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Abstract

We study the classic online learning problem of predicting with expert advice, and propose a truly
parameter-free and adaptive algorithm that achieves several objectives simultaneously without us-
ing any prior information. The main component of this work is an improved version of the Normal-
Hedge.DT algorithm (Luo and Schapire, 2014), called AdaNormalHedge. On one hand, this new
algorithm ensures small regret when the competitor has small loss and almost constant regret when
the losses are stochastic. On the other hand, the algorithm is able to compete with any convex com-
bination of the experts simultaneously, with a regret in terms of the relative entropy of the prior and
the competitor. This resolves an open problem proposed by Chaudhuri et al. (2009) and Chernov
and Vovk (2010). Moreover, we extend the results to the sleeping expert setting and provide two
applications to illustrate the power of AdaNormalHedge: 1) competing with time-varying unknown
competitors and 2) predicting almost as well as the best pruning tree. Our results on these appli-
cations significantly improve previous work from different aspects, and a special case of the first
application resolves another open problem proposed by Warmuth and Koolen (2014) on whether
one can simultaneously achieve optimal shifting regret for both adversarial and stochastic losses.
Keywords: expert algorithm, NormalHedge, adaptivity, unknown competitors, time-varying com-
petitors, first order bounds, sleeping expert, adaptive regret, shifting regret

1. Introduction

The problem of predicting with expert advice was first pioneered by Littlestone and Warmuth
(1994); Freund and Schapire (1997); Cesa-Bianchi et al. (1997); Vovk (1998) and others two decades
ago. Roughly speaking, in this problem, a player needs to decide a distribution over a set of experts
on each round, and then an adversary decides and reveals the loss for each expert. The player’s loss
for this round is the expected loss of the experts with respect to the distribution that he chose, and
his goal is to have a total loss that is not much worse than any single expert, or more generally, any
fixed and unknown convex combination of experts.

Beyond this classic goal, various more difficult objectives for this problem were studied in
recent years, such as: learning with unknown number of experts and competing with all but the
top small fraction of experts (Chaudhuri et al., 2009; Chernov and Vovk, 2010); competing with a
sequence of different combinations of the experts (Herbster and Warmuth, 2001; Cesa-Bianchi et al.,
2012); learning with experts who provide confidence-rated advice (Blum and Mansour, 2007); and
achieving much smaller regret when the problem is “easy” while still ensuring worst-case robustness
(de Rooij et al., 2014; Van Erven et al., 2014; Gaillard et al., 2014). Different algorithms were
proposed separately to solve these problems to some extent. In this work, we essentially provide one
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single parameter-free algorithm that achieves all these goals with absolutely no prior information
and significantly improved results in some cases.

Our algorithm is a variant of Chaudhuri et al. (2009)’s NormalHedge algorithm, and more
specifically is an improved version of NormalHedge.DT (Luo and Schapire, 2014). We call it
Adaptive NormalHedge (or AdaNormalHedge for short). NormalHedge and NormalHedge.DT
provide guarantees for the so-called e-quantile regret simultaneously for any e, which essentially
corresponds to competing with a uniform distribution over the top e-fraction of experts. Our new
algorithm improves NormalHedge.DT from two aspects (Section 3):

1. AdaNormalHedge can compete with not just the competitor of the specific form mentioned
above, but indeed any unknown fixed competitor simultaneously, with a regret in terms of the
relative entropy between the competitor and the player’s prior belief of the experts.

2. AdaNormalHedge ensures a new regret bound in terms of the cumulative magnitude of the
instantaneous regrets, which is always at most the bound for NormalHedge.DT (or Normal-
Hedge). Moreover, the power of this new form of regret is almost the same as the second
order bound introduced in a recent work by Gaillard et al. (2014). Specifically, it implies 1)
a small regret when the loss of the competitor is small and 2) an almost constant regret when
the losses are generated randomly with a gap in expectation.

Our results resolve the open problem asked in Chaudhuri et al. (2009) and Chernov and Vovk
(2010) on whether a better e-quantile regret in terms of the loss of the expert instead of the horizon
can be achieved. In fact, our results are even better and more general.

AdaNormalHedge is a simple and truly parameter-free algorithm. Indeed, it does not even
need to know the number of experts in some sense. To illustrate this idea, in Section 4 we extend
the algorithm and results to a setting where experts provide confidence-rated advice (Blum and
Mansour, 2007). We then focus on a special case of this setting called the sleeping expert problem
(Blum, 1997; Freund et al., 1997), where the number of “awake” experts is dynamically changing
and the total number of underlying experts is indeed unknown. AdaNormalHedge is thus a very
suitable algorithm for this problem. To show the power of all the abovementioned properties of
AdaNormalHedge, we study the following two examples of the sleeping expert problem and use
AdaNormalHedge to significantly improve previous work.

The first example is adaptive regret, that is, regret on any time interval, introduced by Hazan and
Seshadhri (2007). This can be reduced to a sleeping expert problem by adding a new copy of each
original expert on each round (Freund et al., 1997; Koolen et al., 2012). Thus, the total number of
sleeping experts is not fixed. When some information on this interval is known (such as the length,
the loss of the competitor on this interval, etc), several algorithms achieve optimal regret (Hazan and
Seshadhri, 2007; Cesa-Bianchi et al., 2012). However, when no prior information is available, all
previous work gives suboptimal bounds. We apply AdaNormalHedge to this problem. The resulting
algorithm, which we called AdaNormalHedge. TV, enjoys the optimal adaptive regret in not only
the adversarial case but also the stochastic case due to the properties of AdaNormalHedge.

We then extend the results to the problem of tracking the best experts where the player needs
to compete with the best partition of the whole process and the best experts on each of these parti-
tions (Herbster and Warmuth, 1995; Bousquet and Warmuth, 2003). This resolves one of the open
problems in Warmuth and Koolen (2014) on whether a single algorithm can achieve optimal shift-
ing regret for both adversarial and stochastic losses. Note that although recent work by Sani et al.
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(2014) also solves this open problem in some sense, their method requires knowing the number of
partitions and other information ahead of time and also gives a worse bound for stochastic losses,
while AdaNormalHedge. TV is completely parameter-free and gives optimal bounds.

