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Abstract

In this paper, we propose a semi-supervised
online graph labelling method that affords
early learning capability. We use mean field
approximation for predicting the unknown la-
bels of the vertices of the graph with high ac-
curacy on the standard benchmark datasets.
The minimum cut is the energy function of
our probabilistic model that encodes the un-
certainty about the labels of the vertices.
Our method shows that it can learn early
given any choice of experiments that may
take place in the automated experimentation
systems used for scientific discovery.

1 Introduction

Often in scientific discovery, there are physically im-
plemented interaction systems/laboratory equipment
conducting vast number of automated scientific exper-
imentation. An example of such a system from func-
tional genomics is the Robot-Scientist framework [5].
Typically, the experiments conducted by such ma-
chines are managed through human choice of experi-
ments or by simple selection protocols. However, some
such machines that interact with biological systems,
are met with a number of challenges given the re-
strictive nature of those systems. The available ini-
tial experimental results are far too limited to guide
the model/selection of experiments. Further, the num-
ber of experiments required to completely character-
ize the behavioural response of the biological system
is large compared to the number of unknown param-
eters. With the rich underlying structured graphical
domain knowledge represented by the biochemical re-
actions taking place in the system, it is imperative
for the interaction system to employ a sophisticated
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machine learning algorithm that learns early from the
given structure regardless of the sequence of experi-
ments, from known and unknown response variables in
semi supervised nature. Our work operates in this area
by designing an online graph labelling algorithm based
on mean field approximation that promises such capa-
bility. Although, the traditional goal in automated
experimentation systems is in experiment planning;
our experiments are chosen randomly, with the goal of
learning early given any sequence of experiments. We
validate the prediction quality of our method on stan-
dard benchmark datasets. As future work, we plan to
apply our method to the automated experimentation
platform discussed in the papers [7, 5].

Semi-supervised learning is a well established approach
of learning from a few examples. On a graph that
is built from the given labelled and unlabelled data
points, where each datum is represented as a ver-
tex, two vertices share the same label if they are con-
nected by an edge. The standard graph labelling semi-
supervised algorithms in the literature use the graph
Laplacian in order to optimize the labelling consistent
with the labels seen so far [12, 11, 4, 3]. Graph Lapla-
cian based methods suffer from the limitations in the
light of many unlabelled data [8]. Our work uses a
similar regularity measure for smoothness of the la-
belling that instead induces an Ising model distribu-
tion over the vertices of the graph. Our work is differ-
ent from the approximation method in label propaga-
tion [12, 11] as we do not drop the higher order terms
in the approximation. Also, our energy equation 2, is
the complement of theirs. Treeopt algorithm [10, 2] is
optimal over a tree without graph connectivity utiliza-
tion. !

2 Mean Field Approximation

We consider a unit weighted graph G = (V, &, w)
where w(e) is the weight of edge e € £ (we assume
that w(e) = 0 if e ¢ £). For convenience, we de-

'n-spite of being a decade old, to the best of our knowl-

edge the algorithms [12, 11, 10, 2] are still the state-of-the-
art in online graph/tree labelling semi-supervised setting.
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note the weight of edge (i,7) by w((¢,7)) = w;;. We
consider the scenario when we are given labels for a
subset of the vertices, £L C V. We denote the label of
vertex ¢ by S;, which can take a value from the class
set C. Our task is to assign labels to the unobserved
vertices Y = V\ L. The weights are taken to be a mea-
sure of similarity so that vertices that share an edge
are more likely to have the same label than other ver-
tices. Because of this, our labelling not only depends
on the labelled vertices, but also on the structure of
the graph (heavily connected components of the graph
are likely to have the same label). In this sense this can
be viewed as a semi-supervised learning problem (we
have a few labelled examples, but we are also learning
from unlabelled data). We use a probabilistic model to
encode our uncertainty about the labels of the vertices
in U, where we assume

o—B E(S,5°)

P(s) =",

Z = ZefﬁE(S,Sﬂ (1)
s

where S denotes the labels at the unobserved vertices,
S° the labels at the observed vertices, [ is a parameter
(the inverse temperature) encoding the degree of un-
certainty, the sum is over the labels of the unobserved

s ()

S €U S; eC

and E(S,S°) is a minimum cut energy function given
b 2
Y 1

E(S,S°) =- Z Wij [[Si # Sj]] (2)

(i.5)€€

As in any online learning algorithm, a sequential game
is played between the learner and the adversary or
environment. The learner’s goal is to minimize its
mistaken predictions (wrong class prediction) while
the adversary’s goal is the opposite. Nature selects
a data-point/vertex at every trial/experiment, learner
predicts the class, nature then returns the true label
to verify if the learner made a mistake. The only re-
striction is the adversary cannot return a label that in-
creases the minimum-cut. Note, the probability func-
tion in 1 favours labellings that minimise the number
of edges whose vertices have different labels. Unfor-
tunately, for large vertex sets, computation of this is
intractable. We therefore resort to using a variational
approximation where we minimise the variation free

energy given by Q(S]6)
0) = ES:Q (516) 10g<exp(_/3 E(S, SO))>

Zwhere [[predicateﬂ denotes an indicator function which
is equal to 1 if the predicate is true and 0 otherwise. It
is important to note that in label propagation [12], the
authors use the complement of this function.

