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Abstract

We pose an open problem on the complexity of learning the behavior of a quantum
circuit with value injection queries. We define the learning model for quantum circuits and
give preliminary results. Using the test-path lemma of Angluin et al. (2009a), we show
that new ideas are likely needed to tackle value injection queries for the quantum setting.

1. Introduction

Learning classical circuits with value injection queries (VIQ) was defined by Angluin et al.
(2009b). In the VIQ model, one assigns values to subsets of the circuit wires and observes
the output. This model has been extended to large alphabet, analog, and probabilistic
circuits (Angluin et al., 2008, 2009a). There has also been work on learning networks with
similar kinds of queries (Angluin et al., 2010; Kempe et al., 2003). Here, we ask how to learn
a quantum circuit using VIQs. There is much work in physics on inferring the structure of
specific quantum systems, but little on their generic learnability. Progress on this problem
will bring together rich ideas from both the quantum and learning communities.

Model

A size k quantum circuit C on n qubits is a list of gates G1, . . . , Gk, where each Gi consists
of an 8×8 unitary matrix Ai : C8 → C8 and a list (i1, i2, i3) ∈ {0, 1, . . . , n}3 of the indices of
the qubits on which Ai operates. A qubit v is a unit vector in C2. Denote the basis vectors
of C2 as e0, e1. The input to a quantum circuit is a unit vector in (C2)⊗n = C2n , the n-fold
tensor product of C2 with itself, where each copy of C2 corresponds to a qubit. We denote
the basis vectors of C2n by ei where 0 ≤ i < 2n is written as a binary string i = b1 · · · bs
and ei =

⊗s
t=1 ebt is the tensor product of basis states from the copies of C2 (called a pure

state). In our model all inputs to quantum circuits will be pure states.
The computation of an input vector v = v1 ∈ C2n is as follows. In step i the following

is applied to vi: swap columns s.t. i1, i2, i3 are the first 3 columns, apply the unitary map
Ai ⊗ I2n−3 , and then reverse the column swap. Note that operations that only “depend”
on three qubits can affect the entire state vector vi. After all k gates are computed, vk+1 is
measured, returning index i w.p. |vi|2, and vk+1 “collapses” to the basis vector ei.

An instance of our model is a pair of integers n, k, an unknown quantum circuit C on
n qubits of size k, and an unknown permutation σ on {1, . . . , k} masking the order of the
gates. A function injection query (FIQ) is a tuple (x, S, (Bi : i ∈ S)) where x ∈ {0, 1}n,
S ⊂ {1, . . . , k}, and Bi are 8 × 8 unitary matrices. The response to a query is a string y
which is the final measured state of the quantum circuit formed by replacing the matrix Ai
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with measurements observing full state vector

VIQ open (fails test-path lemma) open
FIQ poly poly

Table 1: Summary of our results for learning quantum circuits with open problems in bold.

of gate Gi with Bσ(i) for each i ∈ S and run on the starting state vector ex. We define an
unmeasured variant where the query response is the entire state vector before measurement.

Given v ∈ {0, 1}3, a value injection of v into a gate Gj of a circuit C with matrices
Aj operating on bits (i1, i2, i3) is an augmented circuit C ′ with three additional qubits
fixed to the states ev1 , ev2 , ev3 and an additional gate Hj following Gj defined by swapping
the new qubits with i1, i2, i3, respectively. One can similarly inject values into a subset
of gate outputs. A value injection query (VIQ) is a tuple (x, S, (vi ∈ {0, 1}3 : i ∈ S))
where x ∈ {0, 1}n and S ⊂ {1, . . . , k}. The response to a query is a string y which is
the measurement of the first n qubits of the final state of the quantum circuit formed by
injecting each value vi into gate σ(i) of C and running the resulting augmented circuit on
input ex. We define the analogous unmeasured variant as well.

An algorithm learns to ε-behavioral equivalence if for any circuit C it outputs C ′ s.t. the
distributions over responses to VIQs/FIQs for C and C ′ differ by ≤ ε in l1 norm. The query
complexity of an algorithm is measured in the total number of VIQs/FIQs it uses, and it
has been extensively studied for classical circuit families (Angluin et al., 2008, 2009a,b).

