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Abstract

Particle colliders are the primary experimental instruments of high-energy physics. By cre-
ating conditions that have not occurred naturally since the Big Bang, collider experiments
aim to probe the most fundamental properties of matter and the universe. These costly
experiments generate very large amounts of noisy data, creating important challenges and
opportunities for machine learning. In this work we use deep learning to greatly improve
the statistical power on three benchmark problems involving: (1) Higgs bosons; (2) su-
persymmetric particles; and (3) Higgs boson decay modes. This approach increases the
expected discovery significance over traditional shallow methods, by 50%, 2%, and 11%
respectively. In addition, we explore the use of model compression to transfer information
(dark knowledge) from deep networks to shallow networks.

Keywords: Deep learning, neural networks, high-energy physics

1. Introduction

Dark matter is believed to account for 85% of the matter in the universe (Planck Collabora-
tion, 2013), but we have no information regarding the particle or particles which constitute
it (Feng, 2010). To investigate the fundamental properties of matter and to develop in-
creasingly unified theories of the physical universe, such as the Standard Model (Weinberg,
1967; Beringer et al., 2012), high-energy physicists have designed the most advanced ex-
perimental apparatuses ever constructed — particle accelerators — that collide protons or
anti-protons at very high energies. These collisions produce exotic particles that are not
otherwise observable in nature.

Producing and detecting these particles requires extraordinary resources. The largest
particle collider in the world, the Large Hadron Collider (LHC), and its associated detec-
tors cost billions of dollars to construct and approximately a million dollars per day to
operate (Lefevre, 2009). Furthermore, the vast majority of collision events do not produce
particles of interest. The LHC produces approximately 1011 collisions per hour (ATLAS
Collaboration, 2013a), but only 300 of these collisions will result in a Higgs boson. It is
therefore essential to process and analyze this experimental data efficiently. Fast trigger
mechanisms are needed to curate events of interest online and sensitive statistical tools are
needed to extract as much relevant information from the data as possible.
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Identifying the collisions that contain particles of interest is a formidable challenge.
These particles cannot be directly observed since they quickly decay into lighter, more
stable particles. Therefore, the point of collision is surrounded by multiple layers of de-
tectors (ATLAS Collaboration, 2008) that measure the direction and momentum of these
decay products (Beringer et al., 2012). Collisions occur every 25 ns, and for each collision
measurements are taken at more than 100M detector elements. The volume of raw data is
therefore enormous — approximately 1 petabyte per second.

Background processes produce the same decay products, mimicking the events of inter-
est. To distinguish between background processes and signal processes, physicists perform
a statistical analysis of the measurements taken, namely the 3-dimensional momenta of the
observed particles. This analysis is performed by computing the relative likelihood (Cowan
et al., 2011) of the data under the two models, in the space of the momenta of the decay
products. While the true analytic form of the likelihood is not available, good approxima-
tions are available using Monte Carlo methods (Sjostrand et al., 2006; Alwall et al., 2011;
ATLAS Collaboration, 2010) which generate simulated collisions to populate the space of
decay product momenta. However, the dimensionality of the space for measured quantities
about each collision is large, approximately 3N , where N is the number of observed de-
cay products, so machine learning techniques are used to reduce the dimensionality of this
space. Hence, the problem becomes a machine learning challenge: to efficiently use all of
the information contained in the high-dimensional simulated data to discriminate between
signal and background collisions.

The function to be learned is a non-linear function in a high-dimensional space. While
in theory any reasonable function can be approximated to arbitrary precision by a ‘shallow’
neural network with a single hidden layer (Hornik et al., 1989), an intractable number of
hidden units may be required, and learning still presents a challenge. A common approach
is to engineer high-level features that make classification easier. These are generally non-
linear functions of the input features that capture physical insights about the data. While
helpful, this approach is labor-intensive and incomplete; an ideal machine learning method
would not require this step.

Deep (many-layered) neural networks have the potential to compute complex functions
more efficiently, with fewer hidden units than shallow neural networks. Historically, these
networks were considered difficult to train, in part due to the vanishing gradient prob-
lem (Bengio et al., 1994; Hochreiter, 1998; Larochelle et al., 2009), but advances primarily
in computing power and available training data have made these methods significantly more
practical. Deep neural networks are now the state-of-the-art on multiple benchmark ma-
chine learning tasks (Szegedy et al., 2014; Cirean et al., 2012). Perhaps surprisingly, many
of these state-of-the-art methods do not use human-engineered features (e.g. Gabor filters
for computer vision) and instead learn multiple layers of features from the data. While this
tends to require more data and computational resources, it can yield better performance
with less feature engineering.

