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Abstract
We study online prediction where regret of the algorithm is measured against a benchmark defined
via evolving constraints. This framework captures online prediction on graphs, as well as other
prediction problems with combinatorial structure. A key aspect here is that finding the optimal
benchmark predictor (even in hindsight, given all the data) might be computationally hard due to
the combinatorial nature of the constraints. Despite this, we provide polynomial-time prediction
algorithms that achieve low regret against combinatorial benchmark sets. We do so by building
improper learning algorithms based on two ideas that work together. The first is to alleviate part of
the computational burden through random playout, and the second is to employ Lasserre semidef-
inite hierarchies to approximate the resulting integer program. Interestingly, for our prediction
algorithms, we only need to compute the values of the semidefinite programs and not the rounded
solutions. However, the integrality gap for Lasserre hierarchy does enter the generic regret bound
in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the
computation time and the regret bound of the algorithm.

1. Introduction

To motivate the general setting of the paper, let us start with an example. Consider the problem of
node label prediction in an evolving social network. At each round, a new user joins the network
and makes connections to some existing users. The observable part of a user’s type is represented by
a covariate vector (or, side information) that may consist of gender, age, education level, and other
revealed characteristics. Suppose we are tasked with developing a system that predicts a “label”
for the user, in a possible set of outcomes. For instance, our goal might be to conduct a successful
marketing campaign; here, the unseen labels could stand for the type of product the user will buy.
Having made the prediction, we observe the actual behavior of the person (such as a purchase) and
suffer a cost if the prediction was wrong.

We would like to devise a framework for developing prediction algorithms for this problem.
Several aspects require careful consideration. First, how do we phrase the goal of the forecaster?
Second, how do we model the evolution of the graph, arrival of users, and users’ covariate vectors?
Third, how can we leverage global information dispersed in the network in order to make good
predictions on the individual level? Last but not least, how do we develop computationally feasible
prediction methods?

We depart from the usual regret minimization framework in several ways. First, instead of re-
stricting the set of possible labelings based solely on the graph structure and edge weights, we model
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the set F through the number of satisfied constraints. To this extent, a graph structure is just a par-
ticular set of constraints that involve pairs of nodes (which we shall interchangeably call “items”
or “individuals”). A more general constraint might involve groups of individuals, and this gives
greater flexibility in modeling the overall interaction between the nodes. Formally, a constraint is
an arbitrary binary or real-valued function from assignments of labels for a subset of nodes to R≥0.
Within theoretical computer science, constraint satisfaction problems (CSPs) are a natural umbrella
for such combinatorial problems as Max Cut, Unique Games, and Max k-SAT. Furthermore,
under the Unique Games Conjecture, semidefinite relaxations are providing an optimal approxima-
tion ratio for every CSP (Raghavendra, 2008; Raghavendra and Steurer, 2009). One of the goals
of his paper is to apply semidefinite relaxation techniques to the problem of online prediction with
combinatorial constraints.

The second way in which we depart from the traditional work on online learning is in allowing
constraints to be revealed in an online manner. For the example of a graph-based constraints, this
means that the graph can be revealed to the forecaster sequentially. Moreover, we can think of
the graph as evolving in time since identities of the nodes have little significance, except for being
arguments to constraints. We assume that the probability distribution that governs this evolution is
known to the forecaster. As a particular case, the distribution may put all the mass on the revelation
of all the constraints at the first round, in which case the constraints (or, the graph) are “known ahead
of time.” More generally, one may take graph evolution models studied in probability theory and
in social networks research, and use these for the prediction problem. In addition to the evolution
of constraints, we allow the forecaster to observe side information about the new node. This side
information is, once again, stochastic and follows a distribution jointly with constraints and node
identities.

While the constraints and side information are stochastic, the label is chosen in an adversarial
way. We have in mind the situation where we can model the network structure and the distribution
of people types, but the label (or, action) of the person is not easily modeled. Instead, this behavior
can be best understood through global information within the network, not the local information.
Such a global coherence of labels and the constraints is modeled through the comparator class F .

It would appear that the overall framework involving constraints, side information, and ad-
versarially chosen labels cannot yield computationally tractable algorithms. Yet we show that by
moving to improper prediction algorithms one can develop computationally efficient methods for
the problem with only slight worsening of the regret guarantees. As a first step towards developing
efficient methods, we show that the knowledge of the overall distribution governing the presenta-
tion of constraints and the side information allows us to define a randomized method with a provable
guarantee on prediction error. We analyze “random playout,” a method that simulates future con-
straints and side information and uses these hallucinated values in place of missing information. We
show that such an algorithm (which arises from the relaxation framework in (Rakhlin et al., 2012))
has regret that is bounded by classical Rademacher complexity of F given the constraints and side
information.

The last missing piece in this story is how to calculate the next prediction given the random
playout. Here, we show that the forecaster needs to compute a value with conditional Rademacher
complexity as part of the objective. In general, the computation of Rademacher complexity is not
a feasible task for the types of combinatorial constraints we have in mind. However, the online
relaxation framework suggests that we may take a superset of F (given the constraints and side
information) and suffer regret of Rademacher complexity of this larger set. We propose to use
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semidefinite hierarchies for this task. In particular, we define Lasserre hierarchy (Lasserre, 2001;
Parrilo, 2003) to obtain polynomial-time prediction methods with a “knob” (level of the hierarchy)
that trades off computational time and prediction performance as measured by the regret.

In this paper, two distinct uses of the word “relaxation” come together. Online relaxations are
upper bounds on the minimax value of the multistage prediction problem (Rakhlin et al., 2012).
One of a number of approaches for obtaining online relaxations is to increase the set of benchmark
solutions. The latter is a relaxation in the sense of optimization, as we show in the paper. Indeed,
in this case, online relaxations and optimization relaxations are put on the same footing, and any
distinction between the two should be clear from the context.

We use semidefinite relaxations in a somewhat unconventional way because the end goal is
the problem of prediction. The online relaxation requires us to compute the value of the relaxed
objective rather than the integer solution. Sidestepping the need to round the solution is a nice
feature of “improper” prediction methods. The integrality gap still comes into the picture, as it
effectively quantifies the increase of Rademacher complexity for the larger set. Yet, the regret bound
only requires existence of a rounding procedure with a given guarantee and not its implementation.
Crucially, the multiplicative increase due to the integrality gap is a constant that enters the regret
bound only, leaving the constant in front of the comparator (OPT) to be one! The way in which the
power of semidefinite relaxations fuses with the power of online relaxations is rather fortuitous.

The statements proved in this paper have an interesting “modularity” property. As soon as one
finds a rounding procedure with a smaller integrality gap, this gap can be immediately inserted in
the regret upper bound of our method. The prediction algorithm itself does not change, as it does
not need to round the solution. Further, since Lasserre hierarchies we are employing are known to
be tighter than LP-based and other hierarchies, the integrality gap can be proved for these weaker
approximation methods.

We remark that it has been noted in the literature by various authors that the problem of pre-
diction can be solved in situations when the offline solution is NP-hard (see e.g. (Hazan et al.,
2012; Christiano, 2014; Abernethy, 2010)). Our work can be seen as formally extending this state-
ment to approximation schemes, with an additional knob for the computation-prediction tradeoff.
We also remark that ideas similar in spirit have been proposed in (Chandrasekaran et al., 2012;
Chandrasekaran and Jordan, 2013), among others, in the statistical (rather than online) setting. In
particular, the recent paper of Barak and Moitra (2015) gives very strong guarantees for learning
third-order tensors using the 6th level of the sum-of-squares hierarchy. The authors compute a tight
bound on the Rademacher complexity of the relaxed norm. In fact in Kakade et al. (2009) approxi-
mation algorithms are used for the problem of online linear optimization problems of combinatorial
nature. However in the regret bounds in this work the loss of the algorithm is not compared with
one times the optimal action but rather approximation factor times the optimal.

