
JMLR: Workshop and Conference Proceedings 42:69-80, 2015 HEPML 2014

Higgs Boson Discovery with Boosted Trees

Tianqi Chen tqchen@cs.washington.edu
University of Washington

Tong He hetongh@sfu.ca

Simon Fraser University

Editor: Glen Cowan, Cécile Germain, Isabelle Guyon, Balàzs Kégl, David Rousseau

Abstract

The discovery of the Higgs boson is remarkable for its importance in modern Physics
research. The next step for physicists is to discover more about the Higgs boson from the
data of the Large Hadron Collider (LHC). A fundamental and challenging task is to extract
the signal of Higgs boson from background noises. The machine learning technique is one
important component in solving this problem.

In this paper, we propose to solve the Higgs boson classification problem with a gradient
boosting approach. Our model learns ensemble of boosted trees that makes careful tradeoff
between classification error and model complexity. Physical meaningful features are further
extracted to improve the classification accuracy. Our final solution obtained an AMS of
3.71885 on the private leaderboard, making us the top 2% in the Higgs boson challenge.

Keywords: Higgs Boson, Machine Learning, Gradient Boosting

1. Introduction

The Higgs boson is the last piece of the Standard Model of particle physics. In 2012, the
ATLAS experiment (Aad et al., 2012) and the CMS experiment (Chatrchyan et al., 2012)
claimed the discovery of the Higgs boson. Soon after the discovery, Peter Higgs and François
Englert was acknowledged by the 2013 Nobel Prize in physics. The next step for physicists
is to discover more about the physical process with the data from Large Hadron Collider
(LHC). One aspect of the task is to distinguish the signal of Higgs boson from similar
background processes. However, several challenges have been raised:

• The volume of data generated by LHC is huge. Every year it generates about one
billion events and three petabytes of raw data.

• The signal of Higgs boson is extremely rare among background noises.

• Different physical processes are too complex to be deterministically analysed.

Machine learning is treated as one of the promising ways to tackle these challenges.
To aggregate more machine learning techniques on this task, the Higgs Boson Machine
Learning Challenge1 was held. The challenge started at May 2014 and lasted for over 4
months. There were in total 1,785 teams participated in the competition, one of the largest

1. http://www.kaggle.com/c/higgs-boson

c© 2015 T. Chen & T. He.

http://www.kaggle.com/c/higgs-boson

Chen He

and most active ones on the platform website www.kaggle.com. The competition requires
competitors to build a binary classifier for detection of signals from Higgs boson-related
events.

We take a gradient boosting approach to solve these problems. Our model learns an
ensemble of boosted trees which makes careful tradeoff between classification error and
model complexity. The algorithm is implemented as a new software package called XGBoost,
which offers fast training speed and good accuracy. Due to the effectiveness of the toolkit, it
is adopted by many participants, including the top ones. We further improve the accuracy
by introducing features that are physically meaningful. Our final solution obtained an AMS
of 3.71885 on the private leaderboard, making us the top 2% in the Higgs boson challenge.

The rest part of the paper is structured as follows. We discuss related works in Section 2.
In Section 3, we discuss the regularized boosted tree model. Section 4 focuses on details
of feature engineering. Section 5 contains experimental results. Finally, we conclude the
paper in Section 6.

2. Related Work

During the competition, various models are introduced. The baseline method is a naive
Bayes classifier. People working with particle physics are also using tools named Multi-
boost (Benbouzid et al., 2012) and TMVA (Hoecker et al., 2007). These two boosting trees
implementations are used as the official benchmark scores. The model won the challenge
is an ensemble of neural networks 2. And the runner-up model 3 is based on regularized
greedy forest (Johnson and Zhang, 2014).