In this work, we use three benchmark datasets to demonstrate the performance gains
achievable with deep learning in high-energy physics, building upon previous work by Baldi
et al. (2014, 2015). Section 2 describes the datasets, including the distinction between
low- and high-level features. Section 3 presents experimental results in which deep neural
network architectures are optimized for each dataset using a Bayesian optimization algo-
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rithm. For each dataset, we present state-of-the-art results using deep learning. Section 4
describes model compression experiments that we use to explore why deep neural network
architectures learn better than shallow ones.

2. Datasets

In this section we describe three datasets that we use to benchmark classification perfor-
mance. Each dataset includes millions of simulated collision events, produced using soft-
ware packages that are standard in the high-energy physics community: collision events
are generated with the madgraph5 (Alwall et al., 2011) event generator, showering and
hadronization is performed by pythia (Sjostrand et al., 2006), and the detector response
is simulated by delphes (Ovyn et al., 2009). Additional details regarding the generation
of the datasets can be found in Baldi et al. (2014) and Baldi et al. (2015).

Each collision event is characterized by a small number of essential measurements,
mainly the 3D momenta of the observed particles, along with a number of additional,
high-level features that have been engineered by physicists to aid in each classification task.
These high-level features are derived from the low-level features — they are simple functions
of the essential measurements, with no additional information about the collision. For each
dataset, we describe the problem and the high-level features that have been proposed.

2.1. Benchmark 1: Higgs Boson

The first benchmark dataset concerns a theoretical process investigated by experiments at
the LHC and the Tevatron colliders (ATLAS Collaboration, 2013b; CDF Collaboration,
2013). It consists of a signal process in which a Higgs boson is produced, and a background
process with identical decay products but distinct kinematic features.

In the signal process, two gluons fuse into a heavy electrically-neutral Higgs boson
(gg → H0), which subsequently decays to a W boson and a heavy electrically-charged
Higgs boson (H±). The electrically-charged Higgs then decays to a second W boson and
the light Higgs boson, h0, which predominantly decays to a pair of bottom quarks (bb̄).

gg → H0 →W∓H± →W∓W±h0 →W∓W±bb̄ (1)

The background process is similar but does not produce the intermediate Higgs boson
state, producing instead a pair of top quarks that each decay to Wb, also giving W∓W±bb̄
(Figure 1).

We focus on the semi-leptonic decay mode, in which one W boson decays to a lepton
and neutrino (`ν) and the other decays to a pair of narrow cones of stable particles called
jets (jj), giving decay products `νb jjb. We consider events which satisfy the requirements:

• Exactly one electron or muon, with pT > 20 GeV and |η| < 2.5;

• at least four jets, each with pT > 20 GeV and |η| < 2.5;

• b-tags on at least two of the jets, indicating that they are likely due to b-quarks rather
than gluons or lighter quarks.
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Figure 1: Feynman diagrams for Benchmark 1. (Left) Signal process involving new exotic
Higgs bosons H0 and H±. (Right) Background process involving top-quarks (t).

The basic measurements made by the particle detector are the three-dimensional mo-
menta of the five observable particles (the neutrino is not detected). In addition we recon-
struct the missing transverse momentum in the event and have b-tagging information for
each jet. Together, these twenty-one features comprise our low-level feature set.

To distinguish between the two processes, it is helpful to reconstruct the characteristic
invariant mass of the intermediate particles. If a particle A decays into particles B and C,
the invariant mass of particle A (mA) can be reconstructed as:

m2
A = m2

B+C = (EB + EC)2 − |(pB + pC)|2 (2)

where E is the energy and p is the three-dimensional momentum of the particle. Similarly,
the invariant mass of more than two particles can be defined as the modulus of the particles’
Lorentz four-vector sum. In the signal hypothesis we expect that:

• W → `ν gives a peak in the m`ν distribution at the known W boson mass, mW ,

• W → jj gives a peak in the mjj distribution at mW ,

• h0 → bb̄ gives a peak in the mbb̄ distribution at the known Higgs boson mass, mh0 ,