We finally consider the most general case where the competitor varies over time with no con-
straints, which subsumes the previous two examples (adaptive regret and shifting regret). This prob-
lem was introduced in Herbster and Warmuth (2001) and later generalized by Cesa-Bianchi et al.
(2012). Their algorithm (fixed share) also requires knowing some information on the sequence of
competitors to optimally tune parameters. We avoid this issue by showing that while this problem
seems more general and difficult, it is in fact equivalent to its special case: achieving adaptive re-
gret. This equivalence theorem is independent of the concrete algorithms and may be of independent
interest. Applying this result, we show that without any parameter tuning, AdaNormalHedge. TV
automatically achieves a bound comparable to the one achieved by the optimally tuned fixed share
algorithm when competing with time-varying competitors.

Concrete results and detailed comparisons on this first example can be found in Section 5. To
sum up, AdaNormalHedge.TV is an algorithm that is simultaneously adaptive in the number of
experts, the competitors and the way the losses are generated.

The second example we provide is predicting almost as well as the best pruning tree (Helmbold
and Schapire, 1997), which was also shown to be reducible to a sleeping expert problem (Freund
etal., 1997). Previous work either only considered the log loss setting, or assumed prior information
on the best pruning tree is known. Using AdaNormalHedge, we again provide better or comparable
bounds without knowing any prior information. In fact, due to the adaptivity of AdaNormalHedge
in the number of experts, our regret bound depends on the total number of distinct traversed edges
so far, instead of the total number of edges of the decision tree as in Freund et al. (1997) which
could be exponentially larger. Concrete comparisons can be found in Section 6.

Related work. While competing with any unknown competitor simultaneously is relatively easy
in the log loss setting (Littlestone and Warmuth, 1994; Adamskiy et al., 2012; Koolen et al., 2012),
it is much harder in the bounded loss setting studied here. The well-known exponential weights al-
gorithm gives the optimal results only when the learning rate is optimally tuned in terms of the com-
petitor (Freund and Schapire, 1999). Chernov and Vovk (2010) also studied e-quantile regret, but no
concrete algorithm was provided. Several work considers competing with unknown competitors in
a different unconstrained linear optimization setting (Streeter and Mcmahan, 2012; Orabona, 2013;
McMahan and Orabona, 2014; Orabona, 2014). Jadbabaie et al. (2015) studied general adaptive
online learning algorithms against time-varying competitors, but with different and incomparable
measurement of the hardness of the problem. As far as we know, none of the existing algorithms
enjoys all the nice properties discussed in this work at the same time as our algorithms do.

2. The Expert Problem and NormalHedge.DT

In the expert problem, on each round ¢t = 1,...,T" the player first chooses a distribution p; over
N experts, then the adversary decides each expert’s loss ¢;; € [0, 1], and reveals these losses to
the player. At the end of this round, the player suffers the weighted average loss b = Pt - £ with
£y = (b1, ..., 0,Nn). We denote the instantaneous regret to expert i on round t by 7 ; = 0, — 4y ;, the
cumulative regret by Ry ; = 23:1 74, and the cumulative loss by L;; = 23:1 £ ;. Throughout
the paper, a bold letter denotes a vector with N corresponding coordinates. For example, r;, R; and
L, represent (r1,...,7¢,n), (Re1,..., Re,n) and (Ly 1, ..., Ly v) respectively.
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Usually, the goal of the player is to minimize the regret to the best expert, that is, max; R ;.
Here we consider a more general case where the player wants to minimize the regret to an arbitrary
convex combination of experts: Rp(u) = Zthl u - ry where the competitor u is a fixed unknown
distribution over the experts. In other words, this regret measures the difference between the player’s
loss and the loss that he would have suffered if he used a constant strategy u all the time. Clearly,
Rp(u) can be written as u - Ry and can then be upper bounded appropriately by a bound on
each Rp; (for example, max; Rt ;). However, our goal is to get a better and more refined bound on
R (u) that depends on u. More importantly, we aim to achieve this without knowing the competitor
u ahead of time. When it is clear from the context, we drop the subscript 7" in Rz (u).

In fact, in Section 5, we will consider an even more general notion of regret introduced in
Herbster and Warmuth (2001), where we allow the competitor to vary over time and to have different
scales. Specifically, let uy, ..., ur be T different vectors with N nonnegative coordinates (denoted
by uy.7). Then the regret of the player to this sequence of competitors is R(uy.7) = Zthl ug -1 If
all these competitors are distributions (which they are not required to be), then this regret captures
a very natural and general concept of comparing the player’s strategy to any other strategy. Again,
we are interested in developing low-regret algorithms that do not need to know any information of
this sequence of competitors beforehand.

We briefly describe a recent algorithm for the expert problem, NormalHedge.DT (Luo and
Schapire, 2014) (a variant of NormalHedge (Chaudhuri et al., 2009)), before we introduce our new

. 2 112
improved variants. On round ¢, NormalHedge.DT sets p; ; o< exp (%) —exp (%)

where [z]1 = max{0,z}. Let € € (0, 1] and competitor u} be a distribution that puts all the mass
on the [ Ne|-th best expert, that is, the one that ranks [Ne| among all experts according to their
total loss Lp; from the smallest to the largest. Then the regret guarantee for NormalHedge.DT

states R(u}) < O(\ /T In (lnT)> simultaneously for all €, which means the algorithm suffers at

most this amount of regret for all but an e fraction of the experts. Note that this bound does not
depend on NV at all. This is the first concrete algorithm with this kind of adaptive property (the
original NormalHedge (Chaudhuri et al., 2009) still has a weak dependence on N). In fact, as we
will show later, one can even extend the results to any competitor u. Moreover, we will improve
NormalHedge.DT so that it has a much smaller regret when the problem is “easy” in some sense.

Notation. We use [V] to denote the set {1,..., N}, Ay to denote the simplex of all distributions
over [N], and RE( || -) to denote the relative entropy between two distributions, Also define L; ; =
23:1 [ri — ‘ -+ Many bounds in this work will be in terms of LT i» which is always at most Lt ;
since trivially [¢;; — €t] < {;;. We consider “log log” terms to be nearly constant, and use O()
notation to hide these terms. Indeed, as pointed out by Chernov and Vovk (2010), InIn x is smaller
than 4 even when z is as large as the age of the universe expressed in microseconds (= 4.3 x 10'7).

