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Abstract
We develop fast algorithms for solving regression problems on graphs where one is given the value of a
function at some vertices, and must find its smoothest possible extension to all vertices. The extension we
compute is the absolutely minimal Lipschitz extension, and is the limit for large p of p-Laplacian regu-
larization. We present an algorithm that computes a minimal Lipschitz extension in expected linear time,
and an algorithm that computes an absolutely minimal Lipschitz extension in expected time Õ(mn). The
latter algorithm has variants that seem to run much faster in practice. These extensions are particularly
amenable to regularization: we can perform l0-regularization on the given values in polynomial time and
l1-regularization on the initial function values and on graph edge weights in time Õ(m3/2).

Our definitions and algorithms naturally extend to directed graphs.

1. Introduction

We consider a problem where we are given a weighted undirected graph G = (V,E, `) and values v0 : T →
R on a subset T of its vertices. We view the weights ` as indicating the lengths of edges, with shorter length
indicating greater similarity. Our goal it to assign values to every vertex v ∈ V \T so that the values assigned
are as smooth as possible across edges. A minimal Lipschitz extension of v0 is a vector v that minimizes

max
(x,y)∈E

(`(x, y))−1
∣∣v(x)− v(y)∣∣ , (1)

subject to v(x) = v0(x) for all x ∈ T . We call such a vector an inf-minimizer. Inf-minimizers are not
unique. So, among inf-minimizers we seek vectors that minimize the second-largest absolute value of
`(x, y)−1

∣∣v(x)− v(y)∣∣ across edges, and then the third-largest given that, and so on. We call such a vector
v a lex-minimizer. It is also known as an absolutely minimal Lipschitz extension of v0.

These are the limit of the solution to p-Laplacian minimization problems for large p, i.e.,

argmin
v∈Rn

v|T=v0|T

∑
(x,y)∈E

(`(x, y))−p|v(x)− v(y)|p. (2)
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The use of p = 2 was suggested in the foundational paper of Zhu et al. (2003), and is particularly nice
because it can be obtained by solving a system of linear equations in a symmetric diagonally dominant
matrix, which can be done very quickly (Spielman and Teng (2004); Cohen et al. (2014)). The use of
larger values of p has been discussed by Alamgir and Luxburg (2011), and by Bridle and Zhu (2013), but
it is much more complicated to compute. The fastest algorithms we know for this problem require convex
programming, and then require very high accuracy to obtain the values at most vertices. By taking the limit
as p goes to infinity, we recover the lex-minimizer, which we will show can be computed quickly.

The lex-minimization problem has a remarkable amount of structure. For example, in uniformly weighted
graphs the value of the lex-minimizer at every vertex not in T is equal to the average of the minimum and
maximum of the values at its neighbors. This is analogous to the property of the 2-Laplacian minimizer that
the value at every vertex not in T equals the average of the values at its neighbors.

Contributions. We first present several important structural properties of lex-minimizers in Section 3.1.
As we shall point out, some of these were known from previous work, sometimes in restricted settings. We
state them generally and prove them for completeness. We also prove that the lex-minimizer is as stable as
possible under perturbations of v0 (Theorem 7).

The structure of the lex-minimization problem has led us to develop elegant algorithms for its solution.
Both the algorithms and their analyses could be taught to undergraduates. We believe that these algorithms
could be used in place of 2-Laplacian minimization in many applications.

We present algorithms for the following problems. Throughout, m = |E| and n = |V |.
Inf-minimization: An algorithm that runs in expected time O(m+ n log n) (Section 4.3).

Lex-minimization: An algorithm that runs in expected time O(n(m + n log n)) (Section 4), along with a
variant that runs quickly in practice (Section 4.4).

l1-regularization of edge lengths for inf-minimization: The problem of minimizing (1) given a limited
budget with which one can increase edge lengths is a linear programming problem. We show how to solve
it in time Õ(m3/2) with an interior point method by using fast Laplacian solvers (Section 8). The same
algorithm can accommodate l1-regularization of the values given in v0.

l0-regularization of vertex values for inf-minimization: We give a polynomial time algorithm for l0-
regularization of the values at vertices. That is, we minimize (1) given a budget of a number of vertices that
can be proclaimed outliers and removed from T (Section 7.1). We solve this problem by reducing it to the
problem of computing minimum vertex covers on transitively closed directed acyclic graphs, a special case
of minimum vertex cover that can be solved in polynomial time.

After any regularization for inf-minimization, we suggest computing the lex-minimizer. We find the
result for l0-regularization of vertex values to be particularly surprising, especially because we prove that
the analogous problem for 2-Laplacian minimization is NP-Hard (Section 7.2).

All of our algorithms extend naturally to directed graphs (Section 5). This is in contrast with the
problem of minimizing 2-Laplacians on directed graphs, which corresponds to computing electrical flows
in networks of resistors and diodes, for which fast algorithms are not presently known.

We present a few experiments on examples demonstrating that the lex-minimizer can overcome known
deficiencies of the 2-Laplacian minimizer (Section 1.1, Figures 1,2), as well as a demonstration of the
performance of the directed analog of our algorithms on the WebSpam dataset of Castillo et al. (2006)
(Section 6). In the WebSpam problem we use the link structure of a collection of web sites to flag some sites
as spam, given a small number of labeled sites known to be spam or normal.
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Figure 1: Lex vs 2-Laplacian on 1D gaussian clusters.

Number of Vertices
5000 10000 20000 40000 80000

M
e

a
n

 l
1

 e
rr

o
r

0

0.05

0.1

0.15

0.2

0.25
50 lex

50 l2

100 lex

100 l2

500 lex

500 l2

1000 lex

1000 l2

Figure 2: kNN graphs on samples from 4D cube.

1.1. Relation to Prior Work

We first encountered the idea of using the minimizer of the 2-Laplacian given by (2) for regression and
classification on graphs in the work of Zhu et al. (2003) and Belkin et al. (2004) on semi-supervised learn-
ing. These works transformed learning problems on sets of vectors into problems on graphs by identifying
vectors with vertices and constructing graphs with edges between nearby vectors. One shortcoming of this
approach (see Nadler et al. (2009), Alamgir and Luxburg (2011), Bridle and Zhu (2013)) is that if the num-
ber of vectors grows while the number of labeled vectors remains fixed, then almost all the values of the
2-Laplacian minimizer converge to the mean of the labels on most natural examples. For example, Nadler
et al. (2009) consider sampling points from two Gaussian distributions centered at 0 and 4 on the real line.
They place edges between every pair of points (x, y) with length exp(|x− y|2 /2σ2) for σ = 0.4, and pro-
vide only the labels v0(0) = −1 and v0(4) = 1. Figure 1 shows the values of the 2-Laplacian minimizer
in red, which are all approximately zero. In contrast, the values of the lex-minimizer in blue, which are
smoothly distributed between the labeled points, are shown.

The “manifold hypothesis” (see Chapelle et al. (2010), Ma and Fu (2011)) holds that much natural data
lies near a low-dimensional manifold and that natural functions we would like to learn on this data are
smooth functions on the manifold. Under this assumption, one should expect lex-minimizers to interpolate
well. In contrast, the 2-Laplacian minimizers degrade (dotted lines) if the number of labeled points remains
fixed while the total number of points grows. In Figure 2, we demonstrate this by sampling many points
uniformly from the unit cube in 4 dimensions, form their 8-nearest neighbor graph, and consider the problem
of regressing the first coordinate. We performed 8 experiments, varying the number of labeled points in
{50, 100, 500, 1000}. Each data point is the mean average l1 error over 100 experiments. The plots for root
mean squared error are similar. The standard deviation of the estimations of the mean are within one pixel,
and so are not displayed. The performance of the lex-minimizer (solid lines) does not degrade as the number
of unlabeled points grows.

Analogous to our inf-minimizers, minimal Lipschitz extensions of functions in Euclidean space and over
more general metric spaces have been studied extensively (Kirszbraun (1934), McShane (1934), Whitney
(1934)). von Luxburg and Bousquet (2003) employ Lipschitz extensions on metric spaces for classifica-
tion and relate these to Support Vector Machines. Their work inspired improvements in classification and
regression in metric spaces with low doubling dimension (Gottlieb et al. (2013), Gottlieb et al. (2013b)).
Theoretically fast, although not actually practical, algorithms have been given for constructing minimal
Lipschitz extensions of functions on low-dimensional Euclidean spaces (Fefferman (2009a), Fefferman and
Klartag (2009), Fefferman (2009b)). Sinop and Grady (2007) suggest using inf-minimizers for binary clas-
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sification problems on graphs. For this special case, where all of the given values are either 0 or 1, they
present an O(m + n log n) time algorithm for computing an inf-minimizer. The case of general given val-
ues, which we solve in this paper, is much more complicated. To compensate for the non-uniqueness of
inf-minimizers, they suggest choosing the inf-minimizer that minimizes (2) with p = 2. We believe that the
lex-minimizer is a more natural choice.

The analog of our lex-minimizer over continuous spaces is called the absolutely minimal Lipschitz
extension (AMLE). Starting with the work of Aronsson (1967), there have been several characterizations
and proofs of the existence and uniqueness of the AMLE (Jensen (1993), Crandall et al. (2001), Barles
and Busca (2001), Aronsson et al. (2004)). Many of these results were later extended to general metric
spaces, including graphs (Milman (1999), Peres et al. (2011), Naor and Sheffield (2010), Sheffield and Smart
(2010)). However, to the best of our knowledge, fast algorithms for computing lex-minimizers on graphs
were not known. For the special case of undirected, unweighted graphs, Lazarus et al. (1999) presented both
a polynomial-time algorithm and an iterative method. Oberman (2011) suggested computing the AMLE in
Euclidean space by first discretizing the problem and then solving the corresponding graph problem by an
iterative method. However, no run-time guarantees were obtained for either iterative method.

2. Notation and Basic Definitions

Lexicographic Ordering. Given a vector r ∈ Rm, let πr denote a permutation that sorts r in non-increasing
order by absolute value, i.e., ∀i ∈ [m − 1], |r(πr(i))| ≥ |r(πr(i + 1))|. Given two vectors r, s ∈ Rm, we
write r � s to indicate that r is smaller than s in the lexicographic ordering on sorted absolute values, i.e.

