′r−d (where C ′

depends on C and r0. Thus the tree-growth rate κ of large trees T is likely closer to O(d).

6. Analysis of the label complexity bound in Theorem 7

The essential result of this section is Lemma 16 where we show that nice clusters, i.e. clusters where
the minority label has mass a most O(ε), remain nice under a random sample X1:n, Y1:n, provided
they contain enough samples fromX1:n. Label savings are contigent on detecting such nice clusters,
hence the importance of the lemma. Our analysis makes use of the following result in various ways:

Lemma 13 (Relative VC bounds Vapnik and Chervonenkis (1971)) Consider a collection A of
measurable subsets of some domain D, and let VA be its VC dimension. Let 0 < δ0 < 1.
Suppose a sample of size m is drawn i.i.d. from a distribution over D. For A ∈ A, let νA
denote the mass of A under the distribution, and let νm,A denote its empirical mass. Define

9
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αm,A = (VA ln 2m+ ln(8/δ0)) /m. Then with probability at least 1 − δ0 over the sampling, all
A ∈ A satisfy νA ≤ νm,A +

√
νm,A · αm,A + αm,A, and νm,A ≤ νA +

√
νA · αm,A + αm,A.

This simple Corollary to the relative VC-bound (Lemma 13) is used in various proofs:

Corollary 14 (Corollary to Lemma 13) Let 0 < δ0 < 1 and 0 < ε0 < 1/2. Consider a Bernouilli(ν).
Let νm be the empirical estimate of ν from an i.i.d. sample of size m ≥ ln(8/δ0)/ε0. We have with
probability at least 1− δ0 over the sampling ν ≤ νm +

√
νm · ε0 + ε0, and νm ≤ ν+

√
ν · ε0 + ε0.

Proof Apply Lemma 13 with D = {0, 1}, and A = {{1}} with VA = 0. The rest is algebra to
verify that αm in the Lemma is at most ε0.

The following is used in the proof of Lemma 16:

Lemma 15 (Implied by Theorem 13 of Boucheron et al. (2004)) Consider independent r.v.s Y1,
. . . , Ym, 0 ≤ Yi ≤ 1, and let νm denote 1

m

∑
i Yi, and ν = E νm. Let 0 < δ0 < 1, and let

αm = 2 ln(1/δ0)/m. With probability at least 1− δ0 over the randomness in Y1, . . . , Ym, we have

νm ≤ ν +
√
ν · αm + αm.

The main technicality in establishing Lemma 16 stems from the fact that the actual clusters
considered by the procedure depend on the data. We proceed by first arguing that enough good
points fall in each cell C: these are points x in C for which η(x) is far from 1/2. This event
depends only on X1:n and not on Y1:n allowing a first decoupling of dependencies. We then argue
that the labels Y generated for those points are typical. This event now depends just on Y1:n|X1:n.

Lemma 16 (Concentration of minority labels of clusters) Let 0 < ε, δ < 1. Let Y1:n
.
= {Yi}n1

be the underlying labeling for X1:n as defined in Definition 5. Suppose the hierarchical-clustering
procedure T has VC-cluster dimension VT,δ. Assume n ≥ 81 (16VT,δ ln 2n+ ln(8/δ)) /ε2. The
following holds with probability at least 1− 6δ over the sampling of X1:n, Y1:n.

Let C be any cluster at some level in T (ρ,X1:n) such that µn(C) ≥ ε. Let ηC and ηn,C denote
the probability of 1 under PX,Y and its empirical counterpart over X1:n, Y1:n. If ηC ≤ ε/162, then
ηn,C ≤ ε/9, or if (1− ηC) ≤ ε/162, we have (1− ηn,C) ≤ ε/9.

Proof Fix the randomness ρ of the tree-procedure T throughout the proof. Consider the collection
CT = CT (ρ) of possible clusters (see Definition 3). By definition, with probability at least 1− δ, CT
has VC complexity at most VT,δ. We only consider bounding ηn,C , the argument for 1− ηn,C being
the same.

For every C ∈ CT , define nC , |C ∩X1:n| and

η̃n,C ,
1

nC

∑
x∈X1:n∩C

η(x) = E Y1:n

 1

nC

∑
x∈X1:n∩C

Y (x)

 = E Y1:n {ηn,C} .

We will show in turn that for all C, η̃n,C is close to ηC , and then that η̃n,C is close to ηn,C for
clusters C with at least O(1/ε) data points. The first part depends only on the randomness in X1:n,

10
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while the second part depends only on Y1:n conditioned on X1:n. This allows us to circumvent the
dependency of algorithmic choices on the random sample at hand.

First, to bound η̃n,C in terms of ηC , recall that for any r.v. Z > 0, EZ =
∫∞
0 P (Z > t) dt.

Using Z = η(X) under both the distribution PX|X∈C and its empirical counterpart, we have

ηC =
1

µ(C)

∫ 1

0
µ {x ∈ C : η(x) > t} dt, and η̃n,C =

1

µn(C)

∫ 1

0
µn {x ∈ C : η(x) > t} dt.