3. A New Algorithm: AdaNormalHedge

We start by writing NormalHedge.DT in a general form. We define potential function ®(R,C) =

2
exp (%) with ®(0,0) defined to be 1, and also a weight function with respect to this potential:

w(R,C) = £ (®(R+1,C+1) — ®(R—1,C + 1)). Then the prediction of NormalHedge.DT is
simply to set py ; to be proportional to w(R;—1 ;, C;—1) where C; = t for all t. Note that C; is closely
related to the regret. In fact, the regret is roughly of order /C'r (ignoring the log term). Therefore,
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Algorithm 1 AdaNormalHedge
Input: A prior distribution q € A over experts (uniform if no prior available).
Initialize: Vi € [N], Ry; =0,Cp; =0.
fort =1to T do
Predict! p;; o< giw(Ri—1,i, Ci—1,).
Adversary reveals loss vector £, and player suffers loss b = p: - 4:.
SetVi € [N], 1y =4y — Lyi, Rey = Re—1 + 11,3, Cri = Cr—1i + |reil.
end for

in order to get an expert-wise and more refined bound, we replace C; by C} ; for each expert so that
it captures some useful information for each expert 7. There are several possible choices for Cy ;
(discussed at the end of Appendix A), but for now we focus on the one used in our new algorithm:
Cii = Zizl |77, that is, the cumulative magnitude of the instantaneous regrets up to time t. We
call this algorithm AdaNormalHedge and summarize it in Algorithm 1. Note that we even allow the
player to have a prior distribution q over the experts, which will be useful in some applications as
we will see in Section 5. The theoretical guarantee of AdaNormalHedge is stated below.

Theorem 1 The regret of AdaNormalHedge to any competitor u € Ay is bounded as follows:

R(u) < v/3(u-Cr) (RE(u || @) + n B+ (1 + I N)) = O(v/(u- Cr)RE(u [ q)), (1)

where Cr = (Cry,...,Crn), B=1433,¢; (1 +In(1+ Cr;)) < 3+ 3 In(1+7). Moreover,
if u is a uniform distribution over a subset of [N|, then the regret can be improved to

R(u) < v/3(u-Cr) (RE(ul||q) +In B+ 1). 2)

Before we prove this theorem (see sketch at the end of this section and complete proof in Ap-
pendix A), we discuss some implications of the regret bounds and why they are interesting. First of
all, the relative entropy term RE(u || q) captures how close the player’s prior is to the competitor.
A bound in terms of RE(u || q) can be obtained, for example, using the classic exponential weights
algorithm but requires carefully tuning the learning rate as a function of u. Without knowing u, as
far as we know, AdaNormalHedge is the only algorithm that can achieve this.?

On the other hand, if q is a uniform distribution, then using bound (2) and the fact Cr; < T,
we get an e-quantile regret bound similar to the one of NormalHedge.DT: R(u}) < R(ug,) <

\/ 3T (ln (%) +InB+ 1) where ug, is uniform over the top [Ne| experts in terms of their total
loss L.

However, the power of a bound in terms of Cr is far more than this. Gaillard et al. (2014)
introduced a new second order bound that implies much smaller regret when the problem is easy.
It turns out that our seemingly weaker first order bound is also enough to get the exact same re-
sults! We state these implications in the following theorem which is essentially a restatement of

Theorems 9 and 11 of Gaillard et al. (2014) with weaker conditions.

Theorem 2 Suppose an expert algorithm guarantees R(u) < +/(u-Cr)A(u) where A(u) is
some function of u. Then it also satisfies the following:

'If p,; oc 0 happens for all 4, predict arbitrarily.
%In fact, one can also derive similar bounds for NormalHedge and NormalHedge.DT using our analysis. See discus-
sion at the end of Appendix A.
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1. Recall L1; = Zthl Uy and I~LT7,- = Zthl[ﬁm — @t]+, We have

R(u) < 1/2(u-Ly)A(u) + A(u) < /2(u-Ly)A(u) + A(u).

2. Suppose the loss vector €;’s are independent random variables and there exists an i* and
some o € (0, 1] such that E[l; ; — ly;+] > « for any t and i # i*. Let e;+ be a distribution

that puts all the mass on expert i*. Then we have E[Ry ;+] < @, and with probability at

least 1 — 0, Ry < O (@ + é, [ A(ei+) In %) .

The proof of Theorem 2 is based on the same idea as in Gaillard et al. (2014), and is included
in Appendix B for completeness. For AdaNormalHedge, the term A(u) is 3(RE(u || q) + In B +
In(1+1n N)) in general (or smaller for special u as stated in Theorem 1). Applying Theorem 2 we
have R(u) = O<\/ (u- L7)RE(u || q)> 3 Specifically, if q is uniform and assuming without loss
of generality that L1 < --- < Lp n, then by a similar argument, we have for AdaNormalHedge,

R(u}) < 0] (, /f/T, [Nel In (%)) for any e. This answers the open question (in the affirmative) asked

by Chaudhuri et al. (2009) and Chernov and Vovk (2010) on whether an improvement for small loss
can be obtained for e-quantile regret without knowing e.
On the other hand, when we are in a stochastic setting as stated in Theorem 2, AdaNormalHedge

ensures Ry ;+ < 0 (é In (%)) in expectation (or with high probability with an extra confidence

term), which does not grow with T'. Therefore, the new regret bound in terms of C7 actually leads
to significant improvements compared to NormalHedge.DT.

Comparison to Adapt-ML-Prod (Gaillard et al., 2014). Adapt-ML-Prod enjoys a second order
bound in terms of Zthl rﬁi, which is always at most the term Zle |r¢ ;| appeared in our bounds.*
However, on one hand, as discussed above, these two bounds have the same improvements when
the problem is easy in several senses; on the other hand, Adapt-ML-Prod does not provide a bound
in terms of RE(u || q) for an unknown u. In fact, as discussed at the end of Section A.3 of
Gaillard et al. (2014), Adapt-ML-Prod cannot improve by exploiting a good prior q (or at least
its current analysis cannot). Specifically, while the regret for AdaNormalHedge does not have an
explicit dependence on N and is much smaller when the prior q is close to the competitor u, the
regret for Adapt-ML-Prod always has a In N multiplicative term for Zthl rtzyi, which means even
a good prior results in the same regret as a uniform prior! More advantages of AdaNormalHedge
over Adapt-ML-Prod will be discussed in concrete examples in the following sections.

Proof sketch of Theorem 1. The main idea is to show that the weighted sum of potentials does
not increase much on each round. In fact, we show that the final potential ZZ]\L 1 qiq)(RTﬁi, CTJ») 18
exactly bounded by B (defined in Theorem 1). From this, assuming without loss of generality that
a®(Rr1,Crp) > -+ > gv®(Rrn, Cr,n), we have ¢;®(Rr;, Cr;) < % for all 7, which, by

solving for R, gives Rr; < 4/3Cr,;In (%) Multiplying both sides by u;, summing over N

and applying the Cauchy-Schwarz inequality, we arrive at R(u) < /3(u - C7)(D(u || q) + In B),

*We see O(RE(u || q)) as a minor term and hide it in the big O notation, which is not completely rigorous but will
ease the presentation. Same thing happens for other first order bounds in this work.
*We briefly discuss the difficulty of getting a similar second order bound for our algorithm at the end of Appendix A.
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where we define D(u || q) = Zf\il u; In <%> It remains to show that D(u || q) and RE(u || q)

are close by standard analysis and Stirling’s formula.