∃j ∈ [m],
∣∣r(πr(j))∣∣ < ∣∣s(πs(j))∣∣ and ∀i ∈ [j − 1],

∣∣r(πr(i))∣∣ = ∣∣s(πs(i))∣∣
or ∀i ∈ [m],

∣∣r(πr(i))∣∣ = ∣∣s(πs(i))∣∣ .
Note that it is possible that r � s and s � r while r 6= s. It is a total relation: for every r and s at least one
of r � s or s � r is true.
Graphs and Matrices. We will work with weighted graphs. Unless explicitly stated, we will assume
that they are undirected. For a graph G, we let VG be its set of vertices, EG be its set of edges, and
`G : EG → R+ be the assignment of positive lengths to the edges. We let |VG| = n, and |EG| = m. We
assume `G is symmetric, i.e., `G(x, y) = `G(y, x). When G is clear from the context, we drop the subscript.

A path P in G is an ordered sequence of (not necessarily distinct) vertices P = (x0, x1, . . . , xk), such
that (xi−1, xi) ∈ E for i ∈ [k]. The endpoints of P are denoted by ∂0P = x0, ∂1P = xk. The set of
interior vertices of P is defined to be int(P ) = {xi : 0 < i < k}. For 0 ≤ i < j ≤ k, we use the notation
P [xi : xj ] to denote the subpath (xi, . . . , xj). The length of P is `(P ) =

∑k
i=1 `(xi−1, xi).

A function v0 : V → R ∪ {∗} is called a voltage assignment (to G). A vertex x ∈ V is a terminal
with respect to v0 iff v0(x) 6= ∗. The other vertices, for which v0(x) = ∗, are non-terminals. We let T (v0)
denote the set of terminals with respect to v0. If T (v0) = V, we call v0 a complete voltage assignment (to
G). We say that an assignment v : V → R ∪ {∗} extends v0 if v(x) = v0(x) for all x such that v0(x) 6= ∗.

Given an assignment v0 : V → R ∪ {∗}, and two terminals x, y ∈ T (v0) for which (x, y) ∈ E, we
define the gradient on (x, y) due to v0 to be

gradG[v0](x, y) =
v0(x)− v0(y)

`(x, y)
.

We can view gradG[v0](x, y) as the current in the edge (x, y) induced by voltages v0. When v0 is a complete
voltage assignment, we interpret gradG[v0] as a vector in Rm, with an entry per edge. For convenience, we
define gradG[v0](x, y) = −gradG[v0](y, x). When G is clear from the context, we drop the subscript.
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A graph G along with a voltage assignment v to G is called a partially-labeled graph, denoted (G, v).
We say that a partially-labeled graph (G, v0) is a well-posed instance if for every maximal connected
component H of G, we have T (v0) ∩ VH 6= ∅.

A path P in a partially-labeled graph (G, v0) is called a terminal path if both endpoints are terminals.
We define∇P (v0) to be its gradient:

∇P (v0) =
v0(∂0P )− v0(∂1P )

`(P )
.

If P contains no terminal-terminal edges (and thus contains a non-terminal), it is a free terminal path.
Lex-Minimization. An instance of the LEX-MINIMIZATION problem is described by a partially-labeled
graph (G, v0). The objective is to compute a complete voltage assignment v : VG → R extending v0 that
lex-minimizes grad[v].

Definition 1 (Lex-minimizer) Given a partially-labeled graph (G, v0),we define lexG[v0] to be a complete
voltage assignment to V that extends v0, and such that for every other complete assignment v′ : VG → R that
extends v0, we have gradG[lexG[v0]] � gradG[v

′]. That is, lexG[v0] achieves a lexicographically-minimal
gradient assignment to the edges.

We call lexG[v0] the lex-minimizer for (G, v0). Note that if T (v0) = VG, then trivially, lexG[v0] = v0.

3. Basic Properties of Lex-Minimizers

Lazarus et al. (1999) established that lex-minimizers in unweighted and undirected graphs exist, are unique,
and may be computed by an elementary meta-algorithm. We state and prove these facts for undirected
weighted graphs, and defer the discussion of the directed case to Section 5. We also state for directed and
weighted graphs characterizations of lex-minimizers that were established by Peres et al. (2011), Naor and
Sheffield (2010) and Sheffield and Smart (2010) for unweighted graphs. These results are essential for the
analyses of our algorithms. We defer most proofs to Appendix A.

Definition 2 A steepest fixable path in an instance (G, v0) is a free terminal path P that has the largest
gradient∇P (v0) amongst such paths.

Observe that a steepest fixable path with∇P (v0) 6= 0 must be a simple path.

Definition 3 Given a steepest fixable path P in an instance (G, v0), we define fixG[v0, P ] : VG → R ∪ {∗}
to be the voltage assignment defined as follows

fixG[v0, P ](x) =

{
v0(∂0P )−∇P (v0) · `G(P [∂0P : x]) x ∈ int(P ) \ T (v0),
v0(x) otherwise.

We say that the vertices x ∈ int(P ) are fixed by the operation fix[v0, P ]. If we define v1 = fixG[v0, P ],where
P = (x0, . . . , xr) is the steepest fixable path in (G, v0), then it is easy to argue that for every i ∈ [r],we have
grad[v1](xi−1, xi) = ∇P (see Lemma 26). The meta-algorithm META-LEX, spelled out as Algorithm 1,
entails repeatedly fixing steepest fixable paths. While it is possible to have multiple steepest fixable paths,
the result of fixing all of them does not depend on the order in which they are fixed.

Theorem 4 Given a well-posed instance (G, v0), the meta-algorithm META-LEX, which repeatedly fixes
steepest fixable paths, produces the unique lex-minimizer extending v0.
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Corollary 5 Given a well-posed instance (G, v0) such that T (v0) 6= VG, let P be a steepest fixable path in
(G, v0). Then, (G, fix[v0, P ]) is also a well-posed instance, and lexG[fix[v0, P ]] = lexG[v0].

Since a lex-minimal element must be an inf-minimizer, we also obtain the following corollary, that can
also be proved using LP duality.

Lemma 6 Suppose we have a well-posed instance (G, v0). Then, there exists a complete voltage assign-
ment v extending v0 such that

∥∥grad[v]
∥∥
∞ ≤ α, iff every terminal path P in (G, v0) satisfies∇P (v0) ≤ α.

We also prove the following theorem that shows that lex[v0] is stable under changes in v0.

Theorem 7 Given well-posed instances (G, v0), (G, v1) such that T := T (v0) = T (v1). Then |lexG[v0](i)−
lexG[v1](i)| ≤ maxt∈T |v0(t)− v1(t)| for all i ∈ VG.

3.1. Alternate Characterizations

There are at least two other seemingly disparate definitions that are equivalent to lex-minimal voltages.
lp-norm Minimizers. As mentioned in the introduction, for a well-posed instance (G, v0) the lex-minimizer
is also the limit of lp minimizers. This follows from existing results about the limit of lp-minimizers (Egger
and Huotari (1990)) in affine spaces, since {grad[v] | v is complete, v extends v0} forms an affine subspace
of Rm. Thus, we have the following theorem:

Theorem 8 (follows from Egger and Huotari (1990)) For any p ∈ (1,∞), given a well-posed instance
(G, v0) define vp to be the unique complete voltage assignment extending v0 and minimizing

∥∥grad[v]
∥∥
p
,

i.e.
vp = argmin

v is complete
v extends v0

∥∥grad[v]
∥∥
p
.

Then, limp→∞ vp = lexG[v0].

Max-Min Gradient Averaging. Consider a well-posed instance (G, v0), and a complete voltage assignment
v extending v0. If G is such that `(e) = 1 for all e ∈ EG, it is easy to see that lex = lexG[v0] satisfies the
following simple condition for all x ∈ VG \ T (v0),

lex(x) =
1

2

(
max

(x,y)∈EG

lex(y) + min
(x,z)∈EG

lex(z)

)
.

This condition should be contrasted to the optimality condition for l2-regularization on these instances,
which gives for all non-terminals x, the optimal voltage v satisfies v(x) = 1

deg(x)

∑
y:(x,y)∈EG

v(y).
To prove the above claim, consider locally changing lex at x and observe that the gradients of edges not

incident at x remain unchanged, and at least one of edges incident at x will have a strictly larger gradient,
contradicting lex-minimality. For general graphs, this condition of local optimality can still be characterized
by a simple max-min gradient averaging property as described below.

Definition 9 (Max-Min Gradient Averaging) Given a well-posed instance (G, v0), and a complete volt-
age assignment v extending v0, we say that v satisfies the max-min gradient averaging property (w.r.t.
(G, v0)) if for every x ∈ VG \ T (v0), we have

max
y:(x,y)∈EG

grad[v](x, y) = − min
y:(x,y)∈EG

grad[v](x, y).
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As stated in the theorem below, lexG[v0] is the unique assignment satisfying max-min gradient aver-
aging property. Sheffield and Smart (2010) proved a variant of this statement for weighted graphs. For
completeness, we present a proof in the appendix.

Theorem 10 Given a well-posed instance (G, v0), lexG[v0] satisfies max-min gradient averaging property.
Moreover, it is the unique complete voltage assignment extending v0 that satisfies this property w.r.t. (G, v0).

This characterization is particularly useful for implementations since it can be verified quickly.

4. Algorithms

We now sketch the ideas behind our algorithms and give precise statements of our results. A full description
of all the algorithms is included in the appendix.

We define the pressure of a vertex to be the gradient of the steepest terminal path through it:

pressure[v0](x) = max{∇P (v0) | P is a terminal path in (G, v0) and x ∈ P}.

Observe that in a graph with no terminal-terminal edges, a free terminal path is a steepest fixable path iff its
gradient is equal to the highest pressure amongst all vertices. Moreover, vertices that lie on steepest fixable
paths are exactly the vertices with the highest pressure. For a given α > 0, in order to identify vertices with
pressure exceeding α, we compute vectors vHigh[α](x) and vLow[α](x) defined as follows in terms of dist,
the metric on V induced by `:

vLow[α](x) = min
t∈T (v0)

{v0(t) + α · dist(x, t)} vHigh[α](x) = max
t∈T (v0)

{v0(t)− α · dist(t, x)}.

4.1. Lex-minimization on Star Graphs

We first consider the problem of computing the lex-minimizer on a star graph where every vertex but the
center is a terminal. This special case is a subroutine in the general algorithm, and also motivates some of
our techniques.

Let x be the center vertex, T be the set of terminals, and all edges be of the form (x, t) with t ∈ T .
The initial voltage assignment is given by v : T → R, and we abbreviate dist(x, t) by d(t) = `(x, t).
From Corollary 5 we know that we can determine the value of the lex minimizer at x by finding a steepest
fixable path. By definition, we need to find t1, t2 ∈ T that maximize the gradient of the path from t1 to t2,
∇(t1, t2) = v(t1)−v(t2)

d(t2)+d(t2)
. As observed above, this is equivalent to finding a terminal with the highest pressure.