In summary, our contribution involves a framework for online prediction of labels for individuals
that appear in a streaming fashion, with side information about individuals and constraints being also
revealed in an online manner. The labels themselves can be adversarially chosen, while we assume
that the stochastic model of the constraints and side information is known a priori. We propose a
general method that is based on random playout, and further propose a semidefinite relaxation for
the resulting CSP-like problem. We prove several regret bounds for the prediction method in terms
of integrality gaps. The method allows for a trade-off between computation time and performance
guarantee.
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This paper is organized as follows. After describing the setting in the next section, we present
in Section 3 the formalism of online relaxations and state a generic random-playout algorithm with
a regret guarantee in terms of the expected relaxation. In Section 4 we show that the relaxation
based on classical Rademacher averages is “admissible”, and we state the computationally-difficult
problem. In Section 5 we relax the problem in the SDP language of Lasserre hierarchy. Section 6
makes the connection between the integrality gap and the regret bound of the r-th level in the hier-
archy. The main result here is Theorem 4 which gives a regret bound in terms of the Rademacher
complexity and the integrality gap. We turn to an alternative “Lagrangian” form of the optimization
problem in Section A and prove a regret bound for the r-th level of this form of relaxation (Theo-
rem 7). Several examples are discussed in Section 7, and the paper is concluded with a lower bound
in Section B which shows near-optimality of our methods in terms of prediction performance.

Notation We use the following shorthand notation: let [n] , {1, . . . , n}, a1:t , (a1, . . . , at),
(a, b)1:t = (a1, b1, . . . , at, bt). We denote by ∆(A) the set of distributions on the set A.

2. Setting

On each round t = 1, . . . , V , the forecaster observes a new item along with side information xt ∈
Xt ⊆ X and a set Ct of constraints. The forecaster then makes a prediction ŷt ∈ {1, . . . , κ} , [κ]
and observes the label yt ∈ [κ]. The side information set Xt may be time-varying, but is known
to the forecaster. Each constraint c ∈ Ct is represented by a pair (Sc, Rc) where Sc ⊆ V and
Rc : [κ]Sc 7→ R≥0. For an assignment g ∈ [κ]V , we write c(g) or Rc(g) for the value of Rc
on g(Sc). To lighten the notation, let us introduce a shorthand It = (Ct, xt) for the associated
constraints and the side information for the item.

Example 1 Let κ = 2 and let g ∈ {1, 2}V be an assignment of binary labels to vertices of
an unweighted graph G = (V, E). Define a constraint c for each edge (u, v) ∈ E by taking
Sc = (u, v) and Rc(gu, gv) = 1 {gu 6= gv}. Any labeling g defines a partition of G, and the size of
the cut is precisely

∑
c c(g).

LetF be a class of functions X → [κ]. Each f ∈ F gives rise to a vector (f(x1), . . . , f(xV )) of
labelings of the items. Given x1, . . . , xV , each f ∈ F induces an assignment vector [f(xj)]

V
j=1 ∈

[κ]V , and now c([f(xj)]
V
j=1) represents the value of the constraint c on this assignment.

Let ∪Ct = ∪Vt=1Ct denote the union of all the constraint sets. Given this union, as well as x1:V ,
we define the subset of those functions that do not violate more than K constraints as

FK [I1:V ] =
{
f ∈ F :

∑
c∈∪Ct

c ([f(x1), . . . , f(xV )]) ≤ K
}

(1)

for some given K ≥ 0.

Example 2 Continuing with Example 1, let F = {f(x) = 1 {〈w, x〉 > γ} + 1 : w ∈ Rd}. The
set in (1) is then the set of homogenous hyperplanes that classify the vertices of the graph with a
margin γ in such a way that the cut is at most of size K.

Let `(ŷt, yt) = 1 {ŷt 6= yt} be the indicator loss function. The goal of the forecaster is phrased
as minimization of regret

Reg =
∑V

t=1 `(ŷt, yt)− inff∈FK [I1:V ]

∑V
t=1 `(f(xt), yt) (2)
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with respect to the (data-dependent) subset of F . This definition forces the forecaster to perform
nearly as well as the benchmark that satisfies the constraints up to a certain threshold.

We remark that the class F is “pruned” as more information about the constraints arrives over
time. This pruning in effect captures the global information in the network, which requires adher-
ence of labelings (given locally by values of f on the side information) to the global structure of
constraints. It is important to recognize that the forecaster faces a difficulty: the “pruned” set (1) of
comparators can only be calculated in hindsight.

We assume that the constraints and side information are drawn from a distribution known to the
forecaster. That is, given I1:t−1, we assume that the forecaster is able to draw samples from the
conditional distributions p(Ct, xt|I1:t−1).

Example 3 (Preferential Attachment) In the preferential attachment model, the set Ct of con-
straints corresponds to a set of new edges connected to previously revealed nodes. The edges are
drawn according to the node degree given by the set of edges C1:t−1. In this example, the distribution
does not depend on side-information.

Example 4 (Geometric Random Graphs) We may allow xt’s to be drawn from some fixed distri-
bution that does not depend on the constraints. In turn, the constraints can be formed according to
the side information. One example is a geometric random graph, where pairwise constraints (graph
edges) are formed according to distances from the new random point which may be given by the
distance between the side information vectors. It is known that such graphs have better spectral
properties (Barak et al., 2011). The result in this paper indeed employ an average (rather than the
worst-case) integrality gap and can take advantage of “nice” graphs.

Example 5 (Unlabeled Data) Rather than assuming the knowledge of the distribution of xt’s, the
random play-out algorithm introduced in the paper may tap into a pool of unlabeled data.

Other examples of distributions include a variant of the stochastic block model (SBM). This
generative process provides the simplest model of group formation (though we remark that we are
not aiming to recovery a hidden labeling, which is the focus of much research on SBM).

The upper bounds on regret obtained in this paper will also hold for an intermediate time horizon
n ≤ V . This “anytime” property follows from the fact that constraints are only added, and not
deleted. If one is only concerned with regret at time V , the deletion is easy to incorporate in the
model.

Finally, let us mention that much of prior literature on online prediction on graphs requires
the knowledge of the graph from the beginning. When the order in which nodes are presented is
given to us in advance the problem is readily modeled by our setting via Xt = {t}. We then write
f(xt) = f(t), precisely the notation for a static expert (Cesa-Bianchi and Lugosi, 2006). On the
other hand, the case when nodes are presented to us in adversarial fashion is not directly modeled
by the presented setting. However, the algorithms presented here can be easily extended to such a
scenario. Indeed, at every round t, we simply pick some prefixed order for remaining unseen nodes
and make predictions assuming this is the order in which nodes will be presented. On similar lines
as the inductive proof in (Cesa-Bianchi and Shamir, 2011), we can show that the algorithm enjoys
the same regret against an adversarial ordering of nodes as the algorithm would for the case when
the order is known in advance.
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In summary, we presented a flexible problem definition that models the arrival of items and the
evolution of constraints. The model encapsulates local information about the items. The goal of
the forecaster is phrased as a global measure of coherence given all the information at the end of
the day. The rest of the paper is focused on exhibiting randomized methods that provably minimize
regret in this general framework efficiently.

3. Online Relaxations

The idea of online relaxations was studied in (Rakhlin et al., 2012) as a generic recipe for deriving
prediction algorithms. The basic technique for our context is as follows. Consider for a moment the
problem that does not involve constraints, and suppose x1, . . . , xV are provided to the forecaster
ahead of time. At time t, the forecaster predicts ŷt ∈ Y and observes yt ∈ Y . Furthermore, suppose
the comparator set G of functions X → Y in the regret definition is fixed. Given a loss function
` : Y × Y 7→ R, an online relaxation Rel is a sequence of functions that satisfies two conditions.
First is the dominance condition: for any sequence of instances x1:V and y1:V ,

Rel (G |y1:V ) ≥ − inff∈G
∑V

t=1 `(f(xt), yt). (3)

Second is the recursive condition: for any t ∈ [V ],

infqt∈∆(Y) supyt∈Y
{
Eŷt∼qt [`(ŷt, yt)] + Rel (G |y1:t)

}
≤ Rel (G |y1:t−1) . (4)

A relaxation that satisfies these conditions is termed admissible. Given a relaxation Rel for a class
G, define an online learning algorithm which at time t, given instances y1:t−1 and x1:V , makes the
random prediction ŷt by drawing from the distribution qt ∈ ∆(Y) either given by

qt = argmin
q∈∆(Y)

sup
yt∈Y

{
Eŷt∼q [`(ŷt, yt)] + Rel (G |y1:t)

}
,

or by any other choice that ensures admissibility of the relaxation. It can be easily shown that regret
of such a strategy is upper bounded (in expectation and with high probability) by E [Rel (G |∅)].

We now turn to the case of side-information and constraints being revealed to the forecaster
sequentially. We would like to “lift” the admissibility technique to this situation. To start, assume
that we have a relaxation that is admissible for any class G = FK [I1:V ]. We propose the following
simple randomized strategy.