Our approach follows the path of gradient boosting (Friedman, 2001), which performs
additive optimization in functional space. Gradient boosting has been successfully used in
classification (Friedman et al., 2000) and learning to rank (Burges, 2010) as well as other
fields. Due to its effectiveness, there has been many software packages that implements the
algorithm, including the gbm package in R (Ridgeway, 2013) and scikit-learn (Pedregosa
et al., 2011). Ours differs from the traditional gradient boosting method by introducing a
regularization term to penalize the complexity of the function, making the result more robust
to overfitting. The advantage of regularizing boosted trees is also discussed in (Johnson
and Zhang, 2014).

3. Regularized Boosted Trees

3.1. Model Formalization

In the common supervised learning scenario, the data set can be represented by a set
containing n paired feature vectors and labels: D = {(xi, yi)} (|D| = n). In the context of
Higgs boson classification xi ∈ Rd is the vector of physics properties of the i-th event, while
yi ∈ {0, 1} indicates whether it is a signal event.

Because the relation between the physics features and output yi can be very complicated,
a simple linear model may not capture the complicated relation between them. One possible
approach is to enhance the input by dividing the input space into separate regions and model

2. https://github.com/melisgl/higgsml
3. https://github.com/TimSalimans/HiggsML

2

www.kaggle.com
https://github.com/melisgl/higgsml
https://github.com/TimSalimans/HiggsML

Higgs Boson Discovery with Boosted Trees

the probability distribution of yi in each region. However, the problem remains to find such
regions of interest. Ideally, we would learn them from the data. Motivated by this idea, we
propose to model prediction score ŷi given the input xi by the following functional form:

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F (1)

where K is the number of functions and F is the space of functions containing the partition
of the region and the score in each of them. Formally, we assume F to be a set of regression
trees. Because our model introduces functions as parameters, it allows us to find functions
fk ∈ F that fit the data well when we train the model, thus finds corresponding regions
automatically.

3.2. Training Objective

To learn the set of functions used in the model, we define the following regularized objective
function.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (2)

where l is a differentiable convex loss function that measures the difference between the
prediction ŷi and the target yi. The second term Ω measures the complexity of the model
(i.e., the feature functions) to avoid overfitting. One important fact about Eq. (2) is that
the objective is regularized, which means we are penalizing complicated models. With the
objective function, a model employing simple and predictive functions will be selected as
the best model.

Because the model includes functions as parameters, we cannot directly use traditional
optimization methods in Euclidean space to find the solution. Instead, we train the model
additively: at each iteration t, our proposed algorithm first searches over the functional
space F to find a new function ft that optimizes the objective function, and then adds it

to the ensemble. Formally, let ŷ
(t)
i be the prediction of i-th instance at t-th iteration, we

find ft to optimize the following objective.

L(t) =
n∑
i=1

l(yi, ŷ
(t)
i) +

t∑
i=1

Ω(fi)

=

n∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) +

t∑
i=1

Ω(fi)

This objective means that we want to add the best function to improve the model. In
the general setting, the above objective is still hard to optimize. So we approximate the
objective using the second order Taylor expansion.

L(t) '
n∑
i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] +

t∑
i=1

Ω(fi)

3

Chen He

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)). We can remove the constant

terms to obtain the following approximate objective at step t.

L̃(t) =
n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (3)

A general gradient boosting algorithm will iteratively add functions that optimizes
Eq (3) for a number of user-specified iterations. An important difference between our
objective and some traditional gradient boosting method is the explicit regularization term
which stops the model from overfitting. Based on this framework, we will discuss our model
in details in the following subsections.

3.3. Learning the Functions

It remains to learn the function ft in each step. In this model, we consider a specific class
of functions defined by the following procedure. Firstly data is segmented into T regions
based on the input xi, and then an independent score is assigned to each region. Formally,
we define a mapping q : Rd → {1, 2, · · · , T} that maps the input to the index of the region,
and a vector w of scores in each region. The function is defined by

ft(x) = wq(x)

This function class includes the regression tree when q represents the decision tree structure
on xi. We can also choose other forms of q to apply prior knowledge to regions of interest
if needed.