We now present a simple randomized algorithm for this problem that runs in expected linear time.
Given a terminal t1, we can compute its pressure α along with the terminal t2 such that |∇(t1, t2)| = α

in time O(|T |) by scanning over the terminals in T . Consider doing this for a random terminal t1. We will
show that in linear time one can then find the subset of terminals T ′ ⊂ T whose pressure is greater than α.
Assuming this, we complete the analysis of the algorithm. If T ′ = ∅, t1 is a vertex with highest pressure.
Hence the path from t1 to t2 is a steepest fixable path, and we return (t1, t2). If T ′ 6= ∅, the terminal with
the highest pressure must be in T ′, and we recurse by picking a new random t1 ∈ T ′. As the size of T ′ will
halve in expectation at each iteration, the expected time of the algorithm on the star is O(|T |).

To determine which terminals have pressure exceeding α, we observe that ∃t2 : α < ∇(t1, t2) =
v(t1)−v(t2)
d(t1)+d(t2)

, is equivalent to ∃t2 : v(t2)+αd(t2) < v(t1)−αd(t1). This, in turn, is equivalent to vLow[α](x) <

v(t1) − αd(t1). We can compute vLow[α](x) in deterministic O(|T |) time. Similarly, we can check if
∃t2 : α < ∇(t2, t1) by checking if vHigh[α](x) > vt1 + αd(t1). Thus, in linear time, we can compute the
set T ′ of terminals with pressure exceeding α. The above algorithm is described in Algorithm 10.
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Theorem 11 Given a set of terminals T, initial voltages v : T → R, and distances d : T → R+,

STARSTEEPESTPATH(T, v, d) returns (t1, t2) maximizing v(t1)−v(t2)
d(t1)+d(t2)

, and runs in expected time O(|T |).

4.2. Lex-minimization on General Graphs

We know that META-LEX computes lex-minimizers given an algorithm for finding a steepest fixable path in
(G, v0) (Theorem 4). Recall that finding a steepest fixable path is equivalent to finding a path with gradient
equal to the highest pressure amongst all vertices. We show how to do this in expected timeO(m+n log n).

We describe an algorithm VERTEXSTEEPESTPATH that finds a terminal path P through any vertex x
such that ∇P (v0) = pressure[v0](x) in expected O(m + n log n) time. Using Dijkstra’s algorithm, we
compute dist(x, t) for all t ∈ T. If x ∈ T (v0), then there must be a terminal path P that starts at x that has
∇P (v0) = pressure[v0](x). To compute such a P we examine all t ∈ T (v0) in O(|T |) time to find the t that
maximizes |∇(x, t)| = |v(x)−v(t)|

dist(x,t) , and then return a shortest path between x and that t.
If x /∈ T (v0), then the steepest path through x between terminals t1 and t2 must consist of shortest paths

between x and t1 and between x and t2. Thus, we can reduce the problem to that of finding the steepest path
in a star graph where x is the only non-terminal and is connected to each terminal t by an edge of length
dist(x, t). By Theorem 11, we can find this steepest path in O(|T |) expected time. The above algorithm is
formally described as Algorithm 9.

Theorem 12 Given a well-posed instance (G, v0), and a vertex x ∈ VG,VERTEXSTEEPESTPATH(G, v0, x)
returns a terminal path P through x such that∇P (v0) = pressure[v0](x), inO(m+n log n) expected time.

As in the algorithm for the star graph, we need to identify the vertices whose pressure exceeds a given α.
For a fixed α, we can compute vLow[α](x) and vHigh[α](x) for all x ∈ VG using a simple modification of
Dijkstra’s algorithm in O(m + n log n) time. We describe the algorithms COMPVHIGH, COMPVLOW for
these tasks in Algorithms 3 and 4. The following lemma encapsulates the usefulness of vLow and vHigh.

Lemma 13 For every x ∈ VG, pressure[v0](x) > α iff vHigh[α](x) > vLow[α](x).

It immediately follows that the algorithm COMPHIGHPRESSGRAPH(G, v0, α) described in Algorithm 6
computes the vertex induced subgraph on the vertex set {x ∈ VG| pressure[v0](x) > α}.

We can combine these algorithms into an algorithm STEEPESTPATH that finds the steepest fixable path
in (G, v0) in O(m + n log n) expected time. We may assume that there are no terminal-terminal edges in
G. We sample an edge (x1, x2) uniformly at random from EG, and a terminal x3 uniformly at random from
VG. For i = 1, 2, 3, we compute the steepest terminal path Pi containing xi. By Theorem 12, this can be
done in O(m + n log n) expected time. Let α be the largest gradient maxi∇Pi. As mentioned above, we
can identify G′, the induced subgraph on vertices x with pressure exceeding α, in O(m + n log n) time.
If G′ is empty, we know that the path Pi with largest gradient is a steepest fixable path. If not, a steepest
fixable path in (G, v0) must be in G′, and hence we can recurse on G′. Since we picked a uniformly random
edge, and a uniformly random vertex, the expected size of G′ is at most half that of G. Thus, we obtain an
expected running time of O(m+ n log n). This algorithm is described in detail in Algorithm 7.

Theorem 14 Given a well-posed instance (G, v0) withEG∩(T (v0)×T (v0)) = ∅, STEEPESTPATH(G, v0)
returns a steepest fixable path in (G, v0), and runs in O(m+ n log n) expected time.

By using STEEPESTPATH in META-LEX, we get the COMPLEXMIN, shown in Algorithm 1. From Theo-
rem 4 and Theorem 14, we immediately get the following corollary.

Corollary 15 Given a well-posed instance (G, v0) as input, algorithm COMPLEXMIN computes a lex-
minimizing assignment that extends v0 in O(n(m+ n log n)) expected time.
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4.3. Linear-time Algorithm for Inf-minimization

Given the algorithms in the previous section, it is straightforward to construct an infinity minimizer. Let α?

be the gradient of the steepest terminal path. From Lemma 6, we know that the norm of the inf minimizer
is α?. Considering all trivial terminal paths (terminal-terminal edges), and using STEEPESTPATH, we can
compute α? in randomized O(m+ n log n) time. It is well known (McShane (1934); Whitney (1934)) that
v1 = vLow[α?] and v2 = vHigh[α?] are inf-minimizers. It is also known that 1

2(v1+v2) is the inf-minimizer
that minimizes the maximum `∞-norm distance to all inf-minimizers. In the case of path graphs, this was
observed by Gaffney and Powell (1976) and independently by Micchelli et al. (1976). For completeness,
the algorithm is presented as Algorithm 5, and we have the following result.

Theorem 16 Given a well-posed instance (G, v0), COMPINFMIN(G, v0) returns a complete voltage as-
signment v for G extending v0 that minimizes

∥∥grad[v]
∥∥
∞ , and runs in randomized O(m+ n log n) time.

4.4. Faster Algorithms for Lex-minimization

The lex-minimizer has additional structure that allows one to compute it more efficiently. One observation
that leads to faster implementations is that fixing a steepest fixable path does not increase the pressure at
vertices, provided one appropriately ignores terminal-terminal edges. Thus, if G(α) is the subgraph with
pressure greater than α, we can iteratively fix all steepest fixable paths P in G(α) with ∇P > α. Another
simple observation is that if G(α) is disconnected, we can recurse on each of the connected components. A
complete description of an the algorithm COMPFASTLEXMIN based on these idea is given in Algorithm 11.
The algorithm provably computes lexG(v0), and it is possible to implement it so that the space requirement
is only O(m + n). Although, we are unable to prove theoretical bounds on the running time that are better
than O(n(m + n log n)), it runs extremely quickly in practice. We used it to perform the experiments in
this paper. For random regular graphs and Delaunay graphs, with n = 0.5 × 106 vertices and around 2
million edges m ∼ 1.5 − 2 × 106, it takes a couple of minutes on a 2009 MacBook Pro. Similar times are
observed for other model graphs of this size such as random regular graphs and real world networks. An
implementation of this algorithm may be found at https://github.com/danspielman/YINSlex.

5. Directed Graphs

Our definitions and algorithms, including those for regularization, extend to directed graphs with small
modifications. We view directed edges as diodes and only consider potential differences in the direction
of the edge. For a complete voltage assignment v for a directed graph G, we define the directed gradient
on (x, y) due to v to be grad+

G[v](x, y) = max
{
v(x)−v(y)
`(x,y) , 0

}
. Given a partially-labelled directed graph

(G, v0), we say that a a complete voltage assignment v is a lex-minimizer if it extends v0 and for every
complete voltage assignment v′ that extends v0 we have grad+

G[v] � grad+
G[v
′]. We say that (G, v0) is a

well-posed directed instance if every free vertex appears in a directed path between two terminals.
The main difference is that the directed lex-minimizer isn’t necessarily unique. We focussed on undi-

rected graphs for clarity of exposition. We have the following structural results for directed graphs.

Theorem 17 Given a well-posed directed instance (G, v0), there exists a lex-minimizer, and the set of all
lex-minimizers is convex. Moreover, for every two lex-minimizers v and v′, we have grad+

G[v] = grad+
G[v
′].

The directed lex-minimizer need not be unique. However, a weaker version of Theorem 4 still holds.
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Theorem 18 Given a well-posed instance (G, v0) on a directed graph G, let v1 be the partial voltage
assignment extending v0 obtained by repeatedly fixing steepest fixable (directed) paths P with ∇P > 0.
Then, any lex-minimizer of (G, v0) must extend v1. Moreover, for every edge e ∈ EG \ (T (V1) × T (V1)),
any lex-minimizer v of (G, v0) must satisfy grad+[v](e) = 0.

When the value of the lex-minimizer at a vertex is not uniquely determined, it is constrained to an
interval. In our experiments, we pick the convention that when the voltage at a vertex is constrained to
(−∞, a] or [a,∞), we assign a to the terminal. When it is constrained to a finite interval, we assign a
voltage closest to the median of the original voltages.

6. Experiments on WebSpam

We demonstrate the performance of our lex-minimization algorithms on directed graphs by using them to
detect spam webpages as in Zhou et al. (2007). We use the dataset webspam-uk2006-2.0 described in
Castillo et al. (2006). This collection includes 11,402 hosts, out of which 7,473 (65.5 %) are labeled, either
as spam or normal. Each host corresponds to the collection of web pages it serves. Of the hosts, 1924 are
labeled spam (25.7 % of all labels). We consider the problem of flagging some hosts as spam, given only
a small fraction of the labels for training. We assign a value of 1 to the spam hosts, and a value of 0 to the
normal ones. We then compute a lex minimizer and examine the effect of flagging as spam all hosts with a
value greater than some threshold.