At time t, given I1:t = (Cs, xs)ts=1, draw It+1:V = (C , x)t+1:V from the known distribution p.
Pick distribution qt over Y as follows

q̂t(It+1:V ) = argmin
q∈∆(Y)

sup
yt∈Y

{
Eŷt∼q [`(ŷt, yt)] + Rel (FK [I1:V ] |y1:t)

}
(5)

and make a randomized prediction according to q̂t(It+1:V ).

As mentioned in the introduction, the above randomized method is of a “random playout” style.
The forecaster simulates future draws to solve the (otherwise difficult) problem in expectation. The
next lemma guarantees a bound on the expected regret in terms of expected Rademacher complexity
of the data-dependent class. The upper bound behaves as if the forecaster were able to integrate over
the complete distribution p on each round, despite the fact that the method only draws one sample.
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Lemma 1 Suppose Rel is an admissible relaxation for any FK [I1:V ]. Then the randomized algo-
rithm given in (5) enjoys the performance guarantee

E [Reg] ≤ E(C ,x)1:V
[Rel (FK [I1:V ] |∅)]

The proof of this lemma is postponed to the appendix. We refer to (Rakhlin et al., 2012) for more
details of the technique.

Of course, the question remains: how do we come up with admissible relaxations required by
Lemma 1. This is the subject of the next section.

4. Rademacher-Based Relaxations

The previous section presented a generic randomized prediction algorithm when the forecaster can
sample from the distribution p that generates the constraint sets and the side information. In this
section, we provide a specific form of the relaxation we can use, along with the corresponding
regret bound. The forecaster will be required to solve κ optimization problems per round to obtain
the randomized prediction for that round.

Let M be a set of V × κ matrices such that for any M ∈ M, every t ∈ [V ] and k ∈ [κ],
Mt,k ∈ [0, 1] and

∑κ
k=1Mt,k ≤ 1. Given any class G of functions X → [κ] and side information

x1:V , we define a set of matricesMG as

MG = {Mf : f ∈ G,Mt,k = 1 {f(xt) = k}}.

If κ = 2, each Mf can be simply represented by a vector of binary labels that f assigns to
x1, . . . , xV .

Lemma 2 For any class G of predictors, ifMG ⊆M, then the following relaxation is admissible
for prediction with respect to class G:

Rel (G |y1:t) = Eεt+1:V

[
supM∈M

{
2
∑V

j=t+1

∑κ
k=1 εj,kMj,k +

∑t
i=1Mi,yi

}]
− t .

Here, each εj is a vector of independent Rademacher random variables and εj,k stands for the kth
coordinate of this vector. Further, the randomized strategy corresponding to the above relaxation is
given by first drawing εt+1:V Rademacher vectors and then predicting ŷt according to

q̂t(εt+1:V ) = argmin
q∈∆([κ])

supyt∈[κ]

{
1− q[yt] + supM∈M

{
2
∑V
j=t+1

∑κ
k=1 εj,kMj,k +

∑t
s=1Ms,ys

}
− t
}
.

Recall that Lemma 1 provides a generic randomized strategy that, at round t, generates the fu-
ture instances It+1:V and then uses as a black box an admissible relaxation for function classes
FK [I1:V ]. By combining Lemma 2 and Lemma 1, we get the following randomized prediction
strategy:

At time t, given side information x1:t, constraint sets C1:t and past labels y1:t−1, draw It+1:V from
p. Next, draw Rademacher vectors εt+1:V and compute, for each o ∈ [κ], the value

Rt(o) = supM∈M(I1:V )

{
2
∑V

j=t+1

∑κ
k=1 εj,kMj,k +Mt,o +

∑t−1
s=1Ms,ys

}
(6)
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whereM(I1:V ) is some set of matrices such thatMFK [I1:V ] ⊆ M(I1:V ). Finally, predict ŷt by
simply drawing from the randomized strategy

q̂t(εt+1:V ) = argmin
q∈∆κ

maxo∈[κ] {1− q[o] +R(o)} . (7)

Note that the step of solving for q̂t(εt+1:V ) can be done efficiently by first sortingRt(1), . . . , Rt(κ)’s
in descending order and then using a simple water filling argument to find q̂t(εt+1:V ).

For the algorithm outlined above, in view of Lemma 1, the expected regret is upper-bounded as:

E [Reg] ≤ 2 E(C ,x)1:V
Eε1:V

[
supM∈M(I1:V )

∑V
j=t

∑κ
k=1 εj,kMj,k

]
. (8)

Of course one could use M(I1:V ) = MFK [I1:V ]. However in many prediction problems of
interest, solving the optimization problem (i.e., computing Rt(o)) for this class might be computa-
tionally hard. Hence, for computational efficiency we shall use a superset ofMFK [I1:V ]. We pay for
computational efficiency by having a worse regret bound given by the Rademacher complexity over
the larger setM(I1:V ), rather thanMFK [I1:V ]. We investigate this topic in the next two sections.

5. Prediction Based on Lasserre SDP Hierarchy

In the previous section we provided a randomized prediction strategy based on any class of matrices
M(I1:V ) that is a superset ofMFK [I1:V ]. In this section we will employ Semidefinite Programming
and Lasserre hierarchies to solve for the values R(o), defined in (6).

Let us begin withMFK [I1:V ] and relax the problem. By the definition ofMFK [I1:V ], we can
write down the optimization problem for each o ∈ [κ] as

max
M∈MFK [I1:V ]

2

V∑
j=t+1

κ∑
k=1

εj,kMj,k +Mt,o +

t−1∑
s=1

Ms,ys


= max

2

V∑
j=t+1

κ∑
k=1

εj,kMj,k +Mt,o +

t−1∑
s=1

Ms,ys

 s.t.
∑
c∈∪Ct

c (M) ≤ K , M ∈ Fx1:V

where, Fx1:V = {M ∈ {0, 1}V×κ : Mt,i = 1 {f(xt) = i} , f ∈ F , t ∈ [V ], i ∈ [κ]}.
We shall assume throughout this section that for any x1:V , the set Fx1:V can be represented as
{0, 1}V×κ ∩ Px1:V where Px1:V ⊂ RV×κ can be represented by linear constraints efficiently. The
superscript with side information is to remind us that the constraints can depend on the side in-
formation presented. To best match semidefinite formulations found in the literature, we assume,
Px1:V = {M ∈ RV×κ : ∀j ∈ [d], M>Bj ≤ cj}, an intersection of d linear constraints. (Hence-
forth, whenever we refer to a matrix M as a vector, we mean the vectorized form.) The reason for
the assumption is that we would like to apply Lasserre Hierarchy to represent {0, 1}V×κ ∩ P . As
an example, for the case of all possible static experts, we are interested in predicting as well as any
labeling that violates at most K constraints and, hence, Px1:V is simply [0, 1]V×κ.

Given y1:t−1 , o ∈ [κ], and a draw of εt+1:V , we define the V × κ dimensional vector Y t(o)
as Y t

s,j(o) = 1 {j = ys} for s < t, j ∈ [κ], Y t
s,j(o) = 2εs,j for s > t, j ∈ [κ], and Y t

s,j(o) =
1 {j = o} for s = t, j ∈ [κ]. With this notation, we write the linear objective as

2
∑V

s=t+1

∑κ
k=1 εs,kMs,k +Mt,o +

∑t−1
s=1Ms,ys = M>Y t(o).
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We are now ready to write down the SDP relaxation that we shall solve for every round t and every
o ∈ [κ] (these are the Rt(o)’s from (6)). The optimization problem is based on the rth level of
Lasserre SDP relaxation, written is the vector form as follows. First, we introduce a vector US,α

for every S ⊂ [V ] with |S| ≤ r and every α ∈ [κ]S . The optimization problem is now written as

SDP1st
r (Y,K) = max A (9)

s.t.
∑
c∈∪Ct

∑
α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2 ≤ K (10)

〈
U(S1,α1),U(S2,α2)

〉
= 0 ∀α1(S1 ∩ S2) 6= α2(S1 ∩ S2)〈

U(S1,α1),U(S2,α2)

〉
=
〈
U(S3,α3),U(S4,α4)

〉
∀S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4

κ∑
k=1

∥∥U({i},k)

∥∥2
= 1,

∥∥U∅,∅∥∥2
= 1 ∀i ∈ [V ]〈

U(S1,α1),U(S2,α2)

〉
≥ 0 ∀S1, S2, α1, α2∑

v∈V
β∈[κ]v

∥∥U(S∪{v},α◦β)

∥∥2
Bj(v,β) ≤ cj

∥∥U(S,α)

∥∥2 ∀S, α, j ∈ [d]

∑
v∈V
β∈[κ]v

∥∥U(S∪{v},α◦β)

∥∥2
Y(v,β) ≥ A

∥∥U(S,α)

∥∥2 ∀S, α (11)

where in the above Rc ∈ [κ]Sc is the constraint violation mapping corresponding to constraint c.
The first constraint in the above program is the requirement that cumulative constraint violation does
not exceedK. The rest of the constraints are standard (the notation α1◦α2 denotes the concatenated
assignment of labels whenever the assignments don’t have a mismatch on the common entries). The
above formulation is similar to the formulation for CSP’s using Lasserre hierarchy, and we refer to
(Tulsiani, 2009; Raghavendra and Steurer, 2009; Guruswami and Sinop, 2013; Schoenebeck, 2008)
for a more detailed treatment of the semidefinite relaxation technique.