• H± →Wh0 gives a peak in the mWbb̄ distribution at the assumed H± mass, mH± ,

• H0 → WH± gives a peak in the mWWbb̄ distribution at the assumed H0 mass, at
mH0 ,

while in the background case we expect that:

• W → `ν gives a peak in m`ν at mW ,

• W → jj gives a peak in mjj at mW ,

• t→Wb gives a peak in mjbb and mj`ν at mt.
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These quantities along with the invariant mass of the 4-vector sum of the jets, mjjj ,
comprise a set of seven high-level features that incorporate domain knowledge about the
classification task. We expect them to be useful for training a machine learning classifier.
However, they are all functions of the low-level features, so a powerful classification model
should not require them given enough training data.

The dataset generated for this benchmark consists of 11 million examples, with 53%
signal and 47% background. Each input feature was standardized with mean zero and
standard deviation one, except for those features with values strictly greater than zero –
these were scaled so that the mean value was one. A random selection of 500,000 events
was set aside for validation and hyperparameter selection, and another 500,000 for test-
ing. The complete dataset can be found at the UCI Machine Learning Repository at
archive.ics.uci.edu/ml/datasets/HIGGS.

2.2. Benchmark 2: Supersymmetry

The second benchmark task is to detect the production of supersymmetric particles. The
signal process leads to a final state in which some particles are detectable and others are
invisible to the experimental apparatus, while the primary background process produces
the same detectable particles but fewer invisible particles and distinct kinematic features.

The signal process produces electrically-charged supersymmetric particles (χ±), which
decay to W bosons and an invisible, electrically-neutral supersymmetric particle χ0 (Figure
2). The final state in the detector is two charged leptons (``) and missing momentum
carried off by the invisible particles (χ0χ0νν). The background process is the production of
pairs of W bosons, which decay to charged leptons ` and invisible neutrinos ν. The visible
portion of the signal and background final states both contain two leptons (``) and large
amounts of missing momentum due to the invisible particles.

The eight low-level measurements relevant to this task are the 3D momenta of the two
charged leptons, the particle jets induced by radiative processes, and the missing transverse
momentum, 6ET . High-level features are more difficult to construct for this dataset than for
Benchmark 1; reconstructing the invariant mass of the intermediate state is infeasible as too
much information is lost due to the two escaping neutrinos. There has been a vigorous effort
in the literature to build high-level features which can aid in this classification task (Cheng
and Han, 2008; Barr et al., 2003; Rogan, 2010; Buckley et al., 2013), including the ten used
for this benchmark:

• Axial 6ET : missing transverse energy along the vector defined by the charged leptons;

• Transverse mass MT2: estimating the mass of particles produced in pairs and decaying
semi-invisibly (Barr et al., 2003; Cheng and Han, 2008);

• 6ETRel: 6ET if ∆φ ≥ π/2, 6ET sin(∆φ) if ∆φ < π/2, where ∆φ is the minimum angle
between 6ET and a jet or lepton;

• Razor quantities β,R, and MR (Rogan, 2010);

• Super-razor quantities βR+1, cos(θR+1), ∆φβR, MR
∆ , MT

R , and
√
ŝR (Buckley et al.,

2013).
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Figure 2: Feynman diagrams for Benchmark 2. (Left) Signal process involving hypothetical
supersymmetric particles χ± and χ0 along with charged leptons `± and neutrinos ν. (Right)
Background process involving W bosons.

The supersymmetry dataset has 6 million examples, with 46% signal and 54% back-
ground. Each input feature was standardized with mean zero and standard deviation one,
except for those features with values strictly greater than zero – these we scaled so that the
mean value was one. A random selection of 500,000 events was set aside for validation and
hyperparameter selection, and another 500,000 for testing. The complete dataset can be
found at the UCI Machine Learning Repository at archive.ics.uci.edu/ml/datasets/SUSY.