Following Zhou et al. (2007), we create edges between hosts with lengths equal to the reciprocal of
the number of links from one to the other. We run our experiments only on the largest strongly connected
component of the graph, which contains 7945 hosts of which 5552 are labeled. 16 % of the nodes in this
subgraph are labeled spam. To create training and test data, for a given value p, we select a random subset
of p % of the spam labels and a random subset of p % of the normal labels to use for training. The
remaining labels are used for testing. We report results for p = 5 and p = 20.

Again following Zhou et al. (2007), we plot the precision and recall of different choices of threshold for
flagging pages as spam. Recall is the fraction of spam pages our algorithm flags as spam, and precision is
the fraction of pages our algorithm flags as spam that actually are spam. Amongst the algorithms studied
by Zhou et al. (2007), the top performer was their algorithm based on sampling according to a random-
walk that follows in-links from other hosts. We compare their algorithm with the classification we get by
directing edges in the opposite directions of links. This has the effect that a link to a spam host is evidence
of spamminess, and a link from a normal host is evidence of normality.

Results are shown in Figure 3. While we are not able to reliably flag all spam hosts, we see that in the
range of 10-50 % recall, we are able to flag spam with precision above 82 %. We see that the performance
of directed lex-minimization does not degrade rapidly when from the “large training set” regime of p = 20,
to the “small training set” regime of p = 5. For comparison, in Appendix C, we show the performance of
our algorithm and that of Zhou et al. (2007) both with link directions reversed, as well as the performance
of undirected lex-minimization and Laplacian inference, all of which are significantly worse.

7. l0-Regularization of Vertex Values

We now explain how we can accommodate noise in both the given voltages and in the given lengths of edges.
We can find the minimum number of labels to ignore, or the minimum increase in edges lengths needed so
that there exists an extension whose gradients have l∞-norm lower than a given target. After determining
which labels to ignore or the needed increment in edge lengths, we recommend computing a lex minimizer.
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Figure 3: Recall and precision in the web spam classification experiment. Each data point is an average over 100 runs.
The largest standard deviation of the mean precision across the plotted recall values was less than 1.3 %. The algorithm
of Zhou et al. (2007) appears as RANDWALK. Our directed lex-minimization algorithm appears as DIRECTEDLEX.

The algorithms we present in this section are essentially the same for directed and undirected graphs.

7.1. l0-Vertex Regularization for Inf-minimization

The l0-regularization of vertex labels can be viewed as outlier removal: the vector we compute may disagree
with v0 on up to k terminals. Given a voltage assignment v and a subset T ⊂ V of the vertices, by v(T ) we
mean the vector obtained by restricting v to T . We define the l0-Vertex Regularization for l∞ problem to be

min
v∈IRn

∥∥gradG[v]
∥∥
∞ subject to

∥∥v(T )− v0(T )∥∥0 ≤ k, (3)

where v(T ) is the vector of values of v on the terminals T .
In Appendix D, we describe an approximation algorithm APPROX-OUTLIER that approximately solves

program (3). The precise statement we prove in Appendix D is given in the following theorem.

Theorem 19 (Approximate l0-vertex regularization) The algorithm APPROX-OUTLIER takes a positive
integer k and a partially-labeled graph (G, v0), and outputs an assignment v with

∥∥v(T )− v0(T )∥∥0 ≤ 2k,
and

∥∥gradG[v]
∥∥
∞ ≤ α

∗, where α∗ is the optimum value of program (3), in time O(k(m+ n log n)).

In Appendix D, we describe and analyze an algorithm OUTLIER that solves program (3) in poly-time.

Theorem 20 (Exact l0-vertex regularization) The algorithm OUTLIER takes a positive integer k and a
partially-labeled graph (G, v0) solves program (3) exactly. The algorithm runs in polynomial time.

We give a proof of Theorem 20 in Appendix D. To do this, we reduce the program (3) to the problem of
minimizing the required l0-budget needed to achieve a fixed gradient α using a binary search over a set
of O(n2) gradients. This latter problem we reduce in polynomial time to Minimum Vertex Cover (VC)
on a transitively closed, directed acyclic graph (a TC-DAG). VC on a TC-DAG can be solved exactly in
polynomial time by a reduction to the Maximum Bipartite Matching Problem (Fulkerson (1956)). The
problem was phrased by Fulkerson as one of finding a maximum antichain of a finite poset. Any transitively
closed DAG corresponds directly to the comparability graph of a poset. A maximum antichain of a poset
is a maximum independent set of a the comparability graph of the poset, and hence its complement is a
minimum vertex cover of the comparability graph. We refer to Fulkerson’s algorithm as KONIG-COVER.
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7.2. Hardness of l0 regularization for l2
The result that l0-regularized inf-minimization can be solved exactly in polynomial time is surprising, espe-
cially because the analogous problem for 2-Laplacian minimization turns out to be NP-Hard.

We define the the l0 vertex regularization for l2 for a partially-labeled graph (G, v0) and an integer k by

min
v∈Rn:‖v(T )−v0(T )‖0≤k

vTLv,

where L is the Laplacian of G.

Theorem 21 l0 vertex regularization for l2 is NP-Hard.

We prove this in Appendix E by giving a polynomial time reduction from the minimum bisection problem.

8. l1-Edge and Vertex Regularization of Inf-minimizers

Consider a partially-labeled graph (G, v0) and an α > 0. The set of voltage assignments given by{
v : v extends v0 and

∥∥gradG[v]
∥∥
∞ ≤ α

}
is convex. Going further, let us consider the edge lengths in a graph to be specified by a vector ` ∈ IRE .
Now the set of voltages v and and lengths ` which achieve ‖gradG(`)[v]‖∞ ≤ α is jointly convex in v and `.
To see this, observe that

‖gradG(`)[v]‖∞ ≤ α⇔ ∀(u, v) ∈ E : −α`(u, v) ≤ v(u)− v(v) ≤ α`(u, v). (4)

Furthermore, the condition “v extends v0” is a linear constraint on v, which we express as v(T ) = v0(T ).
From the above, it is clear that the gradient condition corresponds to a convex set, as it is an intersection of
half-spaces. These half-spaces are given by O(m) linear inequalities. We can leverage this to phrase many
regularized variants of inf-minimization as convex programs, and in some cases linear programs.

For example, we may consider a variant of inf-minimization combined with an l1-budget for changing
lengths of edges and values on terminals. Given a parameter γ > 0 which specifies the relative cost of
regularizing terminals to regularizing edges, the problem is as follows

argmin
v∈IRn,s∈IRm,s≥0

‖s‖1 + γ
∥∥v(T )− v0(T )∥∥1 subject to

∥∥∥gradG(`+s)[v]
∥∥∥
∞
≤ α. (5)

From our observation (4), it follows that problem (5) may be expressed as a linear program with O(n)
variables and O(m) constraints. We can use ideas from Daitch and Spielman (2008) to solve the resulting
linear program in time Õ(m1.5) by an interior point method.The reason is that the linear equations the IPM
must solve at each iteration may be reduced to linear equations in symmetric, diagonally dominant matrices,
and these may be solved in nearly-linear time (Cohen et al. (2014)).
Conclusion. The initial experiments reported in the paper indicate that our algorithms give good results on
real and synthetic datasets, in particular for tiny labeled sets. We believe that inf and lex minimizers, and
the associated ideas presented in the paper, should be useful primitives that can be profitably combined with
other approaches to learning on graphs.
Acknowledgements. We thank anonymous reviewers for helpful comments. We thank Santosh Vempala
and Bartosz Walczak for pointing out that it was already known how to compute a minimum vertex cover of
a transitively closed DAG in polynomial time.
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Appendix A. Basic Properties of Lex-Minimizers

A.1. Meta Algorithm

Algorithm 1: Algorithm META-LEX: Given a well-posed instance (G, v0), outputs lexG[v0].

for i = 1, 2, . . . :

1. if T (vi−1) = VG, then return vi−1.
2. E′ = EG \ (T (vi−1)× T (vi−1)), G′ := (VG, E

′).
3. Let P ?i be a steepest fixable path in (G′, vi−1). Let α?i ← ∇P ?(vi−1).
4. vi ← fix[vi−1, P

?
i ].

In this subsection, we prove the results that appeared in section 2. We start with a simple observation.

Proposition 22 Given a well-posed instance (G, v0) such that T (v0) 6= V, let P be a steepest fixable path
in (G, v0). Then, fix[v0, P ] extends v0, and (G, fix[v0, P ]) is also a well-posed instance.

The properties we prove below do not depend on the choice of the steepest fixable path.

Proposition 23 For any well-posed instance (G, v0), with |VG| = n, META-LEX(G, v0) terminates in at
most n iterations, and outputs a complete voltage assignment v that extends v0.

Proof of Proposition 23: By Proposition 22, at any iteration i, vi−1 extends v0 and (G′, vi−1) is a well-
posed instance. META-LEX only outputs vi−1 iff T (vi−1) = V, which means vi−1 is a complete voltage
assignment. For any vi−1 that is not complete, for any x ∈ V \T (vi−1),we must have a free terminal path in
(G′, vi−1) that contains x. Hence, a steepest fixable path P ?i exists in (G′, vi−1). Since P ?i is a free terminal
path, fix[vi−1, P

?
i ] fixes the voltage for at least one non-terminal. Thus, META-LEX(G, v0) must complete

in at most n iterations.

For the following lemmas, consider a run of META-LEX with well-posed instance (G, v0) as input. Let
vout be the complete voltage assignment output by META-LEX. Let Ei be the set of edges E′ and Gi be the
graph G′ constructed in iteration i of META-LEX.

Lemma 24 For every edge e ∈ Ei−1 \ Ei, we have
∣∣grad[vout](e)

∣∣ ≤ α?i . Moreover, α?i is non-increasing
with i.

Proof of Lemma 24: Let P ?i = (x0, . . . , xr) be a steepest fixable path in iteration i (when we deal with
instance (Gi−1, vi−1)). Consider a terminal path Pi+1 in (Gi, vi) such that {∂0Pi+1, ∂1Pi+1} ∩ (T (vi) \
T (vi−1)) 6= ∅. We claim that∇Pi+1(vi) ≤ α?i . On the contrary, assume that∇Pi+1(vi) > α?i . Consider the
case ∂0Pi+1 ∈ T (vi) \ T (vi−1), ∂1P1 ∈ T (vi−1). By the definition of vi, we must have ∂0Pi+1 = xj for
some j ∈ [r−1]. Let P ′i+1 be the path formed by joining paths P ?i [x0 : xj ] and Pi+1. P

′
i+1 is a free terminal

path in (Gi−1, vi−1). We have,

vi−1(x0)− vi−1(∂1Pi+1) = (vi(x0)− vi(xj)) + (vi(∂0Pi+1)− vi(∂1Pi+1))

> α?i · `(P ?i [x0 : xj ]) + α?i · `(Pi+1) = α?i · `(P ′i+1),

giving ∇P ′i+1(vi) > α?i , which is a contradiction since the steepest fixable path P ?i in (Gi−1, vi−1) has
gradient α?i . The other cases can be handled similarly.
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Applying the above claim to an edge e ∈ Ei−1 \ Ei, whose gradient is fixed for the first time in
iteration i, we obtain that grad[vi+1](e) ≤ α?i . If v is the complete voltage assignment output by META-
LEX, since v extends vi+1, we get grad[vout](e) ≤ α?i . Applying the claim to the symmetric edge, we obtain
−grad[vout](e) ≤ α?i , implying |grad[vout](e)| ≤ α?i .