In the above optimization problem, maximizing over A can be performed efficiently as follows.
First for a given A, we assume that we can solve the following optimization problem:

SDP2nd
r (Y,A) = min

∑
c∈∪Ct

∑
α∈[q]Sc

Rc(α)
∥∥USc,α)

∥∥2
(12)

under the constraints of SDP1st
r excluding constraint (10) (13)

To find the solution to the maximization problem in (9) we simply perform a binary search over A
to find the largest A for which the value of the solution of (12) is smaller than K.

On each round t ∈ [V ] and for each o ∈ [κ], we find the value of SDP1st(Y t(o),K). This
gives Rt(o) in (6), and, consequently, the randomized prediction obtained from (7). One can think
of the solution in M(I1:V ) as the projected solution from the rth level Lasserre hierarchy SDP.
Specifically think ofM(I1:V ) as being described by set of vectors U that satisfy the constraints of
the SDP and Mj,k as

∥∥U({j},k)

∥∥2. It is important to note that for any constant level r, we obtain a
poly-time algorithm. In the next session, we shall provide an analysis of the bound on the expected
regret of this randomized strategy using the generic upper bound from (8).

9
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6. Regret Bounds Based on Existence of Rounding Strategies

Let us define solutions to two other optimization problems in addition to the solution to SDP1st(Y,K).
These programs are defined for the purposes of analysis only, and will serve as a step to upper
bounding Rademacher complexity of the relaxed set. To this end, define:

OPT2nd(Y,A) = min
∑
c∈∪Ct

c(M) subject to Y >M ≥ A, M ∈ Fx1:V
(14)

OPT1st(Y,K) = max F>Y subject to
∑
c∈∪Ct

c(M) ≤ K, M ∈ Fx1:V
(15)

Definition 3 Given I1:V = (Ct, xt)1:V , we define the gap between the Lasserre SDP solution at
level r in (12) and the optimization problem in (14) as gap(r; I1:V ) := supε,D∈[−V,V ]

OPT2nd(ε,D)

SDP2nd
r (ε,D)

.

Whenever the context of C1:V , x1:V is clear we will simply use gap(r).

The following theorem provides a bound on the expected regret of the proposed randomized strat-
egy based on gap. Observe that the regret bound only gains a multiplicative factor gap(r) in the
constraint K, as compared to the original class. Below we prove our main theorem providing a
bound on the expected regret of the proposed strategy in terms of the Rademacher complexity of the
original class with its violation budget K enlarged. Given sequence (C , x)1:V and any K > 0, let

RadV (FK [I1:V ]) := Eε1:V

[
supf∈FK [I1:V ]

∑V
j=1

∑κ
k=1 εj,k1 {f(xj) = k}

]
The following theorem is a performance guarantee for the proposed prediction strategy.

Theorem 4 If we use the rth level Lasserre hierarchy and use the randomized strategy obtained
from the solutions via (7), the bound on the expected regret of the forecaster is given by

E [Reg] ≤ 2 EI1:V
RadV (Fgap(r)·K [I1:V ])

A few remarks are in order. First, since in the above gap(r) really refers to gap(r; C1:V , x1:V ),
for C1:V , x1:V drawn from the known generation process, bounds can often be improved: the be-
havior is given by the average case gap rather than the worst case gap.

Second, we would like to stress that while the bounds in this section are provided in terms of
integrality gaps, for the actual prediction algorithm we never require a rounding strategy. We only
need existence of a rounding strategy with some integrality gap to provide bounds on the expected
regret in terms of Rademacher complexity of the original class.

Third, as already mentioned in the introduction, the approximation factor multiplies the regret
bound rather than the cumulative loss of the benchmark predictor. That is, regret is still with respect
to 1×OPT. As long as the integrality gap is not too large for r = O(1) of the Lasserre hierarchy,
we obtain polynomial-time algorithms even when the problem of finding the optimal benchmark
predictor given all the instances and constraints might be computationally hard. This is due to the
improper nature of the prediction algorithm.

The Lasserre hierarchy is known to be more powerful than the Sherali-Adams and Lovasz-
Schrijver hierarchies. This means that if we use for our prediction strategy some r ∈ N, then the
gap(r) we obtain is smaller than approximation guarantees provided by algorithms using Sherali-
Adams or Lovász-Schrijver hierarchies at around the same r. Also clearly gap(r) ≤ gap(r′) for

10
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any r′ < r. Thus we can use approximation guarantees proved for the same problems based on
algorithms that use LP hierarchies at level r or smaller. In summary, a result about an integrality
gap for any weaker relaxation has immediate implication for the regret bound.

So far, we considered the problem where the benchmark was minimizing the number of violated
constraints. Alternatively one could think ofF being restricted across items by requiring that at least
K constraints need to be satisfied. Much of the machinery presented here including the application
of rounding results to obtain bounds on the expected regret can easily be extended to such problems
(which consist of typical CSP type problems) and in these cases the SDP optimization problems we
solve on every step would be replaced by maximization versions of the SDP relaxations with the
appropriate level of Lasserre hierarchy.

7. Examples

We illustrate the results of this paper on two examples. The first uses the SDP formulation in
Section 5, while the second example uses the penalized version of Section A.

Binary Classification of Nodes with Cut Constraints Let us consider a weighted version of the
problem discussed in the introduction. Suppose we are given a weighted graph G = (V, E,W )
where W : E 7→ [−1, 1]. Let us consider the case of xt = t and there is no other side information.
The benchmark class of predictors is all binary labelings of the nodes from the setFK = {f ∈ [2]V :
fTLf ≤ K}, where L is graph Laplacian. This problem can be formulated easily in the generic
form specified in this paper by adding one constraint c per edge (u, v) ∈ E with Sc = {u, v}.
The cost of the constraint violation is given by Rc(α) = 1 −W (eu,v)(2 1 {α(u) = α(v)} − 1).
These constraints can in fact be rewritten as quadratic constraints and Lasserre SDP at level r for
the SDP2nd

r problem in Eq. (12) is in fact the rth level SDP relaxation to the quadratic integer
programming with a single linear constraint given by the labels (corresponding to (11) in SDP1st

r ).
It is shown in (Guruswami and Sinop, 2013) that the value of a rounded solution with O(r) lev-

els of Lasserre hierarchy is no more than 2/λr(L) times OPT. Furthermore, the rounding is faithful,
and hence concentration bounds hold for linear constraints (Guruswami and Sinop, 2013, Thm
6.1). Since the linear constraints are given by Rademacher random variables, standard concentra-
tion results tell us that de-randomization does not violate the constraints by more than O(

√
V ).

By tracing through the proof of Theorem 4, one can see that this extra O(
√
V ) factor comes

out additively in the final bound on Rademacher complexity. Since this factor is of smaller or-
der than Rademacher complexity itself, the bound is not affected. We conclude that E [Reg] ≤
O
(
E(C ,x)1:V

RadV

(
F 2

min{1,λr}
·K [I1:V ]

))
where λr is the rth smallest eigenvalue of the normal-

ized Laplacian of the graph, and the algorithm runs in time nO(r). If the graph generation pro-
cess is well behaved in terms of spectral values of the Laplacian—like in a preferential attach-
ment model for the graph—then the bound we obtain is near optimal. As a crude upper bound on

RadV

(
F 2

min{1,λr}
·K [I1:V ]

)
one can use

√
KV max{1, λ−1

r } log V .