4. Confidence-rated Advice and Sleeping Experts

In this section, we generalize AdaNormalHedge to deal with experts that make confidence-rated
advice, a setting that subsumes many interesting applications as studied by Blum (1997) and Freund
et al. (1997). In this general setting, on each round ¢, each expert first reports its confidence 1; ; €
[0, 1] for the current task. The player then predicts p; as usual with an extra yet natural restriction
that if Z; ; = O then p;; = 0. That is, the player has to ignore those experts who abstain from
making advice (by reporting zero confidence). After that, the loss ¢, ; for those experts who did not
abstain (i.e. Z;; # 0) are revealed and the player still suffers loss ét = p: - £;. We redefine the
instantaneous regret r; ; to be It,i(ét — {1,i), that is, the difference between the loss of the player and
expert ¢ weighted by the confidence. The goal of the player is, as before, to minimize cumulative
regret to any competitor u: R(u) = ), u - ry. Clearly, the classic expert problem that we have
studied in previous sections is just a special case of this general setting with 1;; = 1forall t and i.

Moreover, with this general form of r; ;, AdaNormalHedge can be used to deal with this general
setting with only one simple change of scaling the weights by the confidence:

Pt X GLejw(Re—1,i, Cr—1,), 3)

where R;; and Cy; is still defined to be Zi:l rr; and Zi:l |7-,i| respectively. The constraint
Zii = 0 = py; = 0is clearly satisfied. In fact, Algorithm 1 can be seen as a special case of this
general form of AdaNormalHedge with I; ; = 1. Furthermore, the regret bounds in Theorem 1 still
hold without any changes, which are summarized below (proof deferred to Appendix A).

Theorem 3 For the confidence-rated expert problem, regret bounds (1) and (2) still hold for gen-
eral AdaNormalHedge (Eq. (3)).

Previously, Gaillard et al. (2014) studied a general reduction from an expert algorithm to a
confidence-rated expert algorithm. Applying those results here gives the exact same algorithm and
regret guarantee mentioned above. However, we point out that the general reduction is not always
applicable. Specifically, it is invalid if there is an unknown number of experts in the confidence-rated
setting (explained more in the next paragraph) while the expert algorithm in the standard setting
requires knowing the number of experts as a parameter. This is indeed the case for most algo-
rithms (including Adapt-ML-Prod and even the original NormalHedge by Chaudhuri et al. (2009)).
AdaNormalHedge naturally avoids this problem since it does not depend on N at all.

Sleeping Experts. We are especially interested in the case when Z;; € {0, 1}, also called the
specialist/sleeping expert problem where Z; ; = 0 means that expert ¢ is “asleep” for round ¢ and not
making any advice. This is a natural setting where the total number of experts is unknown ahead of
time. Indeed, the number of awake experts can be dynamically changing over time. An expert that
has never appeared before should be thought of as being asleep for all previous rounds.
AdaNormalHedge is a very suitable algorithm to deal with this case due to its independence of
the total number of experts. If an expert ¢ appears for the first time on round ¢, then by definition it
will naturally start with R;_1; = 0 and C;_1; = 0. Although we state the prior ¢ as a distribution,
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which seems to require knowing the total number of experts, it is not an issue algorithmically since q
is only used to scale the unnormalized weights (Eq. (3)). For example, if we want q to be a uniform
distribution over NV experts where /N is unknown beforehand, then to run AdaNormalHedge we can
simply treat g; in Eq. (3) to be 1 for all 7, which clearly will not change the behavior of the algorithm
anyway. In this case, if we let V; denote the total number of distinct experts that have been seen up
to time ¢ and the competitor u concentrates on any of these experts, then the relative entropy term
in the regret (up to time ¢) will be In /V; (instead of In V), which is changing over time.

Using the adaptivity of AdaNormalHedge in both the number of experts and the competitor, we
provide improved results for two instances of the sleeping expert problem in the next two sections.

5. Time-Varying Competitors

In this section, we study a more challenging goal of competing with time-varying competitors in the
standard expert setting (that is, each expert is always awake and again r; ; = ¢; — {; ;), which turns
out to be reducible to a sleeping expert problem. Results for this section are summarized in Table 1.

5.1. Special Cases: Adaptive Regret and Tracking the Best Expert

We start from a special case: adaptive regret, introduced by Hazan and Seshadhri (2007) to bet-
ter capture changing environments. Formally, consider any time interval ¢ = ¢1,...,s, and let
Ry, 15,6 Zt ¢, Tt,i be the regret to expert ¢ on this interval (similarly define L, 1, ; Zt o Cri
and Cly, 1) Zt 4 |7¢4]). The goal of the player is to obtain relatively small regret on any in-
terval. Freund et al. (1997) essentially introduced a way to reduce this problem to a sleeping expert
problem, which was later improved by Adamskiy et al. (2012). Specifically, for every pair of time ¢
and expert 7, we create a sleeping expert, denoted by (¢, ), who is only awake after (and including)
round ¢ and since then suffers the same loss as the original expert 7. So we have Nt sleeping experts
in total on round ¢. The prediction p;; is set to be the sum of all the weights of sleeping expert
(r,i) (r =1,...,t). Itis clear that doing this ensures that the cumulative regret up to time to with
respect to sleepmg expert (t1,1) is exactly Ry, 4,) ; in the original problem.

This is a sleeping expert problem for which AdaNormalHedge is very suitable, since the number
of sleeping experts keeps increasing and the total number of experts is in fact unknown if the horizon
T is unknown. Theorem 3 implies that the resulting algorithm gives the following adaptive regret:

Biogi = 0 ({f (St b (725) ) = 0 (V(Sizy v,

where q is a prior over the Nt experts and the last step is by setting the prior to be ¢; ;) o< 1 /12 for

all t and 4.5 This prior is better than a simple uniform distribution which leads to a term In(Nt5)
instead of In(Nt1). We call this algorithm AdaNormalHedge.TV.® To be concrete, on round ¢
AdaNormalHedge.TV predicts p; ; o< Z’;:l T%w (R[m_l}ﬂ-, C[T’t_l]ﬂ-) .