2.3. Benchmark 3: Higgs to ττ decay

A major prediction of the Standard Model is that the Higgs boson couples to fermions
through direct decay modes. In Benchmark 3, the task is to detect the decay of the Higgs
to a pair of tau leptons (τ±), which subsequently decay to lighter leptons (e and µ) and
two pairs of neutrinos (ν). The complete process is given by:

gg → H → τ+τ− → `−νν`+νν (3)

The primary background process is qq̄ → Z → τ+τ− → `−νν`+νν, which yields the
identical set of particles. Given perfect measurement resolution and a complete description
of all final particles, the invariant mass of the of the short-lived intermediate state could
be computed using Equation 2, but finite measurement resolution and multiple escaping
neutrinos make this impossible. Instead, we have the following 10 essential measurements
to study:

• The three-dimensional momenta, p, of the charged leptons;

• The imbalance of momentum ( 6pT ) in the final state transverse to the beam direction,
due to unobserved or mismeasured particles;

• The number and momenta of particle ‘jets’ due to radiation of gluons or quarks.
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Figure 3: Feynman diagrams for Benchmark 3. (Left) Signal process in which the Higgs H
decays to leptons τ+τ−. (Right) The dominant background process.

The following 25 quantities can be derived from these essential measurements, and
constitute the high-level features.

• Axial missing momentum, 6pT · p`+`− ;

• Scalar sum of the observed momenta, |p`+ |+ |p`− |+ |6pT |+
∑

i |pjeti |;

• Relative missing momentum, 6pT if ∆φ(p, 6pT ) ≥ π/2, and 6pT×sin(∆φ(p, 6pT ) if ∆φ(p, 6pT ) <
π/2, where p is the momentum of any charged lepton or jet;

• Difference in lepton azimuthal angles, ∆φ(`+, `−);

• Difference in lepton polar angles, ∆η(`+, `−);

• Angular distance between leptons, ∆R =
√

(∆η)2 + (∆φ)2;

• Invariant mass of the two leptons, m`+`− ;

• Missing mass, mMMC (Elagin et al., 2011);

• Sphericity and transverse sphericity;

• Invariant mass of all visible objects (leptons and jets).

This dataset contains 80 million examples, with 50% signal and 50% background. All
25 features were normalized with mean zero and standard deviation one. For those features
with a skewness greater than 1.0, a small value of 10−8 was added, the logarithm was taken,
then the values were normalized.

3. Results

In this section, we evaluate the classification performance of deep and shallow neural net-
works on the three benchmark datasets. For each benchmark, the neural network architec-
ture and a number of other hyperparameters are optimized using the Spearmint Bayesian
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optimization algorithm (Snoek et al., 2012). Spearmint intelligently explores the high-
dimensional hyperparameter space using a Gaussian process to model the validation error
as a function of the hyperparameters.

The performance metrics used are the area under the signal efficiency vs. background
rejection curve (AUC) and expected discovery significance, a null-hypothesis likelihood cal-
culation measured in units of Gaussian σ that is the standard metric in high-energy physics.
Note that the discovery significance is calculated for a pre-specified signal/background ra-
tio and is dataset-specific; the values reported here are solely for the purpose of comparing
classifiers.

3.1. Benchmark 1

For the first benchmark, the Spearmint algorithm was used to optimize the neural network
architecture and hyperparameters over the support in Table 1. The optimization included
a total of 389 experiments, with 15 experiments running in parallel at any given time. In
each experiment, a neural network was trained on 9 million examples and the complete
set of features, using stochastic gradient descent with mini-batches of 100 examples, until
the validation error did not decrease by more than 0.00001 for 10 epochs. These networks
consisted of fully-connected layers of rectified linear (ReLU) units (Jarrett et al., 2009;
Glorot et al., 2011). A momentum term increased linearly from an initial value to some
final value over a specified number of epochs. Dropout with p = 0.5 was used in the top
layers for regularization. The initial weights were drawn from a normal distribution with
zero mean and a standard deviation of 0.1 for the first layer, 0.001 for the last layer, and 1.0
divided by the square root of the number of inputs for the other layers. The best network
was selected based on the validation set error.

The best ReLU architecture had 3 hidden layers of 490 units each and dropout in
the last layer. Table 2 compares the test set performance against the best of the shallow
architectures from the Bayesian optimization, which contained the maximum of 500 hidden
units. We also compare these results against the deep and shallow neural networks of tanh
units from Baldi et al. (2014), which were optimized using a grid search. The best deep
network from that work has 4 hidden layers, with 300 hidden units in each hidden layer,
and the best shallow network has 1000 hidden units.