Consider any free terminal pathPi+1 in (Gi, vi). IfPi+1 is also a terminal path in (Gi−1, vi−1), it is a free
terminal path in (Gi−1, vi−1). In addition, since a steepest fixable path P ?i in (Gi−1, vi−1) has ∇P ?i = α?i ,
we get∇Pi+1(vi) = ∇Pi+1(vi−1) ≤ α?i .Otherwise, we must have {∂0Pi+1, ∂1Pi+1}∩(T (vi)\T (vi−1)) 6=
∅, and we can deduce∇Pi+1(vi) ≤ α?i using the above claim. Thus, all free terminal paths Pi+1 in (Gi, vi)
satisfy∇Pi+1(vi) ≤ α?i . In particular, α?i+1 = ∇P ?i+1(vi) ≤ α?i . Thus, α?i is non-increasing with i.

Lemma 25 For any complete voltage assignment v for G that extends v0, if v 6= vout, we have grad[v] 6�
grad[vout], and hence grad[vout] � grad[v].

Proof of Lemma 25: Consider any complete voltage assignment v for G that extends v0, such that
v 6= vout. Thus, there exists a unique i such that v extends vi−1 but does not extend vi. We will argue
that grad[v] 6� grad[vout], and hence grad[vout] � grad[v]. For every edge e ∈ E \Ei−1 that has been fixed
so far, grad[v](e) = grad[vi−1](e) = grad[vout](e), and hence we can ignore these edges.

Since v extends vi−1 but not vi, there exists an x ∈ T (vi) \ T (vi−1) such that v(x) 6= vi(x) = vout(x).
Assume v(x) < vi(x) (the other case is symmetric). If P ?i = (x0, . . . , xr) is the steepest fixable path with
gradient α?i picked in iteration i, we must have x = xj for some j ∈ [r − 1]. Thus,

j∑
k=1

(v(xk−1)− v(xk)) = v(x0)− v(xj) > vi(x0)− vi(xj) = α?i · `(P ?i [x0 : xj ]) = α?i ·
j∑

k=1

`(xk−1, xk).

Thus, for some k ∈ [j], we must have grad[v](xk−1, xk) > α?i . Since P ∗i is a path in Gi−1, we have
{xk−1, xk} 6⊆ T (vi−1). This gives (xk−1, xk) ∈ (Ei−1 \ Ei). But then, from Lemma 24, it follows that for
all e ∈ (Ei−1 \ Ei), we have |grad[vout](e)| ≤ α?i . Thus, we have grad[v] 6� grad[vout].

Lemma 26 Let P = (x0, . . . , xr) be a steepest fixable path such that it does not have any edges in T (v0)×
T (v0) and v1 = fixG[v0, P ]. Then for every i ∈ [r], we have grad[v1](xi−1, xi) = ∇P.

Proof of Lemma 26: Suppose this is not true and let j ∈ [r] be the minimum number such that
grad[v1](xj−1, xj) 6= ∇P. By definition of v1 we would necessarily have j < r and vj ∈ T (v0). Sup-
pose grad[v1](xj−1, xj) < ∇P. We would then have v1(x0)− v1(xj) < ∇P ∗ `(P [x0 : xj ]). Since P does
not have any edges in T (v0) × T (v0), P1 := (xj , ..., xr) would be a free terminal path with ∇P1 > ∇P.
This is a contradiction. Other cases can be ruled out similarly.

Proof of Theorem 4: Consider an arbitrary run of META-LEX on (G, v0). Let vout be the complete volt-
age assignment output by META-LEX. Proposition 22 implies that vout extends v0. Lemma 25 implies that
for any complete voltage assignment v 6= vout that extends v0, we have grad[vout] � grad[v]. Thus, vout
is a lex-minimizer. Moreover, the lemma also gives that for any such v, grad[v] 6� grad[vout]. and hence
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vout is a unique lex-minimizer. Thus, vout is the unique voltage assignment satisfying Def. 1, and we denote
it as lexG[v0]. Since we started with an arbitrary run of META-LEX, uniqueness implies that every run of
META-LEX on (G, v0) must output lexG[v0].

Proof of Lemma 6: Suppose we have a complete voltage assignment v extending v0, such that
∥∥grad[v]

∥∥
∞ ≤

α. For any terminal path P = (x0, . . . , xr), we get,

∇P (v0) = v0(∂0P )−v0(∂1P ) = v(∂0P )−v(∂1P ) =
r∑
i=1

grad[v](xi−1, xi) ≤ α·
r∑
i=1

`(xi−1, xi) = α·`(P ),

giving∇P (v0) ≤ α.
On the other hand, suppose every terminal path P in (G, v0) satisfies ∇P (v0) ≤ α. Consider v =

lexG[v0]. We know that v extends v0. For every edge e ∈ EG ∩ T (v0)× T (v0), e is a (trivial) terminal path
in (G, v0), and hence has satisfies grad[v](e) = grad[v0](e) = ∇e(v0) ≤ α. Considering the reverse edge,
we also obtain −grad[v](e) ≤ α. Thus, |grad[v](e)| ≤ α. Moreover, using Lemma 24, we know that for
edge e ∈ EG \ T (v0)× T (v0), |grad[v](e)| ≤ α?1 = ∇P ?1 ≤ α since P1 is a terminal path in (G, v0). Thus,
for every e ∈ EG, |grad[v](e)| ≤ α, and hence

∥∥grad[v]
∥∥
∞ ≤ α.

A.2. Stability

The following theorem states that lexG[v0] is monotonic with respect to v0 and it respects scaling and trans-
lation of v0. Our main stability result, stated earlier as Theorem 7, is an immediate corollary.

Theorem 27 Let (G, v0) be a well-posed instance with T := T (v0) as the set of terminals. Then the
following statements hold.

1. For any c, d ∈ R, v1 a partial assignment with terminals T (v1) = T and v1(t) = cv0(t) + d for all
t ∈ T . Then, lexG[v1](i) = c · lexG[v0](i) + d for all i ∈ VG.

2. v1 a partial assignment with terminals T (v1) = T. Suppose further that v1(t) ≥ v0(t) for all t ∈ T.
Then, lexG[v1](i) ≥ lexG[v0](i) for all i ∈ VG.

For any well-posed (G, v0), there could be several possible executions of META-LEX, each character-
ized by the sequence of paths P ?i . We can apply Theorem 4 to deduce the following structural result about
the lex-minimizer.

Corollary 28 For any well-posed instance (G, v0), consider a sequence of paths (P1, . . . , Pr) and voltage
assignments (v1, . . . , vr) for some positive integer r such that:

1. P ?i is a steepest fixable path in (Gi−1, vi−1) for i = 1, . . . , r.

2. vi = fix[vi−1, P
?
i ] for i = 1, . . . , r.

3. T (vr) = VG.

Then, we have vr = lexG[v0].
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We call such a sequence of paths and voltages to be a decomposition of lexG[v0]. Again, note that
lexG[v0] can possibly have multiple decompositions. However, any two such decompositions are consistent
in the sense that they produce the same voltage assignment.

Proof of Theorem 7: We first define some operations on partial assignments which simplifies the notation.
Let v0, v1 be any two partial assignments with the same set of terminals T := T (v0) = T (v1) and c, d ∈ R.
By cv0 + d we mean a partial assignment v with T (v) = T satisfying v(t) = cv0(t) + d for all t ∈ T . Also,
by v0 + v1 we mean a partial assignment v with T (v) = T satisfying v(t) = v0(t) + v1(t) for all t ∈ T.
Also, we say v1 ≥ v0 if v1(t) ≥ v0(t) for all t ∈ T .

Now we can show how Theorem 7 follows from Theorem 27. Let v := v1−v0, and ‖v‖∞ = ε, for some
ε > 0. Therefore, v0 + ε ≥ v1 ≥ v0 − ε. Theorem 27 then implies that lexG[v0] + ε ≥ lex[v1] ≥ lex[v0]− ε,
hence proving the corollary.

Proof sketch of Theorem 27: It is easy to see that the first statement holds. For the second statement,
we first observe that if there is a sequence of paths P1, ..., Pr that is simultaneously a decomposition of
both lex[v0] and lex[v1], then this is easy to see. If such a path sequence doesn’t exist, then we look at
vt := v0 + t(v1 − v0). We state here without a proof (though the proof is elementary) that we can then split
the interval [0, 1] into finitely many subintervals [a0, a1], [a1, a2], .., [ak−1, ak], with a0 = 0, ak = 1, such
that for any i, there is a path sequence P1, ..., Pr which is a decomposition of lex[vt] for all t ∈ [ai, ai+1].
We then observe that v0 = va0 ≤ va1 ≤ ...vak = v1. Since for every ai, ai+1, there is a path sequence which
is simultaneously a decomposition of both lex[vai ] and lex[vai+1 ], we immediately get

lex[v0] = lex[va0 ] ≤ lex[va1 ] ≤ ... ≤ lex[vak ] = lex[v1].

A.3. Alternate Characterizations

Proof of Theorem 10: We know that lexG[v0] extends v0. We first prove that v = lexG[v0] satisfies the
max-min gradient averaging property. Assume to the contrary. Thus, there exists x ∈ VG \ T (v0) such that

max
y:(x,y)∈EG

grad[v](x, y) 6= − min
y:(x,y)∈EG

grad[v](x, y).

Assume that max(x,y)∈EG
grad[v](x, y) ≥ −min(x,y)∈EG

grad[v](x, y). Then, consider v′ extending v0 that
is identical to v except for v′(x) = v(x)− ε for ε > 0. For ε small enough, we get that

max
y:(x,y)∈EG

grad[v′](x, y) < max
y:(x,y)∈EG

grad[v](x, y)

and
− min
y:(x,y)∈EG

grad[v′](x, y) < max
y:(x,y)∈EG

grad[v](x, y).

