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Abstract

In this paper, we theoretically justify an approach popular among participants of the Higgs
Boson Machine Learning Challenge to optimize approximate median significance (AMS).
The approach is based on the following two-stage procedure. First, a real-valued function
f is learned by minimizing a surrogate loss for binary classification, such as logistic loss, on
the training sample. Then, given f , a threshold θ̂ is tuned on a separate validation sample,
by direct optimization of AMS. We show that the regret of the resulting classifier (obtained

from thresholding f on θ̂) measured with respect to the squared AMS, is upperbounded by
the regret of f measured with respect to the logistic loss. Hence, we prove that minimizing
logistic surrogate is a consistent method of optimizing AMS.

Keywords: Approximate median significance (AMS), Higgs Boson Machine Learning
Challenge, Kaggle, logistic loss, regret bound, statistical consistency.

1. Introduction

This paper concerns a problem of learning a classifier to optimize approximate median
significance (AMS), which was the goal of the Higgs Boson Machine Learning Challenge
(HiggsML), hosted by Kaggle website (see Adam-Bourdarios et al. (2014) for details on this
contest and description of the problem).

In particular, we are interested in an approach to optimize AMS, based on the following
two-stage procedure. First, a real-valued function f is learned by minimizing a surrogate
loss for binary classification, such as logistic loss function, on the training sample. In
the second stage, given f , a threshold is tuned on a separate “validation” sample, by
direct optimization of AMS with respect to a classifier obtained from f by classifying all
observations with value of f above the threshold as positive class (signal event), and all
observations below the threshold as negative class (background event).

This approach became very popular among HiggsML challenge participants, mainly due
to the fact that its first stage, learning a classifier, does not exploit the task evaluation metric
(AMS) in any way and thus can employ without modifications any standard classification
tools such as logistic regression, LogitBoost, Stochastic Gradient Boosting, Random Forest,
etc. (see, e.g., Hastie et al. (2009)). Despite its simplicity, this approach proved to be very
effective in achieving high leaderboard score in HiggsML. 1

1. See the HiggsML forum https://www.kaggle.com/c/higgs-boson/forums for discussions and presenta-
tion of the top score solutions.
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The intuition behind this approach is clear: minimization of logistic loss results in
estimation of conditional probabilities of signal and background event, and the AMS is
assumed to be maximized by classifying the events most likely to be signal as signal events.

This paper formalizes this intuition by showing that the approach described above con-
stitutes a consistent method of optimizing AMS. More specifically, we use the notion of
regret with respect to some evaluation metric, which is a difference between the perfor-
mance of a given classifier and the performance of the optimal classifier with respect to this
metric. Given a function f , and a classifier hf,θ̂ obtained from f by thresholding f at θ̂,
we give a bound on the regret of hf,θ̂ measured with respect to the squared AMS by the

regret of f measured with respect to the logistic loss, given that the threshold θ̂ is tuned by
optimization of AMS among all classifiers of the form hf,θ for any threshold value θ. Thus,
the goal of this paper is to theoretically explain the procedure of optimizing AMS by logistic
loss minimizing.

To our knowledge, this is the first regret bound of this form applicable to a non-
decomposable performance measure such as AMS. We also discuss generalization of our
approach to different performance measures and surrogate loss functions.

Related work. The issue of consistent optimization of performance measures which are
functions of true positive and true negative rates has received increasing attention recently
in machine learning community (Narasimhan et al., 2014; Natarajan et al., 2014; Zhao et al.,
2013). However, these works are mainly concerned with statistical consistency also known
as calibration, which determines whether convergence to the minimizer of a surrogate loss
implies convergence to the minimizer of the task performance measure as sample size goes
to infinity. Here we give a much stronger result which bounds the regret with respect to
squared AMS by the regret with respect to logistic loss. Our result is valid for all finite
sample sizes and informs about the rates of convergence.

Recently, Mackey and Bryan (2014) proposed a classification cascade approach to op-
timize AMS. Their method, based on the theory of Fenchel’s duality, iteratively alternates
between solving a cost-sensitive binary classification problem and updating misclassifica-
tion costs. In contrast, the method described here requires solving an ordinary binary
classification problem just once.

Outline. The paper is organized as follows. In Section 2, we introduce basic concepts
needed to state our main result presented in Section 3 and proved in Section 4. Section 5
discusses generalization of our results beyond AMS and logistic loss.