The best classifier overall is a deep tanh network with 8 hidden layers of 300 hidden
units each. This network was trained for 600 epochs, with learning rate decreasing from
0.1 to 0.000001 by a factor of 1.0000002 after each minibatch update of 100 examples,
momentum increasing from 0.9 to 0.99 linearly over the first 200 epochs, and a L2 weight-
decay coefficient of 0.00001. This network achieves state-of-the-art performance on this
dataset with an additional 1% AUC.

All classifiers were trained on the low- and high-level feature subsets in addition to
the complete feature set, using the same hyperparameters optimized for the complete set
of features. DNNs trained on the low-level features alone perform nearly as well as the
DNNs trained on the full set, suggesting that the deep networks are able to learn the useful
information contained in the reconstructed characteristic invariant mass of the intermediate
particles.
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Table 1: Hyperparameter support for Bayesian optimizations on benchmarks 1 and 2.

Hyperparameter Min Max Best benchmark 1 Best benchmark 2

Hidden layers 1 9 3 9
Hidden units/layer 100 500 490 100
Dropout layers 0 3 1 0
Initial learning rate 0.1 0.1 0.1 0.1
Learning rate decay (1 + 10x) -6 -7 −6.2 −6.0
Initial momentum 0.0 0.5 0.19 0.0
Final momentum (log-scaled) 0.500 0.999 0.998 0.500
Epochs until mom. saturation 10 50 50 10

Table 2: Performance comparison on benchmark 1. Performance of shallow neural
networks (NN), deep neural networks (DNN) of tanh units tuned with a grid search, and
DNNs of rectifier units tuned with Spearmint for three sets of input features: low-level
features, high-level features and the complete set of features. Neural network was trained
five times with different random initializations; the table displays the mean AUC, with
standard deviations in parentheses, as well as the expected significance of a discovery for
100 signal events and 5000 background events.

AUC
Technique Low-level High-level Complete

NN (ReLU) 0.790 (< 0.001) 0.794 (< 0.001) 0.844 (< 0.001)
DNN (ReLU) 0.874 (< 0.001) 0.801 (< 0.001) 0.880 (0.001)
NN (tanh) 0.785 (0.001) 0.788 (0.001) 0.841 (< 0.001)
DNN (tanh) 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)
DNN (best) 0.891 0.801 0.896

Discovery significance
Technique Low-level High-level Complete

NN (ReLU) 2.16σ (0.03) 2.64σ (0.01) 3.28σ (0.02)
DNN (ReLU) 3.96σ (0.02) 2.89σ (0.01) 4.34σ (0.07)
NN (tanh) 2.08σ (0.03) 2.36σ (0.02) 3.23σ (0.03)
DNN (tanh) 4.29σ (0.05) 2.82σ (0.01) 4.66σ (0.06)
DNN (best) 4.57σ 2.87σ 4.82σ
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Table 3: Performance comparison on benchmark 2. The best model from each method
is compared in terms of AUC. The expected significance of discovery is shown for the neural
network models, calculated for 100 signal events and 5000 background events.

AUC
Technique Low-level High-level Complete

NN 0.8745 (< 0.0001) 0.8679 (< 0.0001) 0.8788 (0.0001)
DNN 0.8760 (< 0.0001) 0.8695 (< 0.0001) 0.8790 (< 0.0001)

Discovery significance
Technique Low-level High-level Complete

NN 7.86σ (0.06) 7.22σ (0.02) 7.81σ (0.05)
DNN 7.73σ (0.07) 7.58σ (0.08) 7.94σ (0.08)

3.2. Benchmark 2

The same Bayesian optimization procedure from Benchmark 1 was used to optimize neural
network architectures for the supersymmetry task. This optimization was run for 111
experiments. The best architecture had 9 hidden layers, and outperforms the results in
Baldi et al. (2014). Table 3 compares the performance of this architecture against the
single best shallow network out of the 32 networks with a single hidden layer that were
trained by Spearmint. On this benchmark, we do not see a large performance boost with
deep learning, but the human-engineered features do not help much either.

3.3. Benchmark 3

For the H → τ+τ− decay task, we perform two separate optimizations using Spearmint,
one for deep networks and one for shallow networks, with 100 experiments each. In each
experiment, a neural network was trained on a random set of 40 million examples and
the complete set of features for 100 epochs. The neural network classifiers used a simple
architecture, with fully-connected layers of rectifier units of the same size in each layer.
Stochastic gradient descent was used with mini-batches of 100 examples. A momentum
term increased linearly from an initial value to some final value over a specified number of
epochs.