The gradient of edges not incident on the vertex x is left unchanged. This implies that grad[v] 6� grad[v′],
contradicting the assumption that v is the lex-minimizer. (The other case is similar).
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For the other direction. Consider a complete voltage assignment v extending v0 that satisfies the max-
min gradient averaging property w.r.t. (G, v0). Let

α = max
(x,y)∈EG

x∈V \T (v0)

grad[v](x, y) ≥ 0

be the maximum edge gradient, and consider any edge (x0, x1) ∈ EG such that grad[v](x1, x0) = α, with
x1 ∈ V \ T (v0). If α = 0, grad[v] is identically zero, and is trivially the lex-minimal gradient assignment.
Thus, both v and lexG[v0] are constant on each connected component. Since (G, v0) is well-posed, there is
at least one terminal in each component, and hence v and lexG[v0] must be identical.

Now assume α > 0. By the max-min gradient averaging property, ∃x2 ∈ VG such that (x1, x2) ∈ EG
and

grad[v](x1, x2) = min
y:(x1,y)∈EG

grad[v](x1, y) = − max
y:(x1,y)∈EG

grad[v](x1, y)

≤ −grad[v](x1, x0) = −α.

Thus, grad[v](x2, x1) ≥ α. Since α is the maximum edge gradient, we must have grad[v](x2, x1) = α.
Moreover, v(x2) > v(x1) > v(x0), thus x2 6= x0. We can inductively apply this argument at x2 until we
hit a terminal. Similarly, if x0 /∈ T (v0) we can extend the path in the other direction. Consequently, we
obtain a path P = (xj , . . . , x2, x1, x0, x−1, . . . , xk) with all vertices as distinct, such that xj , xk ∈ T (v0),
and xi ∈ V \ T (v0) for all i ∈ [j + 1, k − 1]. Moreover, grad[v](xi, xi−1) = α for all j < i ≤ k. Thus, P
is a free terminal path with∇P [v0] = α.

Moreover, since v is a voltage assignment extending v0 with
∥∥grad[v]

∥∥
∞ = α, using Lemma 6, we

know that every terminal path P ′ in (G, v0) must satisfy ∇P ′(v0) ≤ α. Thus, P is a steepest fixable path
in (G, v0). Thus, letting v1 = fix[v0, P ], using Corollary 5, we obtain that lexG[v1] = lexG[v0]. Moreover,
since α = ∇P [v0] = grad[v](xi, xi−1) for all i ∈ (j, k], we get v1(xi) = v(xi) for all i ∈ (j, k). Thus, v
extends v1.

We can iterate this argument for r iterations until T (vr) = VG, giving v = vr and vr = lexG[vr] =
lexG[v0]. (Since we are fixing at least one terminal at each iteration, this procedure terminates). Thus, we
get v = lexG[v0].

Appendix B. Description of the Algorithms

Algorithm 2: MODDIJKSTRA(G, v0, α): Given a well-posed instance (G, v0), a gradient value α ≥ 0, outputs
a complete voltage assignment v for G, and an array parent : V → V ∪ {null}.

1. for x ∈ VG,
2. Add x to a fibonacci heap, with key(x) = +∞.
3. finished(x)← false
4. for x ∈ T (v0)
5. Decrease key(x) to v0(x).
6. parent(x)← null.
7. while heap is not empty
8. x← pop element with minimum key from heap
9. v(x)← key(x). finished(x)← true .

20



10. for y : (x, y) ∈ EG
11. if finished(y) = false
12. if key(y) > v(x) + α · `(x, y)
13. Decrease key(y) to v(x) + α · `(x, y).
14. parent(y)← x.
15. return (v, parent)

Theorem 29 For a well-posed instance (G,V0) and a gradient valueα ≥ 0, let (v, parent)←MODDIJKSTRA(G, v0, α).
Then, v is a complete voltage assignment such that, ∀x ∈ VG, v(x) = mint∈T (v0){v0(t) + αdist(x, t)}.
Moreover, the pointer array parent satisfies ∀x /∈ T (v0), parent(x) 6= null and v(x) = v(parent(x)) + α ·
`(x, parent(x)).

Algorithm 3: Algorithm COMPVLOW(G, v0, α): Given a well-posed instance (G, v0), a gradient value α ≥ 0,
outputs vLow, a complete voltage assignment for G, and an array LParent : V → V ∪ {null}.

1. (vLow, LParent)← MODDIJKSTRA(G, v0, α)
2. return (vLow, LParent)

Algorithm 4: Algorithm COMPVHIGH(G, v0, α): Given a well-posed instance (G, v0), a gradient value α ≥ 0,
outputs vHigh, a complete voltage assignment for G, and an array HParent : V → V ∪ {null}.

1. for x ∈ VG
2. if x ∈ T (v0) then v1(x)← −v0(x) else v1(x)← v1(x).
3. (temp,HParent)← MODDIJKSTRA(G, v1, α)
4. for x ∈ VG : vHigh(x)← −temp(x)
5. return (vHigh,HParent)

Corollary 30 For a well-posed instance (G,V0) and a gradient value α ≥ 0, let (vLow[α], LParent) ←
COMPVLOW(G, v0, α) and (vHigh[α],HParent)← COMPVHIGH(G, v0, α). Then, vLow[α], vHigh[α] are
complete voltage assignments for G such that, ∀x ∈ VG,

vLow[α](x) = min
t∈T (v0)

{v0(t) + α · dist(x, t)} vHigh[α](x) = max
t∈T (v0)

{v0(t)− α · dist(t, x)}.

Moreover, the pointer arrays LParent,HParent satisfy ∀x /∈ T (v0), LParent(x),HParent(x) 6= null and

vLow[α](x) = vLow[α](LParent(x)) + α · `(x, LParent(x)),

vHigh[α](x) = vHigh[α](HParent(x))− α · `(x,HParent(x)).

Algorithm 5: Algorithm COMPINFMIN(G, v0): Given a well-posed instance (G, v0), outputs a complete voltage
assignment v for G, extending v0 that minimizes

∥∥grad[v]
∥∥
∞.

1. α← max{|grad[v0](e)| | e ∈ EG ∩ (T (v0)× T (v0))}.
2. EG ← EG \ (T (v0)× T (v0))
3. P ←STEEPESTPATH(G, v0).
4. α← max{α,∇P (v0)}
5. (vLow, LParent)← COMPVLOW(G, v0, α)
6. (vHigh,HParent)← COMPVHIGH(G, v0, α)
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7. for x ∈ VG
8. if x ∈ T (v0)
9. then v(x)← v0(x)

10. else v(x)← 1
2 · (vLow(x) + vHigh(x)).

11. return v

Algorithm 6: Algorithm COMPHIGHPRESSGRAPH(G, v0, α): Given a well-posed instance (G, v0), a gradient
value α ≥ 0, outputs a minimal induced subgraph G′ of G where every vertex has pressure[v0](·) > α.

1. (vLow, LParent)← COMPVLOW(G, v0, α)
2. (vHigh,HParent)← COMPVHIGH(G, v0, α)
3. VG′ ← {x ∈ VG | vHigh(x) > vLow(x) }
4. EG′ ← {(x, y) ∈ EG | x, y ∈ VG′}.
5. G′ ← (V ′, E′, `)
6. return G′

Proof of Lemma 13:
vHigh[α](x) > vLow[α](x)

is equivalent to
max
t∈T (v0)

{v0(t)− α · dist(t, x)} > min
t∈T (v0)

{v0(t) + α · dist(x, t)},

which implies that there exists terminals s, t ∈ T (v0) such that

v0(t)− α · dist(t, x) > v0(s) + α · dist(x, s)

thus,

pressure[v0](x) ≥
v0(t)− v0(s)

dist(t, x) + dist(x, s)
> α.

So the inequality on vHigh and vLow implies that pressure is strictly greater than α. On the other hand, if
pressure[v0](x) > α, there exists terminals s, t ∈ T (v0) such that

v0(t)− v0(s)
dist(t, x) + dist(x, s)

= pressure[v0](x) > α.

Hence,
v0(t)− α · dist(t, x) > v0(s) + α · dist(x, s)

which implies vHigh[α](x) > vLow[α](x).

Algorithm 7: Algorithm STEEPESTPATH(G, v0): Given a well-posed instance (G, v0), with T (v0) 6= VG,
outputs a steepest free terminal path P in (G, v0).

1. Sample uniformly random e ∈ EG. Let e = (x1, x2).
2. Sample uniformly random x3 ∈ VG.
3. for i = 1 to 3
4. P ← VERTEXSTEEPESTPATH(G, v0, xi)
5. Let j ∈ argmaxj∈{1,2,3}∇Pj(v0)
6. G′ ← COMPHIGHPRESSGRAPH(G, v0,∇Pj(v0))
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7. if EG′ = ∅,
8. then return Pj
9. else return STEEPESTPATH(G′, v0|VG′ )

Algorithm 8: Algorithm COMPLEXMIN(G, v0): Given a well-posed instance (G, v0),with T (v0) 6= VG, outputs
lexG[v0].

1. while T (v0) 6= VG
2. EG ← EG \ (T (v0)× T (v0))
3. P ← STEEPESTPATH(G, v0)
4. v0 ← fix[v0, P ]
5. return v0

Algorithm 9: Algorithm VERTEXSTEEPESTPATH(G, v0, x): Given a well-posed instance (G, v0), and a vertex
x ∈ VG, outputs a steepest terminal path in (G, v0) through x.

1. Using Dijkstra’s algorithm, compute dist(x, t) for all t ∈ T (v0)
2. if x ∈ T (v0)
3. y ← argmaxy∈T (v0)

|v0(x)−v0(y)|
dist(x,y)

4. if v0(x) ≥ v0(y)
5. then return a shortest path from x to y
6. else return a shortest path from y to x
7. else
8. for t /∈ T (v0), d(t)← dist(x, t)
9. (t1, t2)← STARSTEEPESTPATH(T (v0), v0|T (v0), d)

10. Let P1 be a shortest path from t1 to x. Let P2 be a shortest path from x to t2.
11. P ← (P1, P2). return P.

Algorithm 10: STARSTEEPESTPATH(T, v, d): Returns the steepest path in a star graph, with a single non-
terminal connected to terminals in T, with lengths given by d, and voltages given by v.

1. Sample t1 uniformly and randomly from T

2. Compute t2 ∈ argmaxt∈T
|v(t1)−v(t)|
d(t1)+d(t)

3. α← |v(t2)−v(t1)|
d(t1)+d(t2)

4. Compute vlow ← mint∈T (v(t) + α · d(t))
5. Tlow ← {t ∈ T | v(t) > vlow + α · d(t)}
6. Compute vhigh ← maxt∈T (v(t)− α · d(t))
7. Thigh ← {t ∈ T | v(t) < vhigh − α · d(t)}
8. T ′ ← Tlow ∪ Thigh.
9. if T ′ = ∅

10. then if v(t1) ≥ v(t2) then return (t1, t2) else return (t2, t1)
11. else return STARSTEEPESTPATH(T ′, v|T ′ , dT ′)

B.1. Faster Lex-minimization
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Algorithm 11: Algorithm COMPFASTLEXMIN(G, v0): Given a well-posed instance (G, v0), with T (v0) 6= VG,
outputs lexG[v0].