2. Problem Setting

Binary classifier. In binary classification, the goal is, given an input (feature vector)
x ∈ X, to accurately predict the output (label) y ∈ {−1, 1}. We assume input-output pairs
(x, y), which we call observations, are generated i.i.d. according to probability distribution
Pr(x, y).2 A classifier is a mapping h : X → {−1, 1}. Given h, we define the following two

2. The original HiggsML problem was to optimize the score on a finite (test) sample, which is a special case
of a distribution. HiggML problem also involved observations’ weights, but without loss of generality,
they can be incorporated into the Pr(x, y).
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quantities:

s(h) = Pr(h(x) = 1, y = 1),

b(h) = Pr(h(x) = 1, y = −1),

which can be interpreted as true positive and false positive rates of h.

AMS and regret. Given a classifier h, define its approximate median significance (AMS)
score (Cowan et al., 2011) as AMS(h) = AMS(s(h), b(h)), where:3

AMS(s, b) =

√
2
(

(s+ b) log
(

1 +
s

b

)
− s
)
.

It is more convenient to deal with a squared AMS:

AMS2(s, b) = 2
(

(s+ b) log
(

1 +
s

b

)
− s
)
,

and this quantity is used throughout the paper. By calculating the derivatives, it is easy to
verify that AMS2(s, b) is increasing in s and decreasing in b:

∂AMS2(s, b)

∂s
= log

(
1 +

s

b

)
≥ 0,

∂AMS2(s, b)

∂b
= log

(
1 +

s

b

)
− s

b
≤ 0.

Moreover, AMS2(s, b) is jointly convex with respect to (s, b). Indeed the Hessian matrix is
given by:

∇2AMS2(s, b) =

(
1
b+s − s

b(b+s)

− s
b(b+s)

s2

b2(b+s)

)
=

1

b+ s
uu>,

where u =
(
1, bs
)
. Hence ∇2AMS2(s, b) is positive semidefinite.

Let h∗AMS be the classifier which maximizes the AMS2 over all possible classifiers:

h∗AMS = arg max
h∈{−1,1}X

AMS2(h)

(if the maximizer is non-unique, we take any maximizer of AMS2 as h∗AMS). Given h, we
define its AMS regret as the distance of h from the optimal classifier h∗AMS measured by
means of AMS2:

RAMS(h) = AMS2(h∗AMS)−AMS2(h).

AMS regret is a better performance metric than the AMS itself, since it specifies how much
worse is h comparing to the optimal h∗AMS.

3. Comparing to the definition in (Adam-Bourdarios et al., 2014), we skip the regularization term breg.
This comes without loss of generality, as breg can be incorporated into b and, since it affects all classifiers
equally, will vanish in the definition of regret.
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Logistic loss and logistic regret. Given a real number f , and a label y, we define the
logistic loss `log : {−1, 1} × R→ R+ as:

`log(y, f) = log
(

1 + e−yf
)
.

The logistic loss is a commonly used surrogate loss function for binary classification, em-
ployed in various learning methods, such as logistic regression, LogitBoost or Stochastic
Gradient Boosting (see, e.g., Hastie et al. (2009)). It is convex in f , so minimizing logistic
loss over the training sample becomes a convex optimization problem, which can be solved
efficiently. Another advantage of logistic loss is that the sigmoid transform of f , (1+e−f )−1,
can be used to obtain probability estimates Pr(y|x).

Given a real-valued function f : X → R, its expected logistic loss Llog(f) is defined as:

Llog(f) = E(x,y)[`log(y, f(x))].

Let:
f∗log = arg min

f
Llog(f),

be the minimizer of Llog(f) among all functions f : X → R (as before, in case the minimizer
is non-unique, we take any minimizer as f∗log). We define the logistic regret of f as:

Rlog(f) = Llog(f)− Llog(f∗log).

3. Main Result

Any real-valued function f : X → R can be turned into a classifier hf,θ : X → {−1, 1}, by
thresholding at some value θ:

hf,θ(x) = sgn(f(x)− θ),

where sgn(x) is the sign function, and we use the convention that sgn(0) = 1.
The purpose of this paper is to address the following problem: given a function f with

logistic regret Rlog(f), and a threshold θ, what is the maximum AMS regret of hf,θ? In
other words, can we bound RAMS(hf,θ) in terms of Rlog(f)? If f is close to f∗log in terms of
expected logistic loss, does it also imply that hf,θ is close to h∗AMS in terms of squared AMS?
We give a positive answer to this question, which based on the following regret bound:

Lemma 1 There exists a threshold θ∗, such that for any f ,

RAMS(hf,θ∗) ≤
s(h∗AMS)

b(h∗AMS)

√
1

2
Rlog(f).

The proof is quite long and hence is postponed to Section 4. Interestingly, the proof goes
by an intermediate bound of the AMS regret by a cost-sensitive classification regret, with
misclassification costs proportional to the gradient coordinates of the AMS.