The hyperparameter supports for the deep and shallow network optimizations are shown
in Table 4. Both optimizations are carried out in six dimensions — for the deep networks,
the number of layers is allowed to vary but the initial learning rate is fixed. The initial
weights of both the shallow and deep networks were drawn from a normal distribution with
zero mean and a standard deviation of 0.1 for the first layer, 0.001 for the last layer, and 1.0
divided by the square root of the number of inputs for the other layers. The best shallow
and deep neural network hyperparameters were then used to train classifiers on a larger
set of 60 million training examples, with five different random weight initializations and
train/test splits. The mean and standard deviation of the five networks is shown in Table
5. Figure 4 shows how deep networks trained on the low-level features perform almost as
well as those trained on the complete set.
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Table 4: Hyperparameter support and Spearmint selection for shallow and deep networks
on benchmark 3.

Deep Networks Shallow Networks
Hyperparameter Min Max Best Min Max Best

Hidden layers 1 7 7 1 1 1
Hidden units/layer 100 500 274 100 56000 693
Initial learning rate 0.1 0.1 0.1 10−2 10−7 0.006
Learning rate decay (1 + 10x) -9 -3 −6.29 −9 −3 −8.05
Initial momentum 0.0 0.5 0.0 0.0 0.5 0.5
Final momentum 0.500 0.999 0.996 0.500 0.999 0.500
Epochs until mom. saturation 20 100 20 20 100 99

Table 5: Comparison of the performance of shallow neural networks (NN), and deep neural
networks (DNN) for three sets of input features: low-level variables, high-level variables,
and the complete set of variables. Each neural network was trained five times with different
random weight initializations and different train/test splits. Performance of an ensemble
classifier using all five instances is also shown. The table displays the mean AUC of the
signal-rejection curve calculated from 10 million test points; standard deviations are in
parentheses. The mean expected significance of a discovery is given for 100 signal events
and 5000 background events.

AUC
Technique Low-level High-level Complete

NN 0.789 (0.0010) 0.792 (0.0002) 0.797 (0.0004)
NN ensemble 0.791 0.793 0.798
DNN 0.798 (0.0001) 0.798 (0.0001) 0.802 (0.0001)
DNN ensemble 0.798 0.798 0.803
DNN (best) - - 0.803

Discovery significance
Technique Low-level High-level Complete

NN 2.57σ (0.006) 2.92σ (0.006) 3.02σ (0.008)
NN ensemble 2.61σ 2.96σ 3.06σ
DNN 3.16σ (0.003) 3.24σ (0.003) 3.37σ (0.003)
DNN ensemble 3.18σ 3.26σ 3.39σ
DNN (best) - - 3.39σ

To analyze the effect of ensembles, we took the arithmetic mean of the predictions from
the five classifiers on another 10 million examples of test data. This ensemble gives us an
additional small boost in performance.

However, the same performance boost is achieved by adding layers to the deep network
(with some additional tuning). The best single classifier we were able to train had 10
layers, 300 hidden ReLU units in each layer, a learning rate decay factor of 1.00000027, and
momentum increasing from 0.0 to 0.997 over 50 epochs.
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Figure 4: Relative performance of best shallow and deep networks trained on each feature set
of benchmark 3. Hyperparameters were selected separately for shallow and deep networks
on the complete feature set using the Spearmint algorithm.

Table 6: Regression models of different architectures were trained to predict the high-level
features from the low-level features. The average mean squared error (MSE) is computed
on the test sets.

MSE
Architecture Benchmark 1 Benchmark 2 Benchmark 3

Linear Regression 0.1471 0.2790 0.7153
NN 0.0814 0.0100 0.0372
DNN 0.0785 0.0088 0.0269

4. Learning with Dark Knowledge

Deep neural networks appear to have an advantage over shallow networks in learning com-
plex functions, but where this advantage comes from is not entirely understood. One possi-
bility is that the extra representational power provided by the architecture is necessary to
represent the complex features relevant to classification. Indeed, the high-level engineered
features are clearly useful for classification, and our attempts to learn the high-level features
from the low-level features suggest that it is easier for a deep neural network to learn these
features than a shallow neural network (Table 6).