1. while T (v0) 6= VG
2. v0 ← FIXPATHSABOVEPRESS(G, v0, 0)
3. return v0

Algorithm 12: Algorithm FIXPATHSABOVEPRESS(G, v0, α): Given a well-posed instance (G, v0), with
T (v0) 6= VG, and a gradient value α, iteratively fixes all paths with gradient > α.

1. while T (v0) 6= VG
2. EG ← EG \ (T (v0)× T (v0))
3. Sample uniformly random e ∈ EG. Let e = (x1, x2).
4. Sample uniformly random x3 ∈ VG.
5. for i = 1 to 3
6. Pi ← VERTEXSTEEPESTPATH(G, v0, xi)
7. Let j ∈ argmaxj∈{1,2,3}∇Pj(v0)
8. G′ ← COMPHIGHPRESSGRAPH(G, v0,∇Pj(v0))
9. if EG′ = ∅,

10. then v0 ← fix[v0, P ]
11. else Let G′i, i = 1, . . . , r be the connected components of G′.
12. for i = 1, . . . , r
13. vi ← FIXPATHSABOVEPRESS(G′i, v0|VG′

i
,∇Pj(v0))

14. for x ∈ VG′i , set v0(x)← vi(x)
15. if α > 0 then G←COMPHIGHPRESSGRAPH(G, v0, α)
16. return v0

Appendix C. Experiments on WebSpam: Testing More Algorithms

For completeness, in this appendix we show how a number of algorithms perform on the web spam experi-
ment of Section 6. We consider the following algorithms:

• RANDWALK along in-links. For a detailed description see Zhou et al. (2007). This algorithm essen-
tially performs a Personalized PageRank random walk from each vertex x and computes a spam-value
for the vertex x by taking a weighted average of the labels of the vertices where the random walk from
x terminates. Also shown in Section 6.

• DIRECTEDLEX, with edges in the opposite directions of links. This has the effect that a link to a
spam host is evidence of spam, and a link from a normal host is evidence of normality. Also shown in
Section 6.

• RANDWALK along out-links.

• DIRECTEDLEX, with edges in the directions of links. This has the effect that a link from to a spam
host is evidence of spam, and a link to a normal host is evidence of normality.

• UNDIRECTEDLEX: Lex-minimization with links treated as undirected edges.
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• LAPLACIAN: l2-regression with links treated as undirected edges.

• DIRECTED 1-NEAREST NEIGHBOR: Uses shortest distance along paths following out-links. Spam-
ratio is defined distance from normal hosts, divided by distance to spam hosts. Sites are flagged as
spam when spam-ratio exceeds some threshold. We also tried following paths along in-links instead,
but that gave much worse results.

We use the experimental setup described in Section 6. Results are shown in Figure 4. The alternative
convention for DIRECTEDLEX orients edges in the directions of links. This takes a link from a spam host
to be evidence of spam, and a link to a normal host to be evidence of normality. This approach performs
significantly worse than our preferred convention, as one would intuitively expect. UNDIRECTEDLEX and
LAPLACIAN approaches also perform significantly worse. DIRECTED 1-NEAREST NEIGHBOR performs
poorly, demonstrating that DIRECTEDLEX is very different from that approach. As observed by Zhou et al.
(2007), sampling based on a random walk following out-links performs worse than following in-links. Up
to 60 % recall, DIRECTEDLEX performs best, both in the regime of 5 % labels for training and in the regime
of 20 % labels for training.
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Figure 4: Recall and precision in the WebSpam classification experiment. Each data point shown was computed as an
average over 100 runs. The largest standard deviation of the mean precision across the plotted recall values was less
than 1.5 %. The algorithm of Zhou et al. (2007) appears as RANDWALK (along in-links). We also show RANDWALK
along out-links. Our directed lex-minimization algorithm appears as DIRECTEDLEX. We also show DIRECTEDLEX
with link directions reversed, along with UNDIRECTEDLEX and LAPLACIAN.

Appendix D. l0-Vertex Regularization Proofs

In this appendix, we prove Theorem 19 and Theorem 20. For the purposes of proving the second theorem,
we introduce an alternative version of problem (3). The optimization problem here requires us to minimize
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l0-regularization budget required to obtain an inf-minimizer with gradient below a given threshold:

min
v∈IRn

∥∥v(T )− v0(T )∥∥0
subject to

∥∥gradG[v]
∥∥
∞ ≤ α.

(6)

We will also need the following graph construction.

Definition 31 The α-pressure terminal graph of a partially-labeled graph (G, v0) is a directed unweighted
graph Gα = (T (v0), Ê) such that (s, t) ∈ Ê if and only if there is a terminal path P from s to t in G with

∇P (v0) > α.

Note that the α-pressure terminal graph has O(n) vertices but may be dense, even when G is not.

Algorithm 13: Algorithm TERM-PRESSURE: Given a well-posed instance (G, v0) and α ≥ 0, outputs α pressure
terminal graph Gα.

Initialize Gα with vertex set Vα = T (v0) and edge set Ê = ∅.
for each terminal s ∈ T (v0)

1. Compute the distances to every other terminal t by running Dijktra’s algorithm, allowing shortest
paths that run through other terminals.

2. Use the resulting distances to check for every other terminal t if there is a terminal path P from
s to t with∇P (v0) > α. If there is, add edge (s, t) to Ê.

Lemma 32 The α-pressure terminal graph of a voltage problem (G, v0) can be computed in O((m +
n log n)n) time using algorithm TERM-PRESSURE (Algorithm 13).

Proof The correctness of the algorithm follows from the fact that Dijkstra’s algorithm will identify all
shortest distances between the terminals, and the pressure check will ensure that terminal pairs (s, t) are
added to Ê if and only if they are the endpoints of a terminal path P with ∇P (v0) > α. The running
time is dominated by performing Dijkstra’s algorithm once for each terminal. A single run of Dijkstra’s
algorithm takes O(m + n log n) time, and this is performed at most n times, for a total running time of
O((m+ n log n)n).

We make three observations that will turn out to be crucial for proving Theorems 19 and 20.

Observation 33 Gα is a subgraph of Gβ for α ≥ β.

Proof Suppose edge (s, t) appears in Gα, then for some path P

∇P (v0) > α ≥ β,

so the edge also appears in Gβ .

Observation 34 Gα is transitively closed.
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Proof Suppose edges (s, t) and (t, r) appear in Gα. Let P(s,t), P(t,r), P(s,r) be the respective shortest paths
in G between these terminal pairs. Then

∇P(s,r)(v0) =
v0(s)− v0(r)
`(P(s,r))

≥ v0(s)− v0(r)
`(P(s,t)) + `(P(t,r))

=
v0(s)− v0(t) + v0(t)− v0(r)

`(P(s,t)) + `(P(t,r))

≥ min

(
v0(s)− v0(t)
`(P(s,t))

,
v0(t)− v0(r)
`(P(t,r))

)
> α.

(7)

So edge (s, r) also appears in Gα. This is sufficient for Gα to be transitively closed.

Observation 35 Gα is a directed acyclic graph.

Proof Suppose for a contradiction that a directed cycle appears in Gα. Let s and t be two vertices in this
cycle. Let P(s,t) and P(t,s) be the respective shortest paths in G between these terminal pairs. Because Gα
is transitively closed, both edges (s, t) and (t, s) must appear in Gα. But (s, t) ∈ Ê implies

v0(s)− v0(t) > α`(P(s,t)) > 0,

and similarly (t, s) ∈ Ê implies
v0(t)− v0(s) > α`(P(t,s)) > 0.

This is a contradiction.

The usefulness of the α-pressure terminal graph is captured in the following lemma. We define a vertex
cover of a directed graph to be a vertex set that constitutes a vertex cover in the same graph with all edges
taken to be undirected.

Lemma 36 Given a partially-labeled graph (G, v0) and a set U ⊆ V , there exists a voltage assignment
v ∈ IRn that satisfies {

t ∈ T (v0) : v(t) 6= v0(t)
}
⊆ U and

∥∥gradG[v]
∥∥
∞ ≤ α,

if and only if U is a vertex cover in the α-pressure terminal graph Gα of (G, v0).

Proof We first show the “only if” direction. Suppose for a contradiction that there exists a voltage assign-
ment v for which

∥∥gradG[v]
∥∥
∞ ≤ α, but U is not a vertex cover in Gα. Let (s, t) be an edge Gα which is

not covered by U . The presence of this edge in Gα implies that there exists a terminal path P from s to t in
G for which

∇P (v0) > α.

But, by Lemma 6 this means there is no assignment v for G which agrees with v0 on s and t and has∥∥gradG[v]
∥∥
∞ ≤ α. This contradicts our assumption.

Now we show the “if” direction. Consider an arbitrary vertex coverU ofGα. Suppose for a contradiction
that there does not exist a voltage assignment v forGwith

∥∥gradG[v]
∥∥
∞ ≤ α and

{
t ∈ T (v0) : v(t) 6= v0(t)

}
⊆

U . Define a partial voltage assignment vU given by

vU (t) =

{
v0(t) if t ∈ T (v0) \ U
∗ o.w.
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The preceding statement is equivalent to saying that there is no v that extends vU and has
∥∥gradG[v]

∥∥
∞ ≤ α.

By Lemma 6, this means there is terminal path between s, t ∈ T (vU ) with gradient strictly larger than α.
But this means an edge (s, t) is present in Gα and is not covered. This contradicts our assumption that U is
a vertex cover.

Theorem 37 The algorithm KONIG-COVER computes a minimum vertex cover for any transitively closed
DAG G in polynomial time.

We are now ready to prove Theorem 20.

Proof of Theorem 20: We describe and prove the algorithm OUTLIER. The algorithm will reduce prob-
lem (3) to problem (6): Suppose v∗ is an optimal assignment for problem (3). It achieves a maximum
gradient α∗ =

∥∥gradG[v
∗]
∥∥
∞. Using Dijkstra’s algorithm we compute the pairwise shortest distances be-

tween all terminals in G. From these distances and the terminal voltages, we compute the gradient on the
shortest path between each terminal pair. By Lemma 6, α∗ must equal one of these gradients. So we can
solve problem (3) by iterating over the set of gradients between terminals and solving problem (6) for each
of these O(n2) gradients. Among the assignments with

∥∥v(T )− v0(T )∥∥0 ≤ k, we then pick the solution
that minimizes

∥∥gradG[v]
∥∥
∞.