Again, Theorem 2 can be applied to get a more interpretable bound O<\/ f/[tl’tQ]’i In (N t1)>

where f/[tLtQ]’i = Z?:tl (e i — by < Ly, 4,,i» and a much smaller bound O (%) if the losses
are stochastic on interval [t1, ¢2] in the sense stated in Theorem 2.

SNote that as discussed before, the fact that ¢2 is unknown and thus q is unknown does not affect the algorithm.
8«TV” stands for “time-varying”.
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One drawback of AdaNormalHedge.TV is that its time complexity per round is O(Nt) and the
overall space is O(NT'). However, the data streaming technique used in Hazan and Seshadhri
(2007) can be directly applied here to reduce the time and space complexity to O(N Int) and
O(N InT) respectively, with only an extra multiplicative O(/In(t2 — ¢1)) factor in the regret.

Tracking the best expert. In fact, AdaNormalHedge. TV is a solution for one of the open prob-
lems proposed by Warmuth and Koolen (2014). Adaptive regret immediately implies the so-called
K-shifting regret for the problem of tracking the best expert in a changing environment. Formally,
define the K -shifting regret Ry _shife t0 be max Zszl Ry, 11,t,),i, Where the max is taken over
all i1,--+ ,ig € [NJand 0 = tg < t; < -+ < tg = T. In other words, the player is compet-
ing with the best K -partition of the whole game and the best expert on each of these partitions.
Let L} gpig = min Zle Lit, 41,t,),i, be the total loss of such best partition (that is, the min is
taken over the same space), and similarly define E}_Shiﬂ = min Zle ‘E[tk—1+17tk},ik < Ly shise-
Since essentially R _spife is just the sum of K adaptive regrets, using the bounds discussed above
and the Cauchy-Schwarz inequality, we conclude that AdaNormalHedge. TV ensures Ry shist =

O<\/ K IN’;(—Shift In(N T)) Also, if the loss vectors are generated randomly on these K intervals,

each satisfying the condition stated in Theorem 2, then the regret is Ry .shirt = O (%) in

expectation (high probability bound is similar). These bounds are optimal up to logarithmic fac-
tors (Hazan and Seshadhri, 2007). This is exactly what was asked in Warmuth and Koolen (2014):
whether there is an algorithm that can do optimally for both adversarial and stochastic losses in the
problem of tracking the best expert. AdaNormalHedge.TV achieves this goal without knowing K or
any other information, while the solution provided by Sani et al. (2014) needs to know K, L7 gpix
and « to get the same adversarial bound and a worse stochastic bound of order O(1/a?).

Comparison to previous work. For adaptive regret, the FLH algorithm by Hazan and Seshadhri
(2007) treats any standard expert algorithm as a sleeping expert, and has an additive term O (/3 In t2)
in addition to the base algorithm’s regret (when no prior information is available), which adds up to
a large O(K VT In T) term for K -shifting regret. Due to this extra additive regret, FLH also does
not enjoy first order bounds nor small regret in the stochastic setting, even if the base algorithm that
it builds on provides these guarantees. On the other hand, FLH was proposed to achieve adaptive re-
gret for any general online convex optimization problem. We point out that using AdaNormalHedge
as the master algorithm in their framework will give similar improvements as discussed here.

Adapt-ML-Prod is not directly applicable here for the corresponding sleeping expert problem
since the total number of experts is unknown.

Another well-studied algorithm for this problem is “fixed share”. Several works on fixed share
for the simpler “log loss” setting were studied before (Herbster and Warmuth, 1998; Bousquet and
Warmuth, 2003; Adamskiy et al., 2012; Koolen et al., 2012). Cesa-Bianchi et al. (2012) studied a
generalized fixed share algorithm for the bounded loss setting considered here. When ¢2 — ¢1 and

Ly, 4,),; are known, their algorithm ensures Ry, 1,1 ; = O <\/ Ly, 45),s (N (t2 — tl))) for adaptive
regret, and when K, T and L7, ;. are known, they have Ry shife = O (\/ KL} i M(NT/K ))
No better result is provided for the stochastic setting. More importantly, when no prior information
is known, which is the case in practice, the best results one can extract from their analysis are
Ry, 1500 = O(V/t2In(Nt2)) and Ri.shie = O(K+/T In(NT)), which are much worse than our
results.
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Table 1: Comparison of different algorithms for time-varying competitors’

Algorithm R[t1 Jta]i R g _shift R(ul:T)
AdaNormalHedge. TV = =, =
(this work) VI eitn(Vh) | /K L g (NT) | \/V(w10) L) In (NT)
FLH®
(Hazan and Seshadhri, 2007) \/5 Ints K\/T InT unknown
© l;;l'xei'silalrezmz) t2In(Nt2) K\/TIn(NT) unknown
€sa-bilanchni et al.,

5.2. General Time-Varying Competitors

We finally discuss the most general goal: compete with different u; on different rounds. Recall
R(uy.r) = Z?Zl u; - r; where u; € Rf for all ¢ (note that u; does not even have to be a dis-
tribution). Clearly, adaptive regret and K -shifting regret are special cases of this general notion.
Intuitively, how large this regret is should be closely related to how much the competitor’s se-
quence uy.p varies. Cesa-Bianchi et al. (2012) introduced a distance measurement to capture this
variation: V(uy.p) = Zle Zf\il[um — u¢—1,]+ where we define up; = 0 for all . Also let
lur.r|| = Zthl |lug|l; and L(uy.p) = Zle u; - ;. Fixed share is shown to ensure the follow-
ing regret (Cesa-Bianchi et al., 2012): R(u;.7) = O(\/V(ul:T)L(ulzT) In (NHul;TH/V(ul:T)))
when V (uy.r), L(uy.7) and ||uy.7|| are known. No result was provided otherwise.’ Here, we show
that our parameter-free algorithm AdaNormalHedge.TV actually achieves almost the same bound
without knowing any information beforehand. Moreover, while the results in Cesa-Bianchi et al.
(2012) are specific for the fixed share algorithm, we prove the following results which are indepen-
dent of the concrete algorithms and may be of independent interest.