where Q (S10) is taken as a separable probability dis-

tribution
Q(sie) =11 >_or [S:= 1]

€U pec

with 0" > 0 and for all vertices >3 .0} = 1. The
parameters 6! can be interpreted as the marginal prob-
ability of the label for vertex i to be in class p. As is
well known, we can rewrite the variational free energy
as

2(0) = KL (Q(S10) [ (9))

where P (S) and Z are given in equation (1) and
L (Q(5]0)||P(S)) is the KullbackLeibler (KL) di-

vergence given by
(8 |9))
g (S10) .
Q(516) ( P(S)

L(Q(s10) [P (S))

3 Since log(Z) does not depend on the variational pa-
rameters, 6, minimising ®(8) is equivalent to minimis-
ing the KL-divergence. Thus, in minimising the vari-
ational free energy we are choosing the parameters 6
so that Q(S|0) is as close as possible (as measured
by the KL-divergence) to P (S). Furthermore as the
KL-divergence is non-negative we obtain a bound that
—log(Z) < ®(0) (in classical physics —f log(Z) is
known as the free energy). We can also rewrite the
variational free energy as

®(0) =-H(Q)+5UQ)
where H(Q) is the entropy of Q (S|0)
H(Q) =—)_Q(8]6) log(Q(8]9))
s

— log(2)

:_Z@ (S16)> log| > 0t 8 =

€U nec

36 (et

i€U pec

and U(Q) is the “mean energy” with respect to the
probability distribution Q (S|6)

Z@ (S|6) E(S,S°)
= Z@(sm 5 > wi [Si#5)]
(i-j)€E

zfzzw” >0ty [n#v]
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3The KL-divergence between two probability distribu-

tions can be viewed as a measurement of their difference.
It is non-negative and reaches it minimum value of zero
when the two distributions are identical (at least, the dis-
tributions can only differ on sets of measure zero).
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To find the minimum of the variational free energy
subject to }° o0} = 1 at each vertex we minimise
the Lagrangian

L(O)=2(0) + > N> o

€U pnec

where the \;’s are a set of Lagrange multipliers that

are chosen to ensure the constraints are satisfied. The
“mean-field equations” which are satisfied at the min-
ima of the variational free energy are given by

oL®) _ log(64) + 1+ 8 wi; 0%

0" & =
+B2wij [{H#SJH + X =0.

jeL

These equations are not in general solvable in closed
form. Instead we can attempt to solve these equations

iteratively by setti >
iteratively by setting o—BEL(0(1),S°)

Pt t+1) = _
Pt S o BE(6(1),57)
vel
where
BL0,8%) = wi; > 05+ > wi [p#S]
Jjeu VEC JeL

(this is a self-consistent soft-max solution). Note that

we have chosen )\; so that the constraint is satisfied
(this gives the normalisation term). There can be
many local solutions to the mean-field equations so
that the result will depend on the initial conditions.
To prevent finding very poor solutions we can anneal
the temperature (start from a low value of 8 and in-
crease it to the required value) at each iteration. 4

For the prediction of the class label, we allow to slowly
anneal the value of S until stabilized Once stabilized,
we predict the label of the query point by the class
label that maximizes 6 for that vertex. Once the true
label is revealed, we update the partial labelling vec-
tor S°, increment mistake count (if a mistake has been
made) and continue with the annealing process. Since
we assume the adversary cannot increase the minimum
cut, it cannot force a mistake on the learner; the cost of
the feedback from the environment is trivial. This is
especially important in autonomous experimentation
systems that interact with biological systems, where
the feedback can be uncharacteristic. The main fo-
cus of our work is in minimizing the total number
of mistakes and not the computational efficiency of
the method. The inverse temperature  controls the
amount of uncertainty in our model. We could choose

4We may further wish to randomly choose the order of
the variables we are updating to reduce the bias caused by
the order of updating (alternatively we can update all the
variables at once).

it through cross-validation. Alternatively, we can take
a Bayesian interpretation in which we take the joint
probability of the unobserved spins S and the observed
spins S° to be

P(S,S5°) =

—BE(S,8°)

€ r_ —B E(S,S°)
S,8°

where Z' is the partition function under the assump-
tion that no labels are observed. The probability of

the observed spins is
o—BE(S,S) g

P(S%)=>" —— =
s

We have seen that the variational free energy ®(6*)
(where 6* is our solution to the mean-field equation)
acts as an approximation for —log(Z) (the evidence).
We can similarly introduce a variational free energy
to compute —log(Z’) (we repeat the calculation ex-
cept with no observed spins). Choosing the value of
which maximises the difference log(Z) —log(Z’) would
provide an approximation to the best value of g (i.e.
it is the value which maximises the probability of the
data). 5 6