Furthermore, we define the function complexity Ω to be the following form

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j (4)

This regularization term penalizes on the number of regions and the sum of squared scores
of each region. Learning too many regions and assigning too large scores to leaves may
cause overfitting thus harm the accuracy of our model. We also introduce γ and λ as two
parameters to make a balance.

Define Ij = {i|q(xi) = j} as the instance set of region j. We can rewrite Eq (3) in the
following way

L̃(t) =
n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j

=

T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j] + γT

(5)

Now the objective is the sum of T independent quadratic functions of elements in w. Assume
the partition of regions, q(x), is fixed, the optimal weight w∗j of region j can be obtained by

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

(6)

4

Higgs Boson Discovery with Boosted Trees

The corresponding optimal objective function value is

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT (7)

We write the objective as a function of q since it depends on the structure of the mapping.
Eq (7) can be used as a scoring function to score the region partition specified by q. Figure 1
demonstrates a tree with fixed structure. We learn the score w on each leaf by Eq (6).

Figure 1: Demonstration of a Decision Tree

Further, we apply a generic algorithm enumerates over possible structures of q with
some heuristic and output the best q we found. In the next subsection, we will discuss how
to do it efficiently when q are decision trees.

3.4. Tree Growing Algorithm

Figure 2: Tree Splitting

The objective function in Eq (7) can be used to find a good structure. Since there can
be infinitely many possible candidates of the tree structure, we apply a greedy algorithm
in practice. Figure 2 is an illustration of one step of the algorithm: splitting a leaf into two
leaves. In each round, we greedily enumerate the features and choose to make a split on
the feature that gives the maximum reduction calculated by Eq (7). More specifically, let
IL and IR be the instance sets of left and right nodes and I = IL ∪ IR, then the gain in loss

5

Chen He

Algorithm 1: Tree Split Finding with Missing Value

Input: I, instance set of current node
Input: Ik = {i ∈ I|xik 6= missing}p
Input: d, feature dimension
gain← 0
G←

∑
i∈I , gi,H ←

∑
i∈I hi

for k = 1 to m do
enumerate missing value goto right
GL ← 0, HL ← 0
for j in sorted(Ik, ascent order by xjk) do

GL ← GL + gj , HL ← HL + hj
GR ← G−GL, HR ← H −HL

gain← max(gain,
G2

L
HL+λ

+
G2

R
HR+λ −

G2

H+λ)

end
enumerate missing value goto left
GR ← 0, HR ← 0
for j in sorted(Ik, descent order by xjk) do

GR ← GR + gj , HR ← HR + hj
GL ← G−GR, HL ← H −HR

gain← max(gain,
G2

L
HL+λ

+
G2

R
HR+λ −

G2

H+λ)

end

end
Output: Split and default direction with max gain

reduction by introducing the split is calculated by

gain =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (8)

There are two important factor that we need to consider when designing the tree growing
algorithm: 1) handling missing values 2) controlling complexity. Data with missing values
is a common problem in machine learning. One tradition way to handle missing values is
to impute them with either mean or median of that feature dimension. However, this could
require prior knowledge from the user and the specified imputed values may not be the
best choice. We simply enhance the function class to learn the best way to handle missing
values. The idea is to learn a default direction for each node and guide the instance with
missing value along the default direction. The learning algorithm will enumerate the default
directions to find the better one for each node. This algorithm is shown in Algorithm 1.
It can also be viewed as learning the best imputation values, since different imputations
implicitly give default directions. Algorithm 1 is recursively applied to tree nodes until
some stopping condition (e.g maximum depth) is met.

Model complexity is controlled by the regularization term in Eq (4). The introduction
of the complexity regularization results in the fact that the result of Eq (8) can be negative
when the training loss reduction is smaller than γ. Optimizing the regularized objective

6

Higgs Boson Discovery with Boosted Trees

naturally corresponds to the pruning heuristic of tree structures. We use a post-pruning
strategy to firstly grow the tree to maximum depth, then recursively prune all the leaf splits
with negative gain. In practice, we find this results in learning more conservative trees in
the latter phase of iterations and makes the result more generalizable.