Theorem 4 Suppose an expert algorithm ensures Ry, 1, < 1/ A Ei"’:tl 2t for any tq,to and i,
where z;; > 0 can be anything depending ont and i (e.g. |ry;l, [¢r; — @t]+, Yy ; or constant 1), and
A is a term independent of t1,to and i. Then this algorithm also ensures

R(urr) < AV () S, w -2

Specially, for AdaNormalHedge.TV, plugging A = O(In(NT)) and z,; = [li; — U]+ gives
R(ur) = O(\/V(urr) Lwir) I (NT)), where L(urr) = S0, S8 wniltes — i)+

The key idea of the proof is to rewrite R(uy.7) as a weighted sum of several adaptive regrets in
an optimal way (see Appendix C for the complete proof). This theorem tells us that while playing
with time-varying competitors seems to be a harder problem, it is in fact not any harder than its
special case: achieving adaptive regret on any interval. Although the result is independent of the
algorithms, one still cannot derive bounds on R(u;.7) for FLH or fixed share based on their adaptive
regret bounds, because when no prior information is available, the bounds on Ry, 4, ; for these
algorithms are of order O(+/t2) instead of O(,/t3 — t1), which is not good enough. We refer the
reader to Table 1 for a summary of this section.

For fair comparison, we only consider the case when no prior information (e.g. t1,t2, V (ui.7) etc) is known.

8The choice of the base algorithm does not matter since the dominating term in the regret comes from FLH itself.

° Although in Section 7.3 of Cesa-Bianchi et al. (2012), the authors mentioned online tuning technique for the pa-
rameters, it only works for special cases (e.g. adaptive regret).

10
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6. Competing with the Best Pruning Tree

We now turn to our second application on predicting almost as well as the best pruning tree within a
template tree. This problem was studied in the context of online learning by Helmbold and Schapire
(1997) using the approach of Willems et al. (1993, 1995). It is also called the tree expert problem
in Cesa-Bianchi and Lugosi (2006). Freund et al. (1997) proposed a generic reduction from a tree
expert problem to a sleeping expert problem. Using this reduction with our new algorithm, we
provide much better results compared to previous work (summarized in Table 2).

Specifically, consider a setting where on each round ¢, the predictor has to make a decision
y; from some convex set ) given some side information x;, and then a convex loss function f; :
Y — [0, 1] is revealed and the player suffers loss f;(y;). The predictor is given a template tree G
to consult. Starting from the root, each node of G performs a test on x; to decide which of its child
should perform the next test, until a leaf is reached. In addition to a test, each node (except the
root) also makes a prediction based on x;. A pruning tree P is a tree induced by replacing zero or
more nodes (and associated subtrees) of G by leaves. The prediction of a pruning tree P given x,
denoted by P(z;), is naturally defined as the prediction of the leaf that x; reaches by traversing P.
The player’s goal is thus to predict almost as well as the best pruning tree in hindsight, that is, to
minimize Rg = 1, fi(ye) — minp S0, fi(P(x:)).

The idea of the reduction introduced by Freund et al. (1997) is to view each edge of G as a
sleeping expert (indexed by e), who is awake only when traversed by x;, and in that case predicts
Yt the same prediction as the child node that it connects to. The predictor runs a sleeping expert
algorithm with loss ¢; . = fi(y:.c), and eventually predicts y; = ) .  Pt.e¥t,c Where E denotes the
set of edges of G and p; . (e € E) is the output of the expert algorithm; thus by convexity of f;, we
have fi(y;) < ZeE gPteft(Ute) = ft. Note that we only care about the predictions of those awake
experts since otherwise p; . is required to be zero. Now let P* be one of the best pruning trees, that
is, P* € argminp Zthl ft(P(z)), and m be the number of leaves of P*. In the expert problem,
we will set the competitor u to be a uniform distribution over the m terminal edges (that is, the ones
connecting the leaves) of P*, and the prior g to be a uniform distribution over all the edges. Since
on each round, one and only one of those m experts is awake, and its prediction is exactly P*(z;),
we have R(u) = Zle %(ét — ft(P*(xy))), and therefore Rg < mR(u).

It remains to pick a concrete sleeping algorithm to apply. There are two reasons that make
AdaNormalHedge very suitable for this problem. First, since m is clearly unknown ahead of time,
we are competing with an unknown competitor u, which is exactly what AdaNormalHedge can deal
with. Second, the number of awake experts is dynamically changing, and as discussed before, in
this case AdaNormalHedge enjoys a regret bound that is adaptive in the the number of experts seen
so far. Formally, recall the notation N, which in this case represents the total number of distinct
traversed edges up to round ¢. Then by Theorem 3, we have

Rg = O(m/(u- Cr)RE(u ] @) = me (S0 1 = £u(P* (@) (ff,f)),

which, by Theorem 2, implies Rg = O (\/mf/* ln(NT/m)) where L* = Z?Zl [fe(P* () — )4,

which is at most the total loss of the best pruning tree L* = Zthl ft(P*(x¢)). Moreover, the
algorithm is efficient: the overall space requirement is O(Nr), and the running time on round ¢ is
O(||z¢||g) where we use ||z¢||g to denote the number of edges that x; traverses.

11
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Table 2: Comparison of different algorithms for the tree expert problem

Algorithm Rg Time (per round) | Space (overall) szidat;)dk;’lgw
Adalomalbedze | o(\fmLw (3)) | Olmle) | O() No
(ggﬁf;zﬁzxi O(VmL*N) O ([[z¢llg) O (N7) No

<H§$§$iﬁ?21c$fﬁtgsg7> O(VmL*) O (df|z]lg) O (N7) Yes

Comparison to other solutions. The work by Freund et al. (1997) considers a variant of the
exponential weights algorithm in a “log loss” setting, and is not directly applicable here (specifically
it is not clear how to tune the learning rate appropriately). A better choice is the Adapt-ML-Prod
algorithm by Gaillard et al. (2014) (the version for the sleeping expert problem). However, there is
still one issue for this algorithm: it does not give a bound in terms of RE(u || q) for an unknown u.
So to get a bound on R(u), the best thing to do is to use the definition R(u) = u-R and a bound on

each Rr;. In short, one can verify that Adapt-ML-Prod ensures regret R(u) = O (\/ mL*In N )

where N = |E)| is the total number of edges/experts. We emphasize that N can be much larger
than N7 when the tree is huge. Indeed, while N7 is at most 7" times the depth of G, N could be
exponentially large in the depth. The running time and space of Adapt-ML-Prod for this problem,
however, is the same as AdaNormalHedge.