In fact, we can do better. By Observation 33, Gα is a subgraph of Gβ for α ≥ β. This means a vertex
cover of Gα is also a vertex cover of Gβ , and hence the minimum vertex cover for Gβ is at least as large
as the minimum vertex cover for Gα. This means we can do a binary search on the set of O(n2) terminal
gradients to find the minimum gradient for which there exists an assignment with

∥∥v(T )− v0(T )∥∥0 ≤ k.
This way, we only make O(log n) calls to problem (6), in order to solve problem (3).

We use the following algorithm to solve problem (6).

1. Compute the α-pressure terminal graph Gα of G using the algorithm TERM-PRESSURE.
2. Compute a minimum vertex cover U of Gα using the algorithm KONIG-COVER from Theo-

rem 37.
3. Define a partial voltage assignment vU given by

vU (t) =

{
v0(t) if t ∈ T (v0) \ U,
∗ otherwise.

4. Using Algorithm 5, compute voltages v that extend vU and output v.

From Lemma 32, it follows that step 1 computes the α-pressure terminal graph in polynomial time.
From Theorem 37 it follows that step 2 computes the a minimum vertex cover of the α-pressure terminal
graph in polynomial time, because our observations 34 and 35 establish that the graph is a TC-DAG. From
Lemma 36 and Theorem 16, it follows that the output voltages solve program (6).

To prove Theorem 19, we use the standard greedy approximation algorithm for MIN-VC (Vazirani (2001)).

Theorem 38 2-Approximation Algorithm for Vertex Cover. The following algorithm gives a 2-approximation
to the Minimum Vertex Cover problem on a graph G = (V,E).
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0. Initialize U = ∅.
1. Pick an edge (u, v) ∈ E that is not covered by U .
2. Add u and v to the set U .
3. Repeat from step 1 if there are still edges not covered by U .
4. Output U .

We are now in a position to prove Theorem 19

Proof of Theorem 19: Given an arbitrary k and a partially-labeled graph (G, v0), let α∗ be the optimum
value of program (3). Observe that by Lemma 36, this implies that Gα∗ has a vertex cover of size k. Given
the partial assignment v0, for every vertex set U , we define

vU (t) =

{
v0(t) if t ∈ T (v0) \ U
∗ o.w.

We claim the following algorithm APPROX-OUTLIER outputs a voltage assignment v with
∥∥gradG[v]

∥∥
∞ ≤

α∗ and
∥∥v(T )− v0(T )∥∥0 ≤ 2k.

Algorithm APPROX-OUTLIER:

0. Initialize U = ∅.
1. Using the algorithm STEEPESTPATH (Algorithm 7), find a steepest terminal path in G w.r.t. vU .

Denote this path P and let s and t be its terminal endpoints. If there is no terminal path with
positive gradient, skip to step 4.

2. Add s and t to the set U .
3. If |U | ≤ 2k − 2 then repeat from step 1.
4. Using the algorithm COMPINFMIN (Algorithm 5), compute voltages v that extend vU and output
v.

From the stopping conditions, it is clear that |U | ≤ 2k. If in step 1 we ever find that no terminal paths have
positive gradient then our v that extends vU will have

∥∥gradG[v]
∥∥
∞ = 0 ≤ α∗, by Lemma 6. Similarly if

we find a steepest path with gradient less than α∗ w.r.t. vU , then for this U there exists v that extends vU and
has
∥∥gradG[v]

∥∥
∞ ≤ α

∗. This will continue to hold when if we add vertices to U . Therefore, for the final U ,
there will exist an v that extends vU and has

∥∥gradG[v]
∥∥
∞ ≤ α

∗.
If we never find a steepest terminal path P with ∇P (v0) ≤ α∗, then each steepest path we find cor-

responds to an edge in Gα∗ that is not yet covered by U and our algorithm in fact implements the greedy
approximation algorithm for vertex cover described in Theorem 38. This implies that the final U is a
vertex cover of Gα∗ of size at most 2k. By Lemma 36, this implies that there exists a voltage assign-
ment u extending vU that has

∥∥gradG[u]
∥∥
∞ ≤ α∗. This implies by Theorem 16 that the v we output has∥∥gradG[v]

∥∥
∞ ≤ α

∗.
In all cases, the v we output extends vU , so

∥∥v(T )− v0(T )∥∥0 ≤ |U | ≤ 2k.

Appendix E. Proof of Hardness of l0 regularization for l2

We will prove Theorem 21, by a reduction from minimum bisection. To this end, let G = (V,E) be any
graph. We will reduce the minimum bisection problem on G to our regularization problem. Let n = |V |.
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The graph on which we will perform regularization will have vertex set

V ∪ V̂ ,

where V̂ is a set of n vertices that are in 1-to-1 correspondence with V . We assume that every edge in G
has weight 1. We now connect every vertex in V̂ to the corresponding vertex in V by an edge of weight B,
for some large B to be determined later. We also connect all of the vertices in V̂ to each other by edges
of weight B3. So, we have a complete graph of weight B3 edges on V̂ , a matching of weight B edges
connecting V̂ to V , and the original graph G on V . The input potential function will be

v(a) =

{
0 for a ∈ V̂ , and
1 for a ∈ V .

Now set k = n/2. We claim that we will be able to determine the value of the minimum bisection from the
solution to the regularization problem.

If S is the set of vertices on which v and w differ, then we know that the w is harmonic on S: for every
a ∈ S, w(a) is the weighted average of the values at its neighbors. In the following, we exploit the fact that
|S| ≤ n/2.

Claim 39 For every a ∈ S ∩ V̂ , w(a) ≤ 2/nB2.

Proof Let a be the vertex in S ∩ V̂ that maximizes w(a). So, a is connected to at least n/2 neighbors in V̂
with w-value equal to 0 by edges of weight B3. On the other hand, a has only one neighbor that is not in V̂ ,
that vertex has w-value at most 1, and it is connected to that vertex by an edge of weight B. Call that vertex
c. We have

((n− 1)B3 +B)w(a) = Bw(c) +
∑

b∈V̂ ,b 6=a

B3w(b)

= Bw(c) +
∑

b∈V̂ ∩S,b6=a

B3w(b) +
∑

b∈V̂−S

B3w(b)

≤ B +
∑

b∈V̂ ∩S,b6=a

B3w(a)

≤ B + (n/2− 1)B3w(a).

Subtracting (n/2− 1)B3w(a) from both sides gives

((n/2)B3 +B)w(a) ≤ B,

which implies the claim.

Claim 40 For a ∈ S ∩ V , w(a) ≤ n/B.

Proof Vertex a has exactly one neighbor in V̂ . Let’s call that neighbor c. We know that w(c) ≤ 2/B2n.
On the other hand, vertex a has fewer than n− 1 neighbors in V , and each of these have w-value at most 1.
Let da denote the degree of a in G. Then,

(B + da)w(a) ≤ da +B
2

B2n
.

31



So,

w(a) ≤ da + 2/Bn

da +B

≤ n+ (2/Bn)

B + n

≤ n/B.

We now estimate the value of the regularized objective function. To this end, we assume that

|S| = k = n/2.

Let
T = S ∩ V,

and
t = |T | .

We will prove that S ⊂ V and so S = T and t = n/2.
Let δ denote the number of edges on the boundary of T in V . Once we know that t = n/2, δ is the size

of a bisection.

Claim 41 The contribution of the edges between V and V̂ to the objective function is at least

(n− t)B − 4/B

and at most
(n− t)B + tn2/B.

Proof For the lower bound, we just count the edges between vertices in V \ T and V̂ . There are n − t of
these edges, and each of them has weight B. The endpoint in V \ T has w-value 1, and the endpoint in V̂
has w-value at most 2/nB2. So, the contribution of these edges is at least

(n− t)B(1− 2/nB2)2 ≥ (n− t)B(1− 4/nB2) ≥ (n− t)B − 4/B.

For the upper bound, we observe that the difference in w-values across each of these n− t edges is at most
1, so their total contribution is at most

(n− t)B.

Since for every vertex a ∈ T , w(a) ≤ n/B, and also every vertex b ∈ V̂ , w(b) ≤ 2/nB2, the contribution
due to edges between T and V̂ is at most

t(n/B)2B = tn2/B.

We will see that this is the dominant term in the objective function. The next-most important term comes
from the edges in G.
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Claim 42 The contribution of the edges in G to the objective function is at least

δ(1− 2n/B)

and at most
δ + (t2/2)(n/B)2

Proof Let (a, b) ∈ E. If neither a nor b is in T , thenw(a) = w(b) = 1, and so this edge has no contribution.
If a ∈ T but b 6∈ T , then the difference inw-values on them is between (1−n/B) and 1. So, the contribution
of such edges to the objective function is between

δ(1− 2n/B) and δ.

Finally, if a and b are in T , then the difference in w-values on them is at most n/B, and so the contribution
of all such edges to the objective function is at most

(t2/2)(n/B)2.

Claim 43 The edges between pairs of vertices in V̂ contribute at most 2/B to the objective function.

Proof As 0 ≤ w(a) ≤ 2/B2n for every a ∈ V̂ , every edge between two vertices in V̂ can contribute at
most

B3(2/B2n)2 = 4/Bn2.

As there are fewer than n2/2 such edges, their total contribution to the objective function is at most

(n2/2)(4/Bn2) = 2/B.

Lemma 44 If n ≥ 4 and B = 2n3, the value of the objective function is at least

(n− t)B + δ − 1/2

and at most
(n− t)B + δ + 1/3.

Proof Summing the contributions in the preceding three claims, we see that the value of the objective
function is at least

(n− t)B − 4/B + δ(1− 2n/B) ≥ (n− t)B + δ − 4/B − 2nδ/B

≥ (n− t)B + δ − n3/B
≥ (n− t)B + δ − 1/2,

as δ ≤ (n/2)2.
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Similarly, the objective function is at most

(n− t)B + tn2/B + δ + (t2/2)(n/B)2 + 2/B ≤ (n− t)B + n3/2B + δ + n4/8B2 + 2/B

≤ (n− t)B + n3/2B + δ + 1/32n2 + 1/n3

≤ (n− t)B + δ + 1/3.

Claim 45 If n ≥ 2 and B = 2n3, then S ⊂ V .

Proof The objective function is minimized by making t as large as possible, so t = n/2 and S ⊂ V .

Theorem 46 The value of the objective function reveals the value of the minimum bisection in G.

Proof The value of the objective function will be between

(n/2)B + δ − 1/2

and
(n/2)B + δ + 1/3.

So, the objective function will be smallest when δ is as small as possible.

Theorem 46 immediately implies Theorem 21.
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