3.5. Time Complexity

Recall that the number of samples is n, and the number of features is d. The total time
complexity of growing one tree is O(ndK log n), where K is the maximum depth of the tree.
We further optimized the algorithm by pre-sort the features at the beginning and eliminate
the sorting procedure during tree growing. This will reduce the training complexity to
O(ndK) after preprocessing. This makes the algorithm scalable to very large dataset.

3.6. Choosing the Objective Function

Since we follow a general framework for any differentiable loss function l, we can choose
an appropriate loss function for the competition task. The task is a binary classification
problem, and there are also pre-assigned weights for instances in the training data. Thus
we apply a weighted version of logistic loss. Assume yi is the real label, ŷi is the predicted
value before logistic transformation and wi is the weight. Then the loss function is given by

l(yi, ŷi) = −wi
[
yi ln

1

1 + e−ŷi
+ (1− yi) ln

(
e−ŷi

1 + e−ŷi

)]
Because the data is heavily unbalanced, we find it helpful to re-balance the weight of

the training data, so that sum of weight in positive and negative examples are the same. In
this competition, one of the challenge is the unusual metric approximate median significance
(AMS) (Adam-Bourdarios et al., 2014).

s =
n∑
i=1

wiI(yi = 1)I(ŷi = 1)

b =

n∑
i=1

wiI(yi = 0)I(ŷi = 1)

AMS =

√
2((s+ b+ br)ln(1 +

s

b+ br
)− s)

(9)

where s and b are considered as unnormalized true positive and false positive rates,
and br = 10 is the constant regularization term. During the competition there are at-
tempts to optimize it with an asymptotically differentiable function (Mackey and Bryan,
2014) (Kot lowski, 2014). Since our algorithm can optimize any loss function that has the
first and second order of derivations, therefore these attempts could also be combined as
well. However, because AMS is an unstable measure, it could lead to the overfitting prob-
lem. So we did not choose AMS as a direct objective.

7

Chen He

3.7. Software Package

We implemented our algorithm in C++ and make it an open source software package called
XGBoost 4. The package utilizes OpenMP (OpenMP Architecture Review Board, 2013) to
perform automatic parallel computation on a multi-threaded CPU to give notable speedup
over existing gradient boosting libraries. Besides the original C++ implementation, it also
supports other languages as python, R and julia. Detail comparisons to other implementa-
tions can be found in Section 5.

Due to the accuracy and efficiency of XGBoost, it becomes very popular in the compe-
tition. It is used by a lot of teams to improve their performance, including some in the top
10. Thus it has an impact on the competition leaderboard. The competition administrators
value the potential improvement from XGBoost on the current tools used in high energy
physics. Therefore, XGBoost has won the High Energy Physics meets Machine Learning
Award after the competition 5.

4. Feature Engineering

In this competition, each instance in the data refers to a simulated particle decay process
after the collision. Each process is measured by a detector which gathers basic information
about the decay process such as angles and momenta after the collision. To provide more
information for the process, some derived features are also included. These features describe
the status of particles generated in the decay process. The mission is to infer the whole
image of the process from the provided description. The more we know about the status of
particles, the better our inference will be.

The number of provided features in the original data is 30, which is not the complete
description of the status. To have a better understanding of the process, we try to recover
missing features from the given ones. We extract some additional features from the original
data based on our basic knowledge of physics and the formulas mentioned in the official
document. The general idea is the particles from signal events have similar kinematic status
that are unique from background. Since momentum, angle and relationship between these
features can describe the kinematic status well, we focus on the extraction of them with
simple calculation. The list of features is as follows.

• px, py, pz: Decomposed momentum of a particle along three axis.

• Energy of Particle: E =
√
p2x + p2y + p2z +m2.

• Vector product between any two momentum vectors i.e. px, py and pz

– Dot product and cosine similarity.