Open Problem Determine the query complexity of learning quantum circuits with VIQs.

2. Preliminary Results

Now we give some preliminary results on learning quantum circuits with VIQs and FIQs.
These results elucidate which of the questions in Table 1 are known and which remain open.

2.1. Learning quantum circuits with FIQs

Proposition 1 There is a O(k log k + kn)-query algorithm for learning a quantum circuit
with FIQs (without measurement) to 0-behavioral equivalence.

Proof The algorithm learns the gates individually and then their order. First, for each
gate 1 ≤ j ≤ k and 0 ≤ i ≤ 7, query Qj,i = (i0n−3, [k] \ {j}, (I8)l∈S). With O(n) overhead
(see below), assume gate Gj acts on the first 3 qubits. Fixing j and looking at all Qj,i,
each output vector consists of the ith column of Aj . Repeat on all gates makes O(nk)
FIQs. To find the qubits Gj acts on: inject the identity everywhere except j and a 3-cycle
permutation at j, and query each e1l where 1l is the string of 0s with a 1 at position l.

Next sort the gates in O(k log k) queries, ordering two gates Gj , Gj′ as follows. Fix two
permutations σ, σ′ ∈ S8 that do not commute. Form Bσ by permuting the columns of the
identity matrix according to σ. Inject the identity into every gate except j, j′, Bσ into j, and
Bσ′ into j′. Choose x such that σσ′(x) 6= σ′σ(x) and input ex. If the order of j, j′ matters
the response to the query will differ, and it is trivial to determine the correct order. Note
the comparisons do not need the full state vector. The query complexity is O(nk+k log k).
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Measurement adds poly(k/ε) FIQs to the above algorithm to make it ε-approximate.
Consider the case with two gates Gj , Gj′ with Aj , Aj′ operating on the same qubits. De-
compose Aj according to a basis of the vector space SU(8). Inject the identity everywhere
but j, j′ and inject all pairwise sums of basis operations to Aj′ , query all 8 basis vectors,
and measure the outputs. Using the basis coefficients of Aj as variables, this gives a system
of polynomial equalities in which all parameters are O(1). It can be solved to accuracy ε/k.
It is easy to see that the errors across gates grow linearly, and the general case is similar.

2.2. Quantum circuits fail the test path lemma with measured VIQs

Angluin et al. (2009a) use the idea of “test paths” (from Angluin et al. (2009b)), to bound
the query complexity of learning boolean probabilistic circuits. Their analysis also shows
test paths fail for probabilistic circuits with an alphabet size greater than two. We show
quantum circuits have the same barrier by constructing a gadget analogous to that of An-
gluin et al. (2009a) (Lemma 8). Define B as a matrix as in Figure 1. Further define the stan-
dard quantum XOR gate using an extra scratchwork qubit by the mapping eijk 7→ eij(k⊕i⊕j).

Lemma 2 There is a circuit on which every (measured) VIQ leaving a path free makes the
last output qubit uniformly random, yet with no VIQ the last output qubit is deterministic.

Proof Define C on three qubits as in Figure 1. The circuit normally maps e000 7→
1√
2
(e000 + e110), e010 7→ 1√

2
(e000 − e110), e100 7→ 1√

2
(e111 + e101), and e110 7→ 1√

2
(e111 − e101),

i.e., the last qubit is 1 iff the input’s first qubit is 1. Likewise, when the scratch-work qubit is
1, the output bit is flipped. When there is a VIQ, say, of 1 at the identity gate acting on the
2nd qubit, the mapping becomes e000 7→ 1√

2
(e0110 + e1101), e010 7→ 1√

2
(e0110 − e1101), e100 7→

1√
2
(e0111 + e1100), and e110 7→ 1√

2
(e0111 − e1100). The extra qubit introduced by the VIQ is

the last index, and the qubit of interest is the third qubit, which is uniformly random.
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B =




1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0




Figure 1: Left: the circuit for
Lemma 2. Right: the columns of B
form the Bell basis.
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