Lemma 1 has the following interpretation. If we are able to find a function f with small
logistic regret, we are guaranteed that there exists a threshold θ∗ such that hf,θ∗ has small
AMS regret. Note that the same threshold θ∗ will work for any f , and the right hand side
of the bound is independent of θ∗. We are now ready to prove the main result of the paper:

4



Consistent optimization of AMS by logistic loss minimization

Theorem 2 Given a real-valued function f , let θ̂ = arg maxθ AMS(hf,θ). Then:

RAMS(hf,θ̂) ≤
s(h∗AMS)

b(h∗AMS)

√
1

2
Rlog(f).

Proof The result follows immediately from Lemma 1 by noticing that solving maxθ AMS(hf,θ)
is equivalent to solving minθ RAMS(hf,θ), and that minθ RAMS(hf,θ) ≤ RAMS(hf,θ∗).

Theorem 2 motivates the following procedure for AMS maximization:

1. Find f with small logistic regret, e.g. by employing a learning algorithm minimizing
logistic loss on the training sample.

2. Given f , solve θ̂ = arg maxθ AMS(hf,θ).

Theorem 2 states that the AMS regret of the classifier obtained by this procedure is upper-
bounded by the logistic regret of the underlying real-valued function.

We now discuss how to approach step 2 of the procedure in practice. In principle,
this step requires maximizing AMS defined by means of an unknown distribution Pr(x, y).
However, it is sufficient to optimize θ on the empirical counterpart of AMS calculated on a
separate validation sample. Indeed, step 2 involves optimization within a class of threshold
functions (since f is fixed), which has VC-dimension equal to 2 (Devroye et al., 1996). By
convexity of AMS2,

AMS2(s, b)−AMS2(ŝ, b̂) ≤
(
∂AMS2(s, b)

∂s
,
∂AMS2(s, b)

∂b

)>
(s− ŝ, b− b̂) (1)

(see, e.g. Boyd and Vandenberghe (2004)), where ŝ and b̂ are empirical counterparts of s
and b. Since ŝ and b̂ are empirical means of some quantities, we employ the results of VC
theory and state that the deviations of empirical means ŝ and b̂ from their expectations s
and b, respectively, can be upperbounded with high probability uniformly over the class
of all threshold functions by O(1/

√
m), where m is the validation sample size. This and

(1) implies4 uniform convergence on AMS2. This in turn means, that AMS2(s, b) of the
empirical maximizer is O(1/

√
m) close to the maxθ AMS2(hf,θ). Hence, step 2 can be

performed within O(1/
√
m) accuracy on a validation sample independent from the training

sample.

4. Proof of Lemma 1

The proof consists of two steps. First, we bound the AMS regret of any classifier h by
its cost-sensitive classification regret (introduced below). Next, we show that there ex-
ists a threshold θ∗, such that for any f , the cost-sensitive classification regret of hf,θ∗ is
upperbounded by the logistic regret of f .

4. In the HiggsML problem, the gradients of AMS2 are bounded due to regularization term br.
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Bounding AMS regret by cost-sensitive classification regret. Given a real number
c ∈ (0, 1), define a cost-sensitive classification loss `c : {−1, 1} × {−1, 1} → R+ as:

`c(y, h) = c1[y = −1]1[h = 1] + (1− c)1[y = 1]1[h = −1],

where 1[A] is the indicator function equal to 1 if predicate A is true, and 0 otherwise. The
cost-sensitive loss assigns different costs of misclassification for positive and negative labels.
Given classifier h, the expected cost-sensitive loss of h is:

Lc(h) = E(x,y)[`c(y, h(x))] = cb(h) + (1− c)(Pr(y = 1)− s(h)),

where s(h) and b(h) are true positive and false positive rates defined before. Let h∗c =
arg minh Lc(h) be the minimizer of the expected cost-sensitive loss among all classifiers.
Define the cost-sensitive classification regret as:

Rc(h) = Lc(h)− Lc(h∗c).