Hence, consider the sets Ct , {x ∈ C : η(x) > t} , t ∈ [0, 1], and let Xt , {x ∈ X : η(x) > t}.
We bound the VC complexity of the collection {Ct} as follows. Consider the projection of {Ct}
onto X1:n:

{Ct}|X1:n
, {Ct ∩X1:n} = {Xt ∩ C ∩X1:n} =

{
A ∩B : A ∈ {Xt}|X1:n

and B ∈ CT |X1:n

}
,

therefore
∣∣∣{Ct}|X1:n

∣∣∣ ≤ ∣∣∣{Xt}|X1:n

∣∣∣ · ∣∣CT |X1:n

∣∣ ≤ en · ( e
VT,δ

n)VT,δ , where we used Sauer’s lemma
and the fact that the collection {Xt} is ordered by inclusion along the segment t ∈ [0, 1], and hence
has VC dimension 1. It follows from this shattering bound that the VC dimension V of {Ct} is at
most 16VT,δ since by definition of V , we then have 2V ≤ eV · ( e

VT,δ
V )VT,δ (the above argument

holds for any sample size, including n = V ).
We can therefore apply Lemma 13 over {Ct} with αn = (V ln 2n+ ln(8/δ)) /n. With proba-

bility at least 1− 2δ, for all Ct, t ∈ [0, 1], we have µn(Ct) ≤ µ(Ct) +
√
µ(Ct)αn + αn, hence

η̃n,C ≤
1

µn(C)

∫ 1

0

(
µ(Ct) +

√
µ(Ct)αn + αn

)
dt (1)

≤ 1

µn(C)

∫ 1

0
µ(Ct) dt+

√
αn

µn(C)

(
1

µn(C)

∫ 1

0
µ(Ct) dt

)1/2

+
αn

µn(C)
, (2)

where we used Jensen’s inequality on the
√
· term of (1) and rearranged. Now, with probability at

least 1− δ, again by Lemma 13 we have for all C ∈ CT , µ(C) ≤ µn(C) +
√
µn(C)αn + αn.

This last inequality implies that for all C satisfying µn(C) ≥ ε ≥ 81αn/ε, we have µn(C) ≥
µ(C)/(1 + 2

√
ε/81). Also, for such C, αn/µn(C) ≤ ε/81. It follows from (2) that for all such C,

η̃n,C ≤
(

1 + 2

√
ε

81

)
ηC +

√
αn

µn(C)

((
1 + 2

√
ε

81

)
ηC

)1/2

+
αn

µn(C)
≤ 2ηC +

√
ε

81
· 2ηC +

ε

81
.

Thus, if ηC ≤ ε/162, then with probability at least 1− 3δ, η̃n,C ≤ ε/27.
Next, we want to show that for large clusters C where µn(C) ≥ ε, η̃n,C is close to ηn,C .

Condition onX1:n fixed. There are then at most
∣∣CT |X1:n

∣∣ ≤ (4n)VT,δ equivalent clusters to consider
since the quantities of interest depend only on the sample points falling in the clusters. We can thus
apply Lemma 15, for each cluster C, with δ0 = δ/(4n)VT,δ and αnC = 2 ln(1/δ0)/nC . Notice that
if µn(C) ≥ ε, i.e. nC ≥ ε · n, we have αnC ≤ 2 ln(1/δ0)/ε · n ≤ ε/27. We therefore have that,
with probability at least 1− 4δ, for all C satisfying µn(C) ≥ ε and ηC ≤ ε/162,

ηn,C ≤ η̃n,C +
√
η̃n,C · αnC + αnC ≤ ε/9.

To finish, repeat the same argument for 1− ηn,C , and take into accounts the shared events to obtain
a total probability of failure of 6δ.

11
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6.1. Proof of Theorem 7

Fix any level l ∈ N. We first bound the number of label requests up to level l (including all labels
requested at level l). To start, consider the total number of label requests on the active clusters Cl.
On each cluster C ∈ C l, we request at most nl,ε , max {n · ε, nl(ε)} labels. Note that nl,ε grows
with l. Now w.l.og. the labels on cluster C can be requested as follows: let

{
Y(i)
}m
1

, for some
m ≥ 0, be the sequence of labels requested for points in C at level l − 1 (while requesting labels
for points in the parent of C); simply ask for (nl,ε −m)+ more labels to add to

{
Y(i)
}m
1

. Hence,
recursively from the first level 0, the number of labels requested on the union of cells of C l up
to level l is at most

∣∣C l∣∣ · nl,ε. The same argument applies to non-active clusters, hence the total
number of label requests up to level l is at most |Tl(ρ,X1:n)| · nl,ε. We have by definition of κ that
|Tl(ρ,X1:n)| ≤ 2κl. Use this fact to also bound nl(ε). Combined with the lower-bound on n, we
have that the number of requests up to level l is at most 2κl · n · ε · (κl + l + 1) ≤ n · ε · 2κl(2κl).

Next we bound the number of labels yet to request at later levels. For any x ∈ X , let Cl(x)
denote the cluster at level l to which it belongs. Define the set

Xl ,
{
x ∈ X :

∣∣∣∣ηCl(x) − 1

2

∣∣∣∣ ≥ 1

2
− ε/162

}
.