Beyond the binary prediction considered above, one can also analyze the problem of predicting
one of [κ] labels for each node of a graph. As an interesting set of constraints, one can consider the
Unique-Games-type constraints for labelings of edges in the graph. As a benchmark we compare
our cumulative loss to the cumulative loss of the labelings that violate at mostK of the labeling con-
straints on edges. Similar to the previous example, this problem can also we written with quadratic
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form for constraints. The integrality gap from (Guruswami and Sinop, 2013) yields a bound on re-
gret in terms of Rademacher complexity of the original class where the constraint K is enlarged by
factor of order max{1, λ−1

r }. Here, the de-randomization procedure incurs an additional O(
√
κV )

violation of the constraints, which, again, does not affect the final bound of Rademacher complexity.

Online Prediction with Metric Labeling Constraints In the metric labeling problem (Kleinberg
and Tardos, 2002), one aims to assign one of κ labels to each of the V items, minimizing a combi-
natorial objective function consisting of two parts: assignment costs per item and separation costs
based on pairs of items. This model subsumes MAP estimation in a Markov random field model.

More precisely, let G = (V, E,W ) be a weighted graph with W : E → [0, 1]. The cost of an
assignment g ∈ [κ]V is written as∑

v∈[V ] d1(v, gv) +
∑

(u,v)∈EW (u, v)d2(gu, gv) (16)

where d2 : [κ] × [κ] → R≥0 is a metric on the space of labels and d1 : [V ] × [κ] → R≥0 is a cost
of assigning a particular label to the node. d2 is a metric on the space of labels, and this distance is
multiplied by the edge weight, encouraging “similar” items to pay more for disagreeing labels.

To map this setting into our notation, we define two types of constraints. The first type of a
constraint c is associated to a singleton set Sc = {v} and cost Rc(g) = d1(v, gv), for g ∈ [κ]V . The
second type corresponds to separation costs, and we define it through Sc = {u, v} and Rc(g) =
W (u, v)d2(gu, gv) if (u, v) is an edge, and 0 otherwise.

To exhibit a polynomial-time method with a provable regret bound, we turn to the penalized
version of SDP, developed in Section A. We observe that both (Kleinberg and Tardos, 2002) and
(Chekuri et al., 2004) study linear relaxations of the integer program and prove integrality gaps
which are based on the separation costs. Specifically, (Chekuri et al., 2004) use a simple LP relax-
ation for the problem, and since Lassere hierarchy at any level r ≥ 1 is strictly stronger than this
Linear program, we can directly use the integrality gap from (Chekuri et al., 2004) to obtain our
regret bound. More precisely, (Chekuri et al., 2004) shows that the integrality gap for the separation
costs is O(log κ), while the assignment costs are exact and have no integrality gap (gap of 1). The
overall integrality gap is then stated as O(log κ) by combining the two parts. However, for our
purposes, it is important that the assignment costs are exact. To invoke the integrality gap result, we
write the objective in (17) as (negative of) the total cost (16) with the linear part involving Y being
incorporated into the assignment costs (per item). Since the values of Y could be negative, we may
only appeal to Theorem 7 if there is no gap for the assignment costs. This is the case for the proof
in (Chekuri et al., 2004), and we conclude that g̃ap(r) = O(log κ). Theorem 7 then ensures a regret
bound of Rademacher complexity of the class, increased multiplicatively by O(log κ).

We remark that the metric labeling objective subsumes Multiway Cut, among other problems.
The objective also subsumes the energy function of the Ising model. Constraints based on Multiway
Cut and Ising model appear to be well-suited for modeling global information dispersed throughout
the graph. Furthermore, as soon as a better integrality gap is proved for a particular instance of a
problem (such as, say, a known constant integrality gap for metric labeling on planar graphs), it can
be immediately used in the regret bound without changing the algorithm.
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Appendix A. Penalized Version of Relaxation
In this section we consider a penalized version of the relaxation, putting the “≤ K” constraint into the objective. We
use the Lasserre hierarchy to solve the penalized version of the optimization problem. Let us write down the SDP
corresponding to the rth level of Lasserre hierarchy. To this end, we introduce a vector US,α for every S ⊂ [V ] with
|S| ≤ r and every α ∈ [κ]S . The optimization problem is written as

SDPλr (Y, λ) = min

λ
∑

c∈∪Ct

∑
α∈[q]Sc

Rc(α)
∥∥USc,α)

∥∥2 −
∑
v∈V
β∈[κ]v

∥∥U({v},β)

∥∥2
Y(v,β)

 (17)

s.t.
〈
U(S1,α1),U(S2,α2)

〉
= 0 ∀α1(S1 ∩ S2) 6= α2(S1 ∩ S2)〈

U(S1,α1),U(S2,α2)

〉
=
〈
U(S3,α3),U(S4,α4)

〉
∀S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4

κ∑
k=1

∥∥U({i},k)

∥∥2
= 1,

∥∥U∅,∅∥∥2
= 1 ∀i ∈ [V ]

〈
U(S1,α1),U(S2,α2)

〉
≥ 0 ∀S1, S2, α1, α2∑

v∈V
β∈[κ]v

∥∥U(S∪{v},α◦β)

∥∥2
Bj

(v,β)
≤ cj

∥∥U(S,α)

∥∥2 ∀S, α, j ∈ [d]

This SDP should be compared to SDP1st
r . Notice that the constraint (10) now appears in the objective. We now prove

a “penalized version” of Lemma 2. We will also provide an appropriate relaxation from which an efficient prediction
strategy follows.

Let us define a slightly modified version of gap between the SDP solution and integral solution to the penalized
optimization problem as follows. Define the optimization problem

OPTλ(Y, λ) = min λ
∑
c∈∪Ct

c(M)− Y >M s.t. M ∈ Fx1:V (18)

Definition 5 Given (C1:V , x1:V ), we define the gap between the Lasserre SDP solution at level r in (17) and the opti-
mization problem in (18) as

g̃ap(r;C1:V , x1:V ) := min
{
a : ∀ε ∈ {−1, 1}V×κ, SDPλr (Y, λ) ≥ OPTλ(Y, λ/a)

}
Whenever the context of C1:V , x1:V is clear we will simply write g̃ap(r).

That is the factor by which we only scale down the constraint costs but not the linear part.

Lemma 6 Given (C , x)1:V , let G = FK [I1:V ], and fix any λ > 0. Let Las(r,Fx1:V ) denote the set of vectors U’s
corresponding to the rth level Lasserre hierarchy—that is, vectors satisfying the constraints of the SDP in Eq. (17). The
following relaxation is admissible for prediction with respect to G:

Rel (G |y1:t) = Eεt+1:V
sup

U∈Las(r,Fx1:V
)

{
2

V∑
j=t+1

κ∑
k=1

εj,k
∥∥U({j},k)

∥∥2
+

t∑
s=1

∥∥U({s},ys)

∥∥2

− λ
∑

c∈C1:V

∑
α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2

}
− t+ λK

Further, the randomized strategy corresponding to the above relaxation is given by first drawing εt+1:V Rademacher
vectors and then predicting ŷt according to

q̂t(εt+1:V ) = argmin
q∈∆([κ])

sup
yt∈[κ]

{
sup

U∈Las(r,Fx1:V
)

{
2

V∑
j=t+1

κ∑
k=1

εj,k
∥∥U({j},k)

∥∥2
+

t∑
s=1

∥∥U({s},ys)

∥∥2

− λ
∑

c∈C1:V

∑
α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2

}
− q[yt]

}
.
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As before, each εj is a vector of independent Rademacher random variables and εj,k stands for the kth coordinate of this
vector.

Let us bound the regret of the algorithm. To this end, assume we have a bound on the gap for the penalized SDP.

Theorem 7 Suppose that for any c ≥ 1,

RadV (FcK [I1:V ]) ≤ cpRadV (FK [I1:V ])

for some p ≤ 1. With the notation of Lemma 6, if we choose

λ∗ = sup

λ : λK ≤ E
ε1:V

sup
U∈Las(r,Fx1:V

)

2

V∑
t=1

κ∑
k=1

εj,k
∥∥U{j},k∥∥2 − λ

∑
c∈∪tCt

α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2



(19)

the final relaxation is upper bounded by

Rel (G |∅) ≤ 4 g̃ap(r) RadV (FK [I1:V ]).

In view of Lemma 1, the expected regret of the strategy described in (5) is upper bounded as

E [Reg] ≤ 4 g̃ap(r) EI1:V RadV (FK [I1:V ]).

To estimate λ∗ in (19), we use the concentration property of Rademacher complexity. We sample Rademacher
random variables, constraints, and side information. Next we optimize over the Lasserre SDP at level r multiple times to
find the maximal λ that satisfies the inequality

λK ≤ sup
U∈Las(r,Fx1:V

)

2

V∑
t=1

κ∑
k=1

εj,k
∥∥U{t},k∥∥2 − λ

∑
c∈∪tCt

∑
α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2

 .