3 Empirical Evaluation

We perform empirical tests to evaluate our method on
standard machine learning datasets from UCI. We use
our own implementation of the meanField method and
the competitor algorithm labelProp [12, 11], while we
adapt the code for treeOpt given to us by the au-
thors in [10]. In general, for our experiments we use
an uniform way of sampling instances and building
the graphs from the datasets. For datasets ISOLET
(UCI), webSpam [1] and a subset 20 newsGroups [9],
we randomly sample instances from the entire dataset.
The sampling also ensures that both the classes are
equally represented. Each instance is represented as
a vertex in the graph. An Euclidean distance ma-
trix is constructed using the pairwise distances be-
tween the instances. In the case of 20 newsGroups,
instead of using the Euclidean distance matrix, we
use the cosine distance matrix for binary valued in-

stances. We build a 3 — NN nearest neighbour graph

SHowever, for very large problems this may not be feasi-
ble and we may just have to use some guess for 5 based on
experimentation. A nice feature of this framework is that
we obtain the marginal distribution for the labels. This
can be used in any decisions theoretic framework.

5The quality of the mean-field approximation is hard to
determine a priori. The separable probability distribution
Q (5]6) will not capture the strong dependencies between
many of the labels. These are not entirely ignored in the
approximation since they come in through the U(Q) term.
One can investigate the quality of the approximation by
considering a small system where we can compute the sum
over all labellings exactly.
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=250 £ =450 £ =650 £ =850 ¢ = 1050
labelProp | .842+.010 | .908 £.005 | .940 £ .005 | .956 £+ .004 | .969 + .003
meanField | .846 £.014 | .894 £.006 | .925+£.006 | .942 4 .005 | .955+£.005

Figure 1: [Experiment Squares] Classification of 0 intensity pixels against 1 intensity pixels.
meanField are extremely competitive, with labelProp eventually outperforms meanField

¢ =800 £ = 1000 £ = 2000 £ = 4000 £ = 6000
labelProp | .826 +.005 | .826 £ .006 | .845 1 .004 | .871 £ .002 | .868 £ .003
treelpt .753 + .006 772 £+ .01 .805+.002 | .858 £.004 | .868 £+ .002
meanField | .800+£.006 | .805+.009 | .833+£.003 | .865+.002 | .890 £ .002

labelProp and

Figure 2: [Experiment 20 newsGroups| It is a sparse dataset. Label distribution is 8124:8118 on classifying
(comp.* and rec.* Vs. sci.* and talk.*) newsgroups. meanField beats labelProp with enough information.
treeOpt under-performs until the labels are sufficiently large for comparable performance.

£ =200 £ =400 £ =600 £ =800 £ =900
labelProp | .729 +£.075 | .698 £.015 | .803 +.001 | .805 £ .0001 | .806 + .0001
treelpt 728 £.018 | .734 £ .007 .71 +.013 747 +.003 .749 £+ .001
meanField | .677 +£.036 | .645+0.002 | .770 £ .008 .800 £ .003 .808 £ .0004

Figure 3: [Experiment webSpam| webSpam is a sparse dataset of a computer hosts network. Classifying spam Vs.
non-spam hosts, we see that meanField eventually surpasses labelProp, with treeOpt being competitive.

(=32 (=064 ¢ =128 { = 256 =512 {=1024
labelProp | .661 +.039 | .707 £.029 | .764 £.024 | .787 £ .015 .82+ .012 | .869 £ .006
treeOpt .658 +£.042 | .688+£.033 | .731£.012 | .786 £.022 | .824 +£.008 | .859 + .005
meanField | .700 £.022 | .700 £.022 | .791 4+ .014 | .813 + .017 | .837 £ .011 | .860 % .006

Figure 4: [Experiment ISOLET] meanField beats labelProp in most of the settings. ISOLET has a 3900:3897
ratio between the labels while classifying the first 13 letters against the next 13 letters. Files ISOLET 1 through

ISOLET 5 are used for the construction of the graph.

using the distance matrix built as the previous step.
For ensuring that the graph thus constructed is con-
nected, we always sample a minimum spanning tree
(randomly) using the Euclidean distance or cosine dis-
tance as weights. We ensure that the MST edges are
maintained. Having MST edges also allows for spar-
sity in the graph. All trials receive the same graph.”
We choose the connectivity of K = 3 for our experi-
ments, as in the literature, empirical evidences show
competitive performance for 3-NN connectivity.® The
synthetic dataset Squares is a 60x60 image from which
a grid graph with 3600 vertices is constructed, where
each pixel is represented as a vertex. We ensure that
the graph has toroidal boundary properties such that
each vertex is surrounded by four neighbours based
on pixel locations. The results of the experiments for
each dataset are discussed in Figures 1,2,3,4. The per-
formance of the algorithms is measured as accuracy of
the prediction i.e. number of correctly classified in-
stances over all the instances; higher the better. For

"We use benchmark classification datasets, graphs built
are sparse; biological systems we are interested in represent
sparse graphs.

8We use quad-core processor notebooks (@2.30 GHz
each) with 8GB and 16GB RAM. We also use the Iridis
4 HPC cluster at University of