By definition, for every such x ∈ Xl, the minority label of Cl(x), has mass ( conditioned on Cl(x))
at most ε/162 under PX,Y . Suppose µn(Cl(x)) < ε, then by definition of the algorithm, x is labeled
at level l. Now suppose that µn(Cl(x)) ≥ ε, then by Lemma 16, with probability at least 1− 6δ, the
minority label of Cl(x) has mass at most ε/9 under the empirical distribution on X1:n, Y1:n. Fix any
such C = Cl(x) and w.l.o.g. let the minority label be 1, and let ηn,C be the empirical probability of
1 in Y1:n over points in C ∩X1:n. By Corollary 14, with probability at least 1− δ/

∣∣Cl∣∣ 2l+1,

η̂S ≤ ηn,C +
√
ηn,C · ε/9 + ε/9 ≤ ε/3,

so all of C is labeled by the procedure. Thus, with probablity at least 1 − 7δ, for every level l, for
every x ∈ Xl, the cluster Cl(x) is labeled by the procedure at level l. So the number of points left to
label after level l is at most |X1:n \ Xl|. We bound this quantity next.

Let τ , 1/2− ε/162, and recall that, by definition of a level, all clusters at level l have diameter
at most 2−l. By Definition 4, |X1:n \ Xl| would be bounded in expectation by Γ

(
τ, 2−l

)
. For a high

probability bound, which holds simultaneously for all levels l, we proceed by first bounding the VC
complexity of typical points in |X1:n \ Xl|. Recall the CT,r (Definition 4). Notice that, for τ fixed
as above, the sets X r , {x : ∃C ∈ CT,r(x), {ηC − 1/2} < τ} are ordered by inclusion along the
line r ∈ R+, i.e. X r ⊂ X r′ if r < r′. Therefore, the collection A , {X r}r>0 has VC dimension
VA = 1. By Definition 4, µ(X r) ≤ Γ(τ, r), and hence by Lemma 13, with probability at least 1− δ
over the choice of X1:n, for all levels l,

|X1:n \ Xl| ≤ n · µn
(
X 2−l

)
≤ n ·

(
Γ
(
τ, 2−l

)
+
√

Γ (τ, 2−l) · αn + αn

)
.

Since the number of labels requested is bounded by ε · n · 2κl(2κl) + |X1:n \ Xl| for any l ∈ N, the
result follows. �

12



HIERARCHICAL LABEL QUERIES

References

M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. COLT,
2008.

N. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. ICML, 2006.

Shai Ben-David and Ruth Urner. The sample complexity of agnostic learning under deterministic
labels. In Proceedings of The 27th Conference on Learning Theory, pages 527–542, 2014.
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Appendix A. Miscelleneous

The following is rather well known.

Lemma 17 LetH1,H2 be classes of binary valued functions over the same domain set,X . Assume
V Cdim(H1) = d1 and V Cdim(H2) = d2 are both finite. Let H1∩H2 denote {h1 ∩ h2 : h1 ∈
H1 and h2 ∈ H2}. Then

V Cdim(H1∩H2) ≤ 2(d1 + d2) log(d1 + d2).

Proof [Proof Outline] Let A be any set shattered by H1∩H2. Then 2|A| ≤ |{h∩A : h ∈ H1∩H2}|.
Note that |{h ∩ A : h ∈ H1∩H2}| ≤ |{h ∩ A : h ∈ H1}| × |{h ∩ A : h ∈ H2}|. It fol-
lows that, for D = V Cdim(H1∩H2, one must have 2D ≤ |{h ∩ A : h ∈ H1}| × |{h ∩ A :
h ∈ H2}|. Applying Sauer’s lemma, it is straightforward to see that this inequality fails for any
D > 2(d1 + d2) log(d1 + d2).

Appendix B. Labeling Error

Proof [Proof of Theorem 6]
Fix X1:n and Y1:n (unknown by the procedure) throughout. Consider any cluster C at some

level l that was labeled by the procedure. Suppose w.l.o.g. that the majority label is 0.
Since the same label is returned each time the sameX is sampled fromC∩X1:n, the sampling is

equivalent to sampling with replacement from the unknown Y1:n over points in C. Therefore apply
Corollary 14 with ν being the empirical distribution of label 1 out of Y1:n over points in C ∩X1:n,
and m = |S|, δ0 = δ/

∣∣Cl∣∣ 2l+1. Correspondingly, let νm be the empirical distribution of 1 in the
sample S. Then, with probability at least 1− δ/

∣∣Cl∣∣ 2l+1,

ν ≤ νm +
√
νm · ε/9 + ε/9 ≤ ε.

Thus, conditioned on C, labeling all X1:n ∩C as 0 has error at most ε. Note that, while the decision
to sample a given C depends on past events, the sampling itself, conditioned on C is independent
of past events. Therefore, the labeling error is at most ε for all such C labeled by the procedure,
this happening with probability at least 1 − δ

∑
l,C∈Cl 1/

∣∣Cl∣∣ 2l+1 ≥ 1 − δ. The result follows by
integrating the error (w.r.t. the empirical distribution on X1:n) over the disjoint clusters.
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