Appendix B. A Lower Bound
In this short section we prove a lower bound, showing that the algorithms we developed are near-optimal in terms of
regret guarantees. We first consider the case of binary classification with κ = 2. We show a simple lower bound on
the expected regret in terms of the Rademacher complexity of the constrained set of predictors. Next, we use the binary
case lower bound to obtain a lower bound for the general case when κ > 2. We show that the worst case regret of any
prediction strategy is lower bounded by 1/κ times the Rademacher complexity. In summary, as long as the integrality
gap is of constant order, and the Rademacher complexity of the class only depends polynomially on K, the upper bounds
we obtained are optimal up to a constant factor indicated by the gap.

Proposition 8 For any K, any generating process that produces (xt,Ct)
V
t=1 and any class of benchmark predictors

F ⊂ [2]X , there exists a strategy of labelings such that the following bound on the expected regret holds for any prediction
algorithm:

E [Reg] ≥ 1

2
E(C ,x)1:V RadV (FK [I1:V ])

Corollary 9 For any K, any generating process that produces (xt,Ct)
V
t=1 and any class of benchmark predictors

F ⊂ [κ]X , there exists a strategy of labelings such that the following bound on the expected regret holds for any
prediction algorithm:

E [Reg] ≥ 1

κ
E(C ,x)1:V RadV (FK [I1:V ])
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Appendix C. Proofs
Proof [Proof of Lemma 1] At time t, given {Cs, xs}ts=1, let qt be a strategy defined by first drawing the random variables
It+1:V = (C , x)t+1:V and then solving for the randomized strategy q̂t defined in (5). We shall first prove the following
inequality for any t ∈ [V ]:

E
Ct,xt

[
sup
yt

{
Eŷt∼qt [`(ŷt, yt)] + EIt+1:V [Rel (FK [I1:V ] |y1:t)]

}]
≤ EIt:V [Rel (FK [I1:V ] |y1:t−1)] (20)

We will prove the above statement for any t ∈ [V ] by first starting from base case t = V and then working backward
inductively. To this end consider the very last step. Given C1:V , x1:V , y1:V−1,

sup
yV

{EŷV ∼qV [`(ŷV , yV )] +Rel (FK [I1:V ] |y1:V )}

= inf
qV

sup
yV

{EŷV ∼qV [`(ŷV , yV )] +Rel (FK [I1:V ] |y1:V )} ≤ Rel (FK [I1:V ] |y1:V−1)

where the last inequality is by admissibility condition of the relaxation. Hence, we conclude that

E
CV ,xV

[
sup
yV

{EŷV ∼qV [`(ŷV , yV )] +Rel (FK [I1:V ] |y1:V )}
]
≤ E

CV ,xV
[Rel (FK [I1:V ] |y1:V−1)]

This proves the base case. Now assume the statement holds for any τ > t and let us conclude the statement for t. For the
tth round, given C1:t, x1:t, y1:t−1,

sup
yt

{
Eŷt∼qt [`(ŷt, yt)] + EIt+1:V [Rel (FK [I1:V ] |y1:t)]

}
= sup

yt

{
EIt+1:V

[
Eŷt∼q̂t(It+1:V ) [`(ŷt, yt)]

]
+ EIt+1:V [Rel (FK [I1:V ] |y1:t)]

}

≤ EIt+1:V

[
sup
yt

{
Eŷt∼q̂t(It+1:V ) [`(ŷt, yt)] +Rel (FK [I1:V ] |y1:t)

}]
By definition of q̂t, the above expression is equal to

= EIt+1:V

[
inf
qt

sup
yt

{Eŷt∼qt [`(ŷt, yt)] +Rel (FK [I1:V ] |y1:t)}
]

≤ EIt+1:V [Rel (FK [I1:V ] |y1:t−1)]

Thus we can conclude that,

EIt sup
yt

{
Eŷt∼q̂t(It+1:V ) [`(ŷt, yt)] + EIt+1:V [Rel (FK [I1:V ] |y1:t)]

}
≤ EIt:V [Rel (FK [I1:V ] |y1:t−1)]

This proves (20) via the inductive argument. To conclude the proof of the lemma, note that by the dominance condition,

V∑
t=1

`(ŷt, yt)− inf
f∈FK [I1:V ]

V∑
t=1

`(f(xt), yt) ≤
V∑
t=1

`(ŷt, yt) +Rel (FK [I1:V ] |y1:V )

Using the above inequality and Eq. (20) we conclude that,

EI1:V

[
V∑
t=1

Eŷt∼q̂t [`(ŷt, yt)]− inf
f∈FK [I1:V ]

V∑
t=1

`(f(xt), yt)

]

≤ EI1:V

[
V∑
t=1

Eŷt∼q̂t [`(ŷt, yt)] +Rel (FK [I1:V ] |y1:V )

]

≤ EI1:V

[
V−1∑
t=1

Eŷt∼q̂t [`(ŷt, yt)] + ECV ,xV [Rel (FK [I1:V ] |y1:V−1)]

]
≤ EI1:V [Rel (FK (I1:V ) |·)]
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This concludes the proof of the lemma.

Proof [Proof of Lemma 2] The initial dominance condition is satisfied, since

RelV (G |y1:V ) = sup
M∈M

V∑
s=1

Ms,ys − V ≥ sup
M∈MG

V∑
s=1

Ms,ys − V

= sup
M∈MG

V∑
s=1

(Ms,ys − 1) = − inf
f∈G

V∑
s=1

1 {f(xs) 6= ys} .

Next we show the recursive admissibility condition for the randomized strategy provided in the lemma. To this end note
that,

max
yt∈[κ]

{Eŷt∼q̂t [`(ŷt, yt)] + Rel (G |y1:t)}

= max
yt∈[κ]

1− Eŷt∼q̂t [1 {yt = ŷt}] + Eεt+1:V
sup
M∈M


t∑

s=1

Ms,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k

− t


= max
yt∈[κ]

− E
εt+1:V

Eŷt∼q̂t(εt+1:V ) [1 {yt = ŷt}] + E
εt+1:V

sup
M∈M


t∑

s=1

Ms,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k




− (t− 1)

≤ Eεt+1:V

max
yt∈[κ]

−Eŷt∼q̂t(εt+1:V ) [1 {yt = ŷt}] + sup
M∈M


t∑

s=1

Ms,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k





− (t− 1)

By the definition of the randomized strategy, the last expression is equal to

E
εt+1:V

 inf
qt∈∆([κ])

max
yt∈[κ]

− E
ŷt∼qt

1 {yt = ŷt}+ sup
M∈M


t∑

s=1

Ms,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k



− (t− 1)

Using the minimax theorem, we can swap the infimum and supremum, and obtain equality to

E
εt+1:V

 sup
pt∈∆([κ])

min
ŷt∈[κ]

E
yt∼pt

−1 {yt = ŷt] + sup
M∈M


t∑

s=1

Ms,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k



− (t− 1)

= E
εt+1:V

sup
pt∈∆([κ])

− max
ŷt∈[κ]

E
yt∼pt

[1 {yt = ŷt}] + E
yt∼pt

sup
M∈M


t∑

s=1

Ms,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k




− (t− 1)

Since

max
ŷt∈[κ]

E
yt∼pt

[1 {yt = ŷt}] = max
i∈[κ]

pt[i] ≥ max
i∈[κ]

pt[i]

∑
j

Mt,j

 ≥∑
i

pt[i]Mt,i = E
y′t∼pt

[Mt,y′t
],

the previous expression can be upper bounded by

Eεt+1:V
sup

pt∈∆([κ])

Eyt∼pt

 sup
M∈M


t−1∑
s=1

Ms,ys + (Mt,yt − Ey′t∼pt
[
Mt,y′t

]
) + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k




− (t− 1)
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which is upper bounded by Jensen’s inequality by

E
εt+1:V

sup
pt∈∆([κ])

Ey′t,yt∼pt

 sup
M∈M


t−1∑
s=1

Ms,ys + (Mt,yt −Mt,y′t
) + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

Since in above yt and y′t are identically distributed, we can introduce an independent Rademacher random
variable δt. The last expression is equal to

E
εt+1:V

sup
pt∈∆([κ])

Eδt,y′t,yt∼pt

 sup
M∈M


t−1∑
s=1

Ms,ys + δt(Mt,yt −Mt,y′t
) + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