However, another possibility is that deep neural networks learn better than shallow
methods due to architectural constraints. The architecture may encourage the lower layers
to learn re-usable features that generalize well to lots of examples. This hypothesis is
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Table 7: Performance of shallow networks trained with dark knowledge.

AUC
Architecture Benchmark 1 Benchmark 2 Benchmark 3

NN 0.842 0.8786 0.797
NN w/ dark knowledge 0.850 0.8788 0.799
DNN 0.885 0.8790 0.802

supported by the fact that the best architectures for Benchmarks 2 and 3 are very deep
architectures (the maximum allowed) with relatively few units in each hidden layer.

Recent work by Ba and Caruana (2014) and Hinton et al. (2014) suggests a way to
further explore these hypotheses. They argue that shallow classifiers can often perform as
well as deep neural networks or large ensembles through a model compression process. If this
were true, then the performance advantages of deep models are not simply a consequence
of their ability to represent certain functions.

In the simplest form of the model-compression algorithm, the output predictions of the
complex model on the training data are used as labels for training the shallow model. Thus
the shallow model is trained on the soft targets produced by the deep model, rather than
the true binary labels. Thus, for instance, it gets to see which examples the large model is
uncertain about. Likewise, in multiclass problems, the shallow model gets to see for each
training example a distribution over the set of classes. The extra information contained in
this modified training set is referred to as dark knowledge (Hinton et al., 2014).

We investigated this idea by training shallow neural network architectures to mimic
the best deep networks on each benchmark, using the simple algorithm described above.
For a single logistic output, this algorithm is equivalent to the algorithm described by Ba
and Caruana (2014) and also the algorithm described by Hinton et al. (2014), adapted
to a logistic output, with a temperature parameter of T = 1. Variations on these ideas
include increasing the temperature of the normalized exponential output layer, or using
the pre-output layer values (logits) as the targets. While increasing the temperature can
further smooth the target probabilities, it seemed unnecessary here, given the substantial
uncertainty in the class predictions in the three benchmark datasets.

Our results confirm the previous findings: the dark knowledge improves performance of
the shallow classifier on each of the three benchmarks. This performance increase is only a
fraction of the total increase one achieves from using a deep network, so this experiment does
not completely rule out the representation hypothesis, but it is likely that the performance
of the shallow networks can be further improved with more training and larger shallow
networks. These questions are currently under investigation.

5. Discussion

The high-level variables derived by physicists clearly capture features of the data that are
relevant to classification. But while the shallow neural networks perform poorly on the
low-level variables alone, deep networks trained on the low-level variables tend to perform
nearly as well as the networks trained on the complete feature set. This is despite the fact
that all neural network hyperparameters were tuned using the full feature set.
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This work strongly suggests that multiple layers of hidden units are useful in learning
discriminative information of the type contained in the high-level features. This parallels
the progress of deep learning in computer vision, where convolution neural networks learn
filters that look like Gabor filters and other features that have been engineered for computer
vision tasks (Krizhevsky et al., 2012).

In Benchmarks 1 and 3, the deep networks trained on the low-level features outperform
the shallow networks that have been trained on the full set, indicating that they have learned
patterns in the low-level features that are more useful for the classification task than the
human-engineered features. This suggests that deep learning can be more effective than
feature-engineering for these applications, the only cost being the additional computation
needed to train and tune deep neural network architectures.

A competition hosted through Kaggle recently challenged participants to build classifiers
for the H → τ+τ− decay task in Benchmark 3. The training dataset for this competition
used slightly different features and only contained 250,000 training examples, which made
overfitting a much greater challenge than on the datasets here.

It is also interesting that the Bayesian optimization for the supersymmetry and H →
τ+τ− decay task chose deep networks with relatively few hidden units (100 and 274 units in
each layer, respectively). This lends credence to the idea that deep neural networks have an
advantage over shallow methods due to architectural constraints; these constraints might
encourage the lower network layers to learn general features that can be re-used for many
different data samples. Our experiments in Section 4 show that at least some of the dark
knowledge contained in the deep networks can be used to train and improve the performance
of shallow networks.

6. Methods

Computations were performed using machines with 16 Intel Xeon cores, NVIDIA Titan
graphics processors, and 64 GB memory. All neural networks were trained using the GPU-
accelerated Theano and Pylearn2 software libraries (Bergstra et al., 2010; Goodfellow et al.,
2013).
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