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Abstract
The Recursive Teaching Dimension (RTD) of a concept class C is a complexity parameter referring
to the worst-case number of labelled examples needed to learn any target concept in C from a
teacher following the recursive teaching model. It is the first teaching complexity notion for which
interesting relationships to the VC dimension (VCD) have been established. In particular, for finite
maximum classes of a given VCD d, the RTD equals d. To date, there is no concept class known for
which the ratio of RTD over VCD exceeds 3/2. However, the only known upper bound on RTD in
terms of VCD is exponential in the VCD and depends on the size of the concept class. We pose the
following question: is the RTD upper-bounded by a function that grows only linearly in the VCD?

Answering this question would further our understanding of the relationships between the com-
plexity of teaching and the complexity of learning from randomly chosen examples. In addition,
the answer to this question, whether positive or negative, is known to have implications on the
study of the long-standing open sample compression conjecture, which claims that every concept
class of VCD d has a sample compression scheme in which samples for concepts in the class are
compressed to subsets of size no larger than d.

1. Introduction

In Machine Learning, an important aspect of efficient algorithms is the amount of data that needs to
be processed for successful learning. We will refer to the worst case number of information items
(in our context, labelled examples) needed to identify any concept in a given concept class as the
information complexity of the class.

In PAC-learning, for example, the information complexity is upper-bounded and lower-bounded
by functions that are linear in the VC dimension (VCD) of the concept class (Blumer et al., 1989).
In most models of query learning, the number of queries asked or the number of prediction mistakes
made may define the notion of information complexity. In the original model of teaching (Goldman
and Kearns, 1995; Shinohara and Miyano, 1991), information complexity is measured by the worst-
case number of examples required to distinguish a target concept from all other concepts in the
class; the latter is called the teaching dimension (TD) of the class.

One of the most fundamental questions in computational learning theory is how such informa-
tion complexity parameters relate to each other. The open problem formulated below is whether any
linear function of the VCD of a finite concept class gives an upper bound on the recursive teaching
dimension Zilles et al. (2011) of that class.
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2. Problem Formulation

Let X be a finite set and C a concept class over X , i.e., concepts are subsets of X . A labelled
example is a pair (x, l) ∈ X × {0, 1}. VCD(C) denotes the VC dimension of a concept class C. A
set S of labelled examples is consistent with a concept C, if (x, l) ∈ S implies C(x) = l. (Here
we treat a concept as a binary function on X .) A teaching set for a concept C ∈ C is a set of
labelled examples that is consistent with C, but with no other concept in C. The quantity TD(C; C)
refers to the size of the smallest teaching set for C ∈ C. Then TD(C) = maxC∈C TD(C; C) is
called the teaching dimension of C (Goldman and Kearns, 1995; Shinohara and Miyano, 1991). By
TDmin(C) = minC∈C TD(C; C) we refer to the best-case teaching dimension of C.

The recursive teaching dimension (RTD) refers to the size of the largest teaching set used in the
so-called recursive teaching protocol (Zilles et al., 2011). It is computed by recursively removing
from the given concept class all concepts whose teaching dimension with respect to the remaining
concepts is smallest. The largest value of these smallest teaching dimensions encountered in the
recursive process is then the RTD of the concept class.

Definition 1 (Zilles et al. (2011)) The teaching hierarchy of C is the sequence (Cmin
1 , . . . , Cmin

z )
defined as follows. Let C1 = C and let, for all t ∈ {1, . . . , z},
• Cmin

t = {C ∈ Ct | TD(C; Ct) = TDmin(Ct)}, and

• Ct+1 = Ct \ Cmin
t .

Here z is the smallest value such that Cz+1 = ∅. The recursive teaching dimension of C, denoted by
RTD(C), is then defined as RTD(C) = max1≤t≤z TDmin(Ct).

For example, if C is the class of all singletons and the empty concept over X = {1, . . . , n},
then RTD(C) = VCD(C) = 1. With respect to C, the teaching dimension of each singleton is 1,
while that of the empty concept is n. However, the teaching hierarchy of C contains the class of all
singletons as Cmin

1 , thus leaving only the empty concept C0 at the second stage, which then has a
teaching dimension of 0 with respect to C2 = {C0}. We ask the following question:

For finite concept classes C, is RTD(C) ∈ O(VCD(C)), i.e., does the RTD of a finite
concept class never exceed its VCD by more than a constant factor c?

It has been noted (Doliwa et al., 2014) that this question is equivalent to the following question: For
finite concept classes C, is TDmin(C) ∈ O(VCD(C)), i.e., does the best-case teaching dimension
of a finite concept class never exceed its VCD by more than a constant factor c?

3. Relevant Known Results and Potential Implications of Solving the Problem

This problem was first addressed by Kuhlmann (1999), who showed that there are finite concept
classes C with RTD(C) = 3

2VCD(C). The smallest such class was found by Manfred K. Warmuth
and published by Doliwa et al. (2014). To date, no finite class C with RTD(C) > 3

2VCD(C) has
been found.

It is known that any maximum class C, i.e., a class C whose size equals the Sauer bound, fulfills
RTD(C) = VCD(C), and so does every class of VCD 1 (Doliwa et al., 2014). For intersection-
closed classes, VCD upper-bounds RTD (Doliwa et al., 2014). The only general upper bound on
RTD in terms of the VCD that can be found in the literature was proven by Moran et al. (2015); it
is exponential in VCD and depends on the size of the concept class.
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What if RTD is linearly bounded by the VCD? This would, first of all, imply a close rela-
tionship between learning from randomly chosen examples and learning from teachers, in terms of
information complexity. The structural properties that make a concept class hard or easy to learn
from randomly chosen examples would have implications on the difficulty of teaching the class by
yielding an upper bound on the number of examples needed in the worst case. Second, any relation-
ship between RTD and VCD may bring new insights into the long-standing sample compression
conjecture which claims that every concept class has a sample compression scheme of size (linear
in) its VCD (Warmuth, 2003). In the proof that RTD = VCD for maximum classes, the recursive
teaching examples form compression sets equal to the ones of size at most VCD resulting from
Rubinstein and Rubinstein’s (2012) corner-peeling. Further relationships between RTD and sample
compression were established in the study of order compression schemes (Darnstädt et al., 2013).

What if RTD is not linearly bounded by the VCD? One possible approach to proving the
sample compression conjecture would be to show that every finite concept class can be embedded
into a maximum class with only linear increase in the VCD. As Doliwa et al. (2014) observed, this
approach will be fruitless if RTD is not linearly bounded in VCD.

Hence, we believe that answering the question formulated above will entail substantial progress
in the study of teaching models, information complexity in general, as well as sample compression.
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