Any convex and differentiable function g(x) satisfies g(x) ≥ g(y) +∇g(y)>(x − y) for any
x, y in its convex domain (Boyd and Vandenberghe, 2004). Applying this inequality to
AMS2(s, b) jointly convex in (s, b), we have for any s, b, s∗, b∗ ∈ [0, 1]:

AMS2(s, b) ≥ AMS2(s∗, b∗) +

(
∂AMS2(s∗, b∗)

∂s∗
,
∂AMS2(s∗, b∗)

∂b∗

)>
(s− s∗, b− b∗). (2)

Given classifier h, we set s = s(h), b = b(h), s∗ = s(h∗AMS), b∗ = b(h∗AMS), and:

C :=
∂AMS2(s∗, b∗)

∂s∗
− ∂AMS2(s∗, b∗)

∂b∗
, c := − 1

C

∂AMS2(s∗, b∗)

∂b∗
.

Since AMS2(s, b) is increasing in s and decreasing in b, both ∂AMS2(s∗,b∗)
∂s∗ and −∂AMS2(s∗,b∗)

∂b∗

are positive, which implies C > 0 and 0 < c < 1. In this notation, (2) boils down to:

RAMS(h) = AMS2(h∗AMS)−AMS2(h) ≤ C
(
c(b(h)− b(h∗AMS)) + (1− c)(s(h∗AMS)− s(h))

)
= C

(
Lc(h)− Lc(h∗AMS)

)
≤ C

(
Lc(h)− Lc(h∗c)

)
= CRc(h),

where the last inequality follows from the definition of h∗c . Thus, the AMS regret is upper-
bounded by the cost-sensitive classification regret with costs proportional to the gradient
coordinates of AMS2(s∗, b∗) at optimum h∗AMS.5

Bounding cost-sensitive classification regret by logistic regret. We first give a
bound on cost-sensitive classification regret by means of logistic regret conditioned at a
given x. This part relies on the techniques used by Bartlett et al. (2006). Then, the final
bound is obtained by taking expectation with respect to x, and applying Jensen’s inequality.

Given a label h ∈ {−1, 1}, and η ∈ [0, 1], define conditional cost-sensitive classification
loss as:

`c(η, h) = c(1− η)1[h = 1] + (1− c)η1[h = −1].

5. Note that the gradient at optimum does not vanish, as the optimum is with respect to h, not (s, b).
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The reason this quantity is called “conditional loss” becomes clear if we note that for
any classifier h, Lc(h) = Ex[`c(η(x), h(x))], where η(x) = Pr(y = 1|x). In other words,
`c(η(x), h(x)) is the loss of h conditioned on x.

Given η, let h∗c = arg minh∈{−1,1} `c(η, h). It can be easily verified that:

h∗c = sgn (η − c) ,

and:
`c(η, h

∗
c) = min{c(1− η), (1− c)η}.

The conditional regret of h is defined as rc(η, h) = `c(η, h) − `c(η, h∗c). If h = h∗c then the
obviously rc(η, h) = 0. On the other hand, if h 6= h∗c , then:

rc(η, h) = c(1− η)1[h = 1] + (1− c)η1[h = −1]−min{c(1− η), (1− c)η}
= max{c(1− η), (1− c)η} −min{c(1− η), (1− c)η}
= |c(1− η)− (1− c)η| = |η − c|.

Summarizing:

rc(η, h) =

{
0 if h = h∗c ,
|η − c| if h 6= h∗c .

Given a real number f , and η ∈ [0, 1], define conditional logistic loss as:

`log(η, f) = (1− η) log
(

1 + ef
)

+ η log
(

1 + e−f
)
.

Let f∗log = arg minf∈R `log(η, f). By differentiating `log(η, f) with respect to f , and setting
the derivative to 0, we get that:

f∗log = log
η

1− η
,

and `log(η, f∗log) = −η log η − (1 − η) log(1 − η), which is the binary entropy of η. The
conditional logistic regret of f is given by

rlog(η, f) = `log(η, f)− `log(f∗log).

The conditional regret has a particularly simple form when f is re-expressed as a probability
estimate ηf :

rlog(η, f) = D(η‖ηf ), where ηf :=
1

1 + e−f
,

and D(η‖ηf ) = η log η
ηf

+ (1− η) log 1−η
1−ηf is the Kullback-Leibler divergence. By Pinsker’s

inequality,
D(η‖ηf ) ≥ 2(η − ηf )2.