≤ Eεt+1:V
sup

yt,y′t∈[κ]

Eδt

 sup
M∈M


t−1∑
s=1

Ms,ys + δt(Mt,yt −Mt,y′t
) + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

≤ Eεt+1:V
sup
yt∈[κ]

Eδt

 sup
M∈M


t−1∑
s=1

Ms,ys + 2δtMt,yt + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

Now let εytt ∈ {±1}κ be defined as 1 on coordinate yt and independent Rademacher variables on the rest.
For any j 6= yt, E

[
εytt,j
]

= 0 and εytt,yt = 1 and so the preceding expression is equal to

Eεt+1:V
sup
yt∈[κ]

Eδt

 sup
M∈M


t−1∑
s=1

Ms,ys + 2

κ∑
k=1

δtMt,kE
[
εyt

t,k

]
+ 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

≤ Eεt+1:V
sup
yt∈[κ]

Eδt,εyt
t

 sup
M∈M


t−1∑
s=1

Ms,ys + 2

κ∑
k=1

δtMt,kε
yt

t,k + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

= Eεt+1:V

Eεt

 sup
M∈M


t−1∑
s=1

Ms,ys + 2

κ∑
k=1

Mt,kεt,k + 2

V∑
j=t+1

κ∑
k=1

εj,kMj,k


− (t− 1)

= Eεt:V

 sup
M∈M


t−1∑
s=1

Ms,ys + 2

V∑
j=t

κ∑
k=1

εj,kMj,k


− (t− 1) = Rel (G |y1:t−1)

Thus we have shown admissibility of the relaxation and demonstrated that the randomized strategy for the forecaster is
given by the one in the lemma.

Proof [Proof of Theorem 4] From the bound in (8) we have that the expected regret of our algorithm is bounded as

E [Reg] ≤ 2 EI1:V Eε1:V

 sup
M∈M(I1:V )

V∑
j=t

κ∑
k=1

εj,kMj,k

 .
LetM ∈M(I1:V ) to be the projected solutions from the rth level Lasserre hierarchy SDP in the maximization problem
in (9). Then for each draw of ε1:V , the supremum in the Rademacher complexity term can be replaced by the value
of the optimization problem in (9) given by SDP1st

r (ε,K). This is because we can think of Mj,k as corresponding to∥∥U{j},k∥∥2 where vectors U’s satisfying constraints of the SDP. On the other hand, for a given draw of ε1:V , the solution
to

sup
f∈Fgap(r)·K [I1:V ]

V∑
j=t

κ∑
k=1

εj,k1 {f(xj) = k}
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is exactly the value of OPT1st(ε, gap(r) · K). Hence to prove our bound, it suffices to show that for any problem at
hand,

SDP1st
r (ε,K) ≤ OPT1st(ε, gap(r) ·K).

To do so we go through the problems in Eqns. (12) and (14) and arrive to OPT1st(ε, gap(r) · K). Observe that the
solution to the optimization problem in (9) is such that it has value SDP1st(ε,K) and violates constraints by less than
K. Using this feasible solution in (12) we conclude that,

SDP2nd
r (ε,SDP1st(ε,K)) ≤ K

However by definition of gap(r) we can conclude that

OPT2nd(ε, SDP1st
r (ε,K)) ≤ gap(r) · SDP2nd

r (ε, SDP1st
r (ε,K)) ≤ gap(r) ·K

By the definition of OPT2nd this means that the solution M ∈ Fx1:V to the optimization problem is such that∑
c∈∪Ct

c(M) ≤ gap(r) ·K, and simultaneously, since we are considering OPT2nd with second argument as
SDP1st

r (ε,K)), M>Y ≥ SDP1st
r (ε,K). Thus by using this solution in the optimization problem in Eq. (15) with

second argument of gap(r) ·K, we conclude:

SDP1st
r (ε,K) ≤ OPT1st(ε, gap(r) ·K)

as required. Now since this is true for every ε, we have that

E [Reg] ≤ 2 EI1:V Eε1:V

[
sup

f∈Fgap(r)·K [I1:V ]

V∑
j=t

κ∑
k=1

εj,k1 {f(xj) = k}

]
.

Proof [Proof of Proposition 8] To prove the lower bound, we simply consider an adversary who picks nodes in the fixed
sorted order and at each time step draw Ct, xt from the known generating process and finally draw yt ∼ Unif([κ]). Now
since yt is drawn independently and uniformly at random on every round, irrespective of how the forecaster picks ŷt, the
expected loss of the forecaster is E [1 {ŷt 6= yt}] = 1/κ. Thus we get the following lower bound on the expected regret.

E [Reg] ≥ E(xt,Ct)Vt=1

[
Ey1:V ∼Unif([2])

[
V/2− inf

f∈FK [I1:V ]

V∑
t=1

1 {f(xt) 6= yt}

]]

= EI1:V

[
Ey1:V ∼Unif([2])

[
sup

f∈FK [I1:V ]

V∑
t=1

(
1 {f(xt) = yt} −

1

2

)]]

Now for the uniform distribution over yt’s, since 1 {f(xt) = yt}− 1
2

and 1
2
−1 {f(xt) = yt} are identically distributed

we see that,

E [Reg] ≥ E(xt,Ct)Vt=1

[
Ey1:V ∼Unif([2])Eε

[
sup

f∈FK [I1:V ]

V∑
t=1

εt

(
1 {f(xt) = yt} −

1

2

)]]

= EI1:V

[
EεEy1:V ∼Unif([2])

[
sup

f∈FK [I1:V ]

V∑
t=1

εt,yt1 {f(xt) = yt}

]]

≥ EI1:V

[
Eε

[
sup

f∈FK [I1:V ]

V∑
t=1

Eyt∼Unif([2]) [εt,yt1 {f(xt) = yt}]

]]

≥ EI1:V

[
Eε

[
sup

f∈FK [I1:V ]

V∑
t=1

1

2

2∑
k=1

(εt,k1 {f(xt) = k})

]]

=
1

2
EI1:V , ε

[
sup

f∈FK [I1:V ]

V∑
t=1

2∑
k=1

εt,k1 {f(xt) = k}

]
where the last line is because for any f and any instance xt only one of 1 {f(xt) = 1} or 1 {f(xt) = 2} will be 1 and
the other is 0.

19



RAKHLIN SRIDHARAN

Proof [Proof of Corollary 9] This corollary follows by using a simple modification to Proposition 8. We shall assume
here that κ is even. The simple modification is as follows: the adversary first picks uniformly at random a numberR from
[κ/2]. Next the adversary uses exactly the lower bound construction as in Proposition 8 except that instead of picking
yt ∼ Unif([2]) the adversary picks yt ∼ Unif({R,R + κ/2}). Now notice that given draw of R, this is exactly the
binary case with labels R and R+ κ/2. Hence we can use the proposition to bound the expected regret as follows:

E [Reg] ≥ 1

2
E

R∼Unif([κ/2])
EI1:V , ε

 sup
f∈FK [I1:V ]

V∑
t=1

∑
k∈{R,R+κ/2}

εt,k1 {f(xt) = k}


=

1

2
E

R∼Unif([κ/2])
EI1:V , ε

[
sup

f∈FK [I1:V ]

V∑
t=1

κ∑
k=1

1 {k ∈ {R,R+ κ/2}} εt,k1 {f(xt) = k}

]

≥ 1

2
EI1:V , ε

[
sup

f∈FK [I1:V ]

V∑
t=1

κ∑
k=1

E
R∼Unif([κ/2])

[1 {k ∈ {R,R+ κ/2}}] εt,k1 {f(xt) = k}

]

=
1

κ
EI1:V , ε

[
sup

f∈FK [I1:V ]

V∑
t=1

κ∑
k=1

εt,k1 {f(xt) = k}

]

Proof [Proof of Lemma 6] The proof closely follows the analogous proof of Lemma 2. Note that we deal directly
with the relaxed set of Lasserre’s level r. To make the notation simpler, given a Lasserre vector set at level r, say
U ∈ Las(r,Fx1:V ), let MU

j,k =
∥∥U({j},k)

∥∥2 and also for each t and each constraint c ∈ Ct we use the notation

c(U) =
∑

α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2

Now let us proceed to verify that the initial dominance condition is satisfied by the relaxation. Note that

− inf
f∈G

V∑
s=1

1 {f(xs) 6= ys} ≤ − inf
f∈G


V∑
s=1

1 {f(xs) 6= ys}+ λ
∑

c∈C1:V

c(f)

+ λK

≤ − inf
U∈Las(r,Fx1:V

)