We finally compare with a totally different approach (Helmbold and Schapire, 1997), where one
simply treats each pruning tree as an expert and run the exponential weights algorithm. Clearly the
number of experts is exponentially large, and thus the running time and space are unacceptable by
a naive implementation. This issue is avoided by using a clever dynamic programming technique.
If L* and m are known ahead of time, then the regret for this algorithm is O(v/mL*) by tuning the
learning rate optimally. As discussed in Freund et al. (1997), the linear dependence on m in this

bound is much better than the one of the form O (\/ mL*In N ), which, in the worst case, is linear
in m. This was considered as the main drawback of using the sleeping expert approach. However,

the bound for AdaNormalHedge is O( mL*In(Np/ m)) which is much smaller as discussed

previously and in fact comparable to O(v/mL*). More importantly, L* and m are unknown in
practice. In this case, no sublinear regret is known for this dynamic programming approach, since
it relies heavily on the fact that the algorithm is using a fixed learning rate and thus the usual
time-varying learning rate methods cannot be applied here. Therefore, although theoretically this
approach gives small regret, it is not a practical method. The running time is also slightly worse
than the sleeping expert approach. For simplicity, suppose every internal node has d children. Then
the time complexity per round is O(d||x||g). The overall space requirement is O(/N;), the same as
other approaches. Again, see Table 2 for a summary of this section.

Finally, as mentioned in Freund et al. (1997), the sleeping expert approach can be easily gen-
eralized to predicting with a decision graph. In that case, AdaNormalHedge still enjoys all the
improvements discussed in this section (details omitted).

Acknowledgements. The authors thank Yoav Freund for helpful discussions and the anonymous
reviewers for their comments.
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Appendix A. Complete proofs of Theorem 1 and 3

The analysis of NormaHedge.DT is based on the idea of converting the expert problem into a drifting
game (Schapire, 2001; Luo and Schapire, 2014). Here, we extract and simplify the key idea of their
proof and also improve it to form our analysis. We need the following two lemmas. The first one is
an improved version of Lemma 2 of Luo and Schapire (2014).

Lemma5 Forany R€ R,C > 0andr € [—1,1], we have

3|r|

S(R+r,C+|r]) <OR,C)+w(R,C)r+ C+1)
Proof We first argue that ®(R + r, C' + |r|), as a function of r, is piecewise-convex on [—1, 0] and
[0, 1]. Since the value of the function is 1 when R + r < 0 and is at least 1 otherwise. It suffices to
only consider the case when R+7 > 0. On the interval [0, 1], we can rewrite the exponent (ignoring
the constant %) as:

(R+1)? (R—C)?

C+r C+r

which is convex in 7. Combining with the fact that “if g(x) is convex then exp(g(x)) is also convex”
proves that ®(R+r, C'+|r|) is convex on [0, 1]. Similarly when r € [—1, 0], rewriting the exponent
as

— (C+r)+ +2(R-C),

(R4+1)?
C—r

(R+0)?

=(@-n+ C—r

—2(R+C)

completes the argument.

Now define function f(r) = ®(R+r,C+|r|)—w(R, C)r. Since f(r) is clearly also piecewise-
convex on [—1, 0] and [0, 1], we know that the curve of f(r) is below the segment connecting points
(=1, f(—1)) and (0, f(0)) on [—1, 0], and also below the segment connecting points (1, f(1)) and
(0, £(0)) on [0, 1]. This can be mathematically expressed as:

f(r) <max{f(0) 4+ (f(0) = f(=1))r, f(0) + (f(1) = f(0))r} = f(0) + (F(1) = f(0))Ir],
where we use the fact f(—1) = f(1). Now by Lemma 2 of Luo and Schapire (2014), we have
F(1) = F(0) = H(@(R+1,C+1) + ®(R ~1,C + 1)) = ®(R,C) < } (exp (5 ) ~ 1)
which is at most % since C is nonnegative and e¥ — 1 < {T_lx for any x € [0, a]. Noting that

es —1 < 3 completes the proof. |

The second lemma makes use of Lemma 5 to show that the weighted sum of potentials does not
increase much and thus the final potential is relatively small.

Lemma 6 AdaNormalHedge ensures Y\ | ¢;®(Rr;,Cr;) < B = 1+3 SN @ (1 4+ 1In(1+ Cry)).
Proof First note that since AdaNormalHedge predicts p; ; o giw(R¢—1,, C¢—1,;), we have

SN Giw(Ri 14, Cr1.4)res = 0. “4)
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Now applying Lemma 5 with R = R;_1;,C = Cy_1; and r = r¢;, multiplying the inequality
by g; on both sides and summing over 7 gives Zfil Gi®(Rt i, Cri) < Zf\il G®(Ri—1,Ci—14) +
2 M 4ileil We then sum over ¢ € [T] and telescope to show ZN 14®(Rr;,Cri) < 1+

1=1 Cy_1,;+1"
5 Zl_l qi Zt 1 Ct| i L‘H Finally applying Lemma 14 of Gaillard et al. (2014) to show Zt ) CJTi i‘+1
<1+In(l1+Cry) Completes the proof. [

We are now ready to prove Theorem 1 and Theorem 3.

Proof (of Theorem 1)  Assume ¢1®(Rr1,Cr1) > -+ > gn®(Rr N, Cr n) without loss of
generality. Then by Lemma 6, it must be true that ¢;®(Rr;, Cr;) < % for all ¢, which, by solving

for Rr;, gives Rr; < 4/3Ct;ln (%) Multiplying both sides by u;, summing over N and

applying the Cauchy-Schwarz inequality, we arrive at R(u) < Zf\i \/ 3u;Cr; - u;In ( - ) <

V/3(u-Cr)(D(u || q) + In B), where we define D(u || q) = S u;In ( o ) It remains to

show that D(u || q) and RE(u || q) are close. Indeed, we have D(u || q) — RE(u || q) =
va 1 uiln < ) which, by standard analysis, can be shown to reach its maximum when u; %

and the maximum value is In 5, 1 + < In(1+ In N). This completes the proof for Eq. (1).

Finally, when u is in the special form as described in Theorem 1, we have D(u || q) —
RE(u || q) = In|S| + ﬁZieS In(3) < In|S| - |S‘ In(|S|!). By Stirling’s formula z! >
V2rz (£)”, we arrive at D(u || q) — RE(u || @) < 1 — (In+/27[S])/|S| < 1, proving Eq.
2). |

Proof (of Theorem 3) It suffices to point out that 7 ; is still in the interval [—1, 1] and Eq. (4) in the
proof of Lemma 6 still holds by the new prediction rule Eq. (3). The entire proof for Theorem 1
applies here exactly. |

The algorithm and the proof can be generalized to Cy; = >.°_, |r,|? for any d € [0,1].
Indeed, the only extra work is to prove the convexity of ®(R 4 r,C + |r|?). When d = 0, we
recover NormalHedge.DT exactly and get a bound on R(u) for any u (in terms of VT), instead
of just R(u}) as in the original work. It is clear that d = 1 gives the smallest bound, which is
why we use it in AdaNormalHedge. The ideal choice, however, should be d = 2 so that a second
order bound similar to the one of Gaillard et al. (2014) can be obtained. Unfortunately, the function
®(R +r,C +r?) turns out to not always be piecewise-convex, which breaks our analysis. Whether
d = 2 gives a low-regret algorithm and how to analyze it remain an open question.