– Cross product representing the plane that the two vectors span.

• Determinant product of any three vectors representing the volume that the three
vectors span.

4. https://github.com/tqchen/xgboost
5. http://atlas.ch/news/2014/machine-learning-wins-the-higgs-challenge.html

8

https://github.com/tqchen/xgboost
http://atlas.ch/news/2014/machine-learning-wins-the-higgs-challenge.html

Higgs Boson Discovery with Boosted Trees

• Feature extraction from sets of particles

– Sum of px, py and pz for each set.

– Sum of energy for each set.

– Sum of energy for each set, in transverse x-y plane.

– Mass for each set.

– Mass for each set in x-y plane.

This process generates 138 additional features. The improvement from these features is
demonstrated in the next section.

5. Experiments

5.1. Setup

The data used in the competition is not from real experiments due to the extremely low
number of Higgs boson signals. Instead, the data is generated from a two-stage simulation.
Firstly proton-proton collisions are simulated based on the latest physics knowledge. Then
the resulting particles are tracked by a virtual detector. The results from these processes
maintain the statistical properties of the real events. For simplicity, there are only four
types of processes retained in the simulation. Finally, 30 features are extracted from the
processes. Because of different behaviors of the four physical processes, some features do
not exist, this leads to some missing values indicated by -999 in the data. The final data
set is split into two parts for training and test. There are 250,000 and 550,000 samples in
training and test set respectively.

We next check the prediction accuracy, computation efficiency of XGBoost and the
effectiveness of regularization. For comparison in the first two parts, we run the most
popular implementations of gradient boosting machine as benchmarks: the gbm-package
from R (R-gbm) and scikit-learn from python (python-sklearn).

5.2. Higgs Prediction Accuracy

In XGBoost, we introduce the regularization term to avoid overfitting. We also generate
the default direction and take the post-pruning strategy in Algorithm 1. To exam the
effectiveness, we run XGBoost, R-gbm and sklearn on the original training data with the
same parameter setting. We set the maximum depth of the tree to 6, the step size shrinkage
to 0.1 and the number of trees to 120. We also mark -999 as the missing value indicator in
XGBoost. Since R-gbm and sklearn cannot handle the missing value, we simply keep -999
in the data.

We then fine tune the parameters of XGBoost to demonstrate its ability. After the
training phase, we make predictions on the test data and submit to get the AMS score.
Finally we keep the same parameter setting and run this process again on the data with
additional features. The combined result is in Table 1.

We can see from the AMS score that XGBoost is more accurate under the same pa-
rameter setting. The result is greatly improved by finely tuned parameters. Comparing
the two columns in Table 1, we can see the extracted physical features also have a slight
improvement on the accuracy for all the models.

9

Chen He

Table 1: Accuracy On Test Data Set

Original Data Physical Features

R-gbm 3.38356 3.38422
python-sklearn 3.55236 3.56985
XGBoost 3.64655 3.65860
XGBoost(tuned) 3.71142 3.72370

5.3. Speedup of Parallelization

In this section we exam the efficiency of of our algorithm. The comparison takes place on
a CentOS 6.6 machine with Intel(R) Xeon(R) CPU E5630 and 12GB memory. We run
XGBoost and two benchmark models on a single core with the same parameter setting as
Section 5.2 on the original training data. To test the effect of parallelization, we run it on
2 and 4 cores separately with the same settings. The result is illustrated in Figure 3.

Figure 3: Speed Benchmark Result

We can see that our algorithm is faster than python-sklearn and R-gbm even only with
a single thread. Additionally, our implementation also leverages multi-threading to greatly
speeds up the computation. We get nearly linear speedup by using multiple threads. The
result demonstrates the great advantage of our package over the existing ones.