V∑
s=1

MU
s,ys + λ

∑
c∈C1:V

c(U)

+ λK,

where the first inequality holds because functions in G = FK [I1:V ] are required to keep the sum over unsatisfied
constraints below K by definition. The second inequality holds because the Lasserre solution is a relaxation of G and
hence larger than the solution within G. Let us check the recursive admissibility condition. To show that the proposed
randomized strategy is admissible, we prove the recursive admissibility condition using this strategy directly:

max
yt∈[κ]

{
Eŷt∼q̂t [`(ŷt, yt)] + Rel (G |y1:t)

}
= max
yt∈[κ]

1− Eŷt∼q̂t [1 {yt = ŷt}] + Eεt+1:V sup
U∈Las(r,Fx1:V

)


t∑

s=1

MU
s,ys + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− t+ λK

= max
yt∈[κ]

E
εt+1:V

− E
ŷt∼q̂t(εt+1:V )

[1 {yt = ŷt}+ sup
U∈Las(r,Fx1:V

)


t∑

s=1

MU
s,ys

+ 2
V∑

j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK

≤ E
εt+1:V

max
yt∈[κ]

− E
ŷt∼q̂t(εt+1:V )

[1 {yt = ŷt}] + sup
U∈Las(r,Fx1:V

)


t∑

s=1

MU
s,ys

+ 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK

20



HIERARCHIES OF RELAXATIONS

by the definition of the strategy,

= E
εt+1:V

inf
qt∈∆([κ])

max
yt∈[κ]

− E
ŷt∼qt

[1 {yt = ŷt}] + sup
U∈Las(r,Fx1:V

)


t∑

s=1

MU
s,ys

+ 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK

Using the minimax theorem, the above expression is equal to

= E
εt+1:V

sup
pt∈∆([κ])

min
ŷt∈[κ]

E
yt∼pt

−1 {yt = ŷt}+ sup
U∈Las(r,Fx1:V

)


t∑

s=1

MU
s,ys

+ 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK

= E
εt+1:V

sup
pt∈∆([κ])

{
− max
ŷt∈[κ]

E
yt∼pt

[1 {yt = ŷt}]

+ E
yt∼pt

sup
U∈Las(r,Fx1:V

)


t∑

s=1

MU
s,ys

+ 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


}

− (t− 1) + λK

Once again, by the constraint in the SDP that for any t,
∑κ
k=1

∥∥U({t},k)

∥∥2
=
∑κ
k=1M

U
t,k = 1 we can conclude that

max
ŷt∈[κ]

E
yt∼pt

[1 {yt = ŷt}] = max
i∈[κ]

pt[i] ≥ max
i∈[κ]

pt[i]

∑
j

MU
t,j

 ≥∑
i

pt[i]M
U
t,i = E

y′t∼pt
[MU

t,y′t
].

Hence, we conclude that,

max
yt∈[κ]

{
Eŷt∼q̂t [`(ŷt, yt)] + Rel (G |y1:t)

}
≤ E

εt+1:V
sup

pt∈∆([κ])
E

yt∼pt
sup

U∈Las(r)


t−1∑
s=1

MU
s,ys

+ (MU
t,yt
− Ey′t∼pt

[
MU
t,y′t

]
) + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


− (t− 1) + λK

using Jensen’s inequality to pull out the expectation,

≤ Eεt+1:V sup
pt∈∆([κ])

E
y′t,yt∼pt

sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys

+ (MU
t,yt
−MU

t,y′t
) + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


− (t− 1) + λK

since yt and y′t are identically distributed, we can introduce Rademacher random variable δt,

E
εt+1:V

sup
pt∈∆([κ])

E
δt,y
′
t,yt∼pt

sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys

+ δt(M
U
t,yt
−MU

t,y′t
) + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


− (t− 1) + λK

≤ E
εt+1:V

sup
yt,y
′
t∈[κ]

E
δt

sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys

+ δt(M
U
t,yt
−MU

t,y′t
) + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK

≤ Eεt+1:V sup
yt∈[κ]

Eδt

 sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys + 2δtM

U
t,yt

+ 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK
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Let εytt ∈ {±1}κ be defined as 1 on coordinate yt and independent Rademacher variables on the rest. For any j 6= yt, E
[
εytt,j

]
= 0

and εytt,yt = 1 and so,

≤ E
εt+1:V

sup
yt∈[κ]

E
δt

sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys

+ 2
κ∑
k=1

δtM
U
t,kE

[
εyt
t,k

]
+ 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


− (t− 1) + λK

≤ E
εt+1:V

sup
yt∈[κ]

E
δt,ε

yt
t

sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys + 2

κ∑
k=1

δtM
U
t,kε

yt
t,k + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


− (t− 1) + λK

= Eεt+1:V

Eεt

 sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

Ms,ys + 2

κ∑
k=1

MU
t,kεt,k + 2

V∑
j=t+1

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)




− (t− 1) + λK

= Eεt:V

 sup
U∈Las(r,Fx1:V

)


t−1∑
s=1

MU
s,ys

+ 2
V∑
j=t

κ∑
k=1

εj,kM
U
j,k − λ

∑
c∈C1:V

c(U)


− (t− 1) + λK

= Rel (G |y1:t−1)

Proof [Proof of Theorem 7] We have

Rel (G |∅) =λ∗K + Eε1:V

 sup
U∈Las(r,Fx1:V

)

2

V∑
t=1

κ∑
k=1

εt,k
∥∥U{t},k∥∥2 − λ∗

∑
c∈∪tCt

∑
α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2




≤ 2Eε1:V

 sup
U∈Las(r,Fx1:V

)

2

V∑
t=1

κ∑
k=1

εt,k
∥∥U{t},k∥∥2 − λ∗

∑
c∈∪tCt

∑
α∈[q]Sc

Rc(α)
∥∥U(Sc,α)

∥∥2




= 2λ∗K.

Now by definition of g̃ap(r) we conclude that

Rel (G |∅) ≤ 2 Eε1:V

[
sup

M∈Fx1:V

{
2

V∑
t=1

κ∑
k=1

εt,kMt,k −
λ∗

g̃ap(r)

∑
c∈∪tCt

c(M)

}]

Defining Ki = 2i, we get an upper bound,

≤ 2 Eε1:V

max
i∈Z

sup
M∈Fx1:V

Ki−1≤
∑

c∈∪tCt
c(M)≤Ki

{
2

V∑
t=1

κ∑
k=1

εt,kMt,k −
λ∗

g̃ap(r)

∑
c∈∪tCt

c(M)

}

≤ 2 max
i∈Z

Eε1:V

 sup
M∈Fx1:V∑

c∈∪tCt
c(M)≤Ki

{
2

V∑
t=1

κ∑
k=1

εj,kMj,k

}− λ∗

g̃ap(r)
Ki−1


= 2 max

i∈Z

{
RadV (FKi [I1:V ])−

λ∗

g̃ap(r)
Ki−1

}
= 2 max

i∈Z

{
RadV (FKi [I1:V ])−

λ∗

2g̃ap(r)
Ki

}
≤ 2 max

i∈Z

{
RadV (Fmax

{
1,

Ki
K

}
K
[I1:V ])−

λ∗

2 g̃ap(r)
Ki

}
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≤ 2 max
i∈Z

{
max

{
1,
Ki

K

}p
RadV (FK [I1:V ])−

λ∗

2 g̃ap(r)
Ki

}
.

Now let us split the analysis into two cases. First, if λ∗ > 2 g̃ap(r) RadV (FK [I1:V ])
K

, then

Rel (G |∅) ≤ 2 max
i∈Z

{
max

{
1,
Ki

K

}p
RadV (FK [I1:V ])−

Ki

K
RadV (FK [I1:V ])

}
≤ 2 RadV (FK [I1:V ])

where the last line is because p ≤ 1. Next let us consider the case when λ∗ ≤ 2RadV (FK [I1:V ])
K g̃ap(r)

. For this case however,
note that we already showed that Rel (G |∅) ≤ 2λ∗K and so

Rel (G |∅) ≤ 4 g̃ap(r) RadV (FK [I1:V ]).

The first statement follows. The second statement of the Theorem is an immediate consequence of Lemma 1.

23


	Introduction
	Setting
	Online Relaxations
	Rademacher-Based Relaxations
	Prediction Based on Lasserre SDP Hierarchy
	Regret Bounds Based on Existence of Rounding Strategies
	Examples
	Penalized Version of Relaxation
	A Lower Bound
	Proofs