Given real number f , define hf,θ∗ = sgn(f − θ∗), where:

θ∗ = log
c

1− c
.
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We will now bound the conditional cost-sensitive classification regret rc(η, hf,θ∗) in terms
of conditional logistic regret rlog(η, f). First note that:

hf,θ∗ = 1 ⇐⇒ f ≥ θ∗ = log
c

1− c
⇐⇒ 1

1 + e−f
≥ c ⇐⇒ ηf ≥ c,

so that we can equivalently write hf,θ∗ = sgn(ηf − c). Since h∗c = sgn(η− c), then whenever
(ηf − c)(η − c) > 0, it holds hf,θ∗ = h∗c , and rc(η, hf,θ∗) = 0. On the other hand, when
(ηf − c)(η − c) ≤ 0, it holds6 rc(η, hf,θ∗) ≤ |η − c|, whereas:

rlog(η, f) = D(η‖ηf )

(Pinsker’s inequality) ≥ 2(η − ηf )2

= 2(η − c+ c− ηf )2

= 2(η − c)2 + 4(η − c)(c− ηf ) + 2(c− ηf )2

(because (ηf − c)(η − c) ≤ 0)) ≥ 2(η − c)2

≥ 2r2
c (η, hf,θ∗).

Taking both cases together, we get:

rc(η, hf,θ∗) ≤
√
rlog(η, f)/2.

Now, given any function f ,

Rc(hf,θ∗) = Ex[rc(η, hf,θ∗)]

≤ Ex
[√

rlog(η, f)/2

]
≤
√

Ex[rlog(η, f)]/2

=
√
Rlog(f)/2,

where the last inequality is from Jensen’s inequality applied to the concave function x 7→
√
x.

Finishing the proof. Combining the results from both parts, we get:

RAMS(hf,θ∗) ≤ CRc(hf,θ∗) ≤ C
√
Rlog(f)/2,

where θ∗ = log c
1−c is independent of f . Recalling that C = ∂AMS2(s∗,b∗)

∂s∗ − ∂AMS2(s∗,b∗)
∂b∗ , we

calculate:

C = log

(
1 +

s∗

b∗

)
−
(

log

(
1 +

s∗

b∗

)
− s∗

b∗

)
=
s∗

b∗
,

where s∗ = s(h∗AMS) and b∗ = b(h∗AMS). This finished the proof. �
Note that the proof actually specifies the exact value of the universal threshold θ∗:

θ∗ = log
c

1− c
, where c = 1− b∗

s∗
log

(
1 +

s∗

b∗

)
.

6. rc(η, hf,θ∗) = |η − c| if (ηf − c)(η − c) < 0, and can be either 0 or |η − c| when (ηf − c)(η − c) = 0.
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5. Generalization beyond AMS and logistic loss

Results of this paper can be generalized beyond AMS metric and logistic loss surrogate.
The AMS can be replaced by any other evaluation metric, which enjoys the following two
properties: 1) is increasing in s, and decreasing in b; 2) is jointly convex in s and b. These
were the only two properties of the AMS used in the proof of Lemma 1. The logistic loss
surrogate can be replaced by any other convex surrogate loss `, such that the following
property holds: There exists a threshold θ∗ which is a function of the cost c, such that for
all f ,

Rc(hf,θ∗) ≤ λ
√
R`(f), (3)

for some positive constant λ. This property is satisfied by, e.g., squared error loss `sq(y, f) =
(y− f)2 with λ = 1, which can be verified by noticing that the logistic regret upperbounds
the squared error regret by Pinsker’s inequality. More generally, (3) is closely related to the
properties of loss functions known as strongly proper composite losses (Agarwal, 2014).

Acknowledgments

The author was supported by the Foundation For Polish Science Homing Plus grant, co-
financed by the European Regional Development Fund. The author would like to thank
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David Rousseau. Learning to discover: the Higgs boson machine learning challenge, 2014.
URL http://higgsml.lal.in2p3.fr/documentation/.

Shivani Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses.
Journal of Machine Learning Research, 15:1653–1674, 2014. URL http://jmlr.org/

papers/v15/agarwal14b.html.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and
risk bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for
likelihood-based tests of new physics. The European Physical Journal C-Particles and
Fields, 71(2):1–19, 2011.
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