5.4. Effectiveness of Regularization

Our finely tuned XGBoost result in section 5.2 sets γ = 0.1 and λ = 0. In this section we
exam the effectiveness of the regularization term introduced in Eq. 4. We consider all the
pairs of (γ, λ) where γ = {0, 0.1} and λ = {0, 0.1, 1, 5, 10}. Then we train the 10 models
fixing all the other parameters as the same value in section 5.2. Due to the instability of

10

Higgs Boson Discovery with Boosted Trees

AMS, we evaluate the performance of the models by Area Under the Curve(AUC). The
result is illustrated in Figure 4

Figure 4: Regularization Comparison Result

The figure shows that nearly all models with γ = 0.1 outperformed those with γ = 0.
The performance could be further improved by finer tuning other parameters with regard
to γ and λ. This result demonstrates the effectiveness of the regularization.

6. Conclusion and Future Works

In this paper, we describe our solution to Higgs Machine Learning Competition. We use a
regularized version of gradient boosting algorithm with a highly efficient implementation.
We also take advantage of feature engineering based on physics to extract more information
of the underlying physical process. Experimental results on the contest data demonstrate
the accuracy and effectiveness of the techniques proposed by this paper.

One of the challenge for particle physics is the large volume of the data. To tackle
this problem, the new implementation that deploys XGBoost to a cluster of nodes is under
development. The scalability will be further improved and it will be suitable for much larger
data set. It is also interesting to explore other function classes that are more physically
meaningful.

Acknowledgement

We would like to thank all the competition organizers for making such an amazing challenge
possible.

11

Chen He

References

Georges Aad, T Abajyan, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov,
R Aben, B Abi, M Abolins, et al. Observation of a new particle in the search for the standard
model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012.

Claire Adam-Bourdarios, Glen Cowan, Cecile Germain, Isabelle Guyon, Balázs Kégl, and David
Rousseau. Learning to discover: the Higgs boson machine learning challenge, May 2014. URL
https://hal.inria.fr/hal-01104487.

Djalel Benbouzid, Róbert Busa-Fekete, Norman Casagrande, François-David Collin, and Balázs
Kégl. Multiboost: a multi-purpose boosting package. The Journal of Machine Learning Research,
13(1):549–553, 2012.

C. Burges. From ranknet to lambdarank to lambdamart: An overview. Learning, 11:23–581, 2010.

Serguei Chatrchyan, Vardan Khachatryan, Albert M Sirunyan, A Tumasyan, W Adam, E Aguilo,
T Bergauer, M Dragicevic, J Erö, C Fabjan, et al. Observation of a new boson at a mass of 125
gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–61, 2012.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.
The annals of statistics, 28(2):337–407, 2000.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics,
pages 1189–1232, 2001.

Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Jan Therhaag, Eckhard von Toerne, and Helge
Voss. TMVA: Toolkit for Multivariate Data Analysis. PoS, ACAT:040, 2007.

Rie Johnson and Tong Zhang. Learning nonlinear functions using regularized greedy forest. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 36(5):942–954, 2014.

Wojciech Kot lowski. Consistent optimization of ams by logistic loss minimization. arXiv preprint
arXiv:1412.2106, 2014.

Lester Mackey and Jordan Bryan. Weighted classification cascades for optimizing discovery signifi-
cance in the higgsml challenge. arXiv preprint arXiv:1409.2655, 2014.

OpenMP Architecture Review Board. OpenMP application program interface version 4.0, July 2013.
URL http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Greg. Ridgeway. gbm: Generalized Boosted Regression Models, 2013. URL http://CRAN.

R-project.org/package=gbm. R package version 2.1.

12

https://hal.inria.fr/hal-01104487
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=gbm

	Introduction
	Related Work
	Regularized Boosted Trees
	Model Formalization
	Training Objective
	Learning the Functions
	Tree Growing Algorithm
	Time Complexity
	Choosing the Objective Function
	Software Package

	Feature Engineering
	Experiments
	Setup
	Higgs Prediction Accuracy
	Speedup of Parallelization
	Effectiveness of Regularization

	Conclusion and Future Works