Appendix B. Proof of Theorem 2

Proof For the first result, the key observation is u - Cr = R(u) + 2u - Ly. We only consider
the case when R(u) > 0 since otherwise the statement is trivial. By the condition we thus have
R(u)? < (R(u) + 2u - Ly)A(u), which by solving for R(u) gives

R(u) < L(A(w) + \/A()? + 8(u- Er)A(w)) < \/2(u- Lr) A(u) + A(w),
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proving the bound we want.

For the second result, let [E; denote the expectation conditioning on all the randomness up to
round ¢. So by the condition, we have E¢[r ;«] = Zfil prile[lei — lrix] > (1l — pyi+), and thus
E[Rr,+] > aS where we define S = S°L | E[1 — p;;+]. On the other hand, by convexity we also

have |ry ;| < valpnwm li<| < 1—pgi+ and thus E[Ryp ;] < E[\/A(ej+)Cr+] < \/A(ex)S

by the concavity of the square root function. Combining the above two statements gives .S < M,

and plugging this back shows E[Rz ;] < %. The high probability statement follows from the
exact same argument of Gaillard et al. (2014) using a martingale concentration lemma. |

Appendix C. Proof of Theorem 4

Below we use [s, t] to denote the set {s,s + 1,...,t —1,t} for1 < s <t <Tands,t e NT.
Proof We first fix an expert ¢ and consider the regret to this expert Zthl ug;re . Letaj > 0

and U; = [s;,t;] for j = 1,..., M be M positive numbers and M corresponding time intervals
such that u;; = Z]Ail a;1{t € U;}. Note that this is always possible, with a trivial choice being

a; = uj, s; = t; = 7 and M = T'; we will however need a more sophisticated construction
specified later. By the adaptive regret guarantee, we have

M t;
Zumr“—ZaJZHtEU}r“—ZaJ [t Z Asz,
j=1 t=s;
which, by the Cauchy-Schwarz inequality, is at most
M M M T M
Zaj- AZa]Zzn— Zaj- AZ@Zl{tEUj}zt,i: Zaj-
j=1 t=s; j=1 j=1 t=1 j=1

Therefore, we need a construction of a; and U such that Z]Ail a; is minimized. This is addressed in
Lemma 7 below which shows that there is in fact always a (optimal) construction such that Z]]Vil a;

is exactly Zthl[ut,i — ut—1,4]+. Now summing the resulting bound over all experts and applying
the Cauchy-Schwarz inequality again proves the theorem. |

Lemma 7 Let vy, ...,vr be T nonnegative numbers and h({v1,...,vr}) = min Z;‘il a; where
the minimum is taken over the set of all possible choices of M € Nt a; > 0,U; = [s;,t;] with
1<sj<tj <T,sj,t; € Nt (j =1,...,M) such that v, = Z]Ai1 a;1{t € U;} for all t. Then
with vg defined to be 0 we have

T
h({’Ul,...,UT} th—’Ut 1]+
t=1

Proof We prove the lemma by induction on 7'. The base case 7' = 1 is trivial. Now assume the
lemma is true for any number of v’s smaller than T". Suppose a;,U; = [s;,t;] (j =1,...,M)isan
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optimal construction. Let t* € arg min; v;. Without loss of generality assume ¢* belongs and only
belongs to Uy, ..., Uy for some k. By the definition of A, we must have

h({vi,...,vr}) = v + h({vr —wi, .. vpo1 — w1 }) + h({ve 1 — wpes, .. e —wr}),

where we define w; = Z§:1 a;1{t € U;} and h(D) = 0. (Note that we also use the fact that
v+ = ming vy so that v, — wy > v — v+ i always nonnegative as required.) Now the key idea is
to show that “extending” each U; (j € [k]) to the entire time interval [1, 7] does not increase the
objective value in some sense. First consider extending U;. By the inductive assumption, we have

h({’U]_ — W1 —a1,...,Vg;—-1 — Wgy—1 — A1,Vg; — Wsgqy---,Vtx—1 — wt*—l}

s1—1
= (v —wi —a1) + (Z (vt —we — a1) — (V-1 — w1 — a1)]+>

t=2

(00— ) — (a1 — w1 — )]s+ ( S (v — wr) — (o1 — wt_1>]+>

t=s1+1
- h({’U]_ — W1,y ..., Ugr—1 — wt*—l}) + [(Usl - wsl) - (US1—1 - w51—1 - al)]+
— ([(vsy —wsy) = (vs-1 — wsy—1)]+ + a1)
< h({vr —wi, ..., v 1 —wp_1}),

where the inequality follows from the fact [b + ¢|+ < [b] + c. Similarly, we also have

h({vprs1 — Weeg1, - Uty — Wiy, V41 — Wiy 1 — A1y -, U7 — WT — a1}
< h({vesq1 — wpe g1, ..., v — W)
By extending Us, . . ., Uy one by one in a similar way, we arrive at
h({’Ul, ... ,UT}) > v + h({Ul — Uty oo, Upr—1 — ’Ut*}) + h({Ut*+1 — Uty oo, U — Ut*}).
Notice that the right hand side of the above inequality admits a valid construction for {vy,...,vr}:
an interval U = [1,T] with weight a = wv;«, together with the optimal constructions for {v; —
Vpry ooy U1 — Ug= } and {vgx 41 — Vg=, . .., vp — vy= }. Therefore, by the optimality of A, the above

inequality must be an equality. By using the inductive assumption again, we thus have

h({vi,...,vr}) = ve + h({vr —vpe, .. vp 1 — v }) + h({veg1 — v, . 0 — U })

t*—1 T
= v + <Ul — U + Z[Ut — Ut—1]+> + (Ut*+1 — U + Z [vp — Ut—1]+>

=2 1=t +2
1 T
= <Z[Ut —Ut—1]+> + ( > v —Ut—1]+>
t=1 t=t*+1
T
= [vt — ve-1]+,

t=1

where the last step follows from [vy+ — vg=—1]+ = 0 by the definition of ¢*. This completes the
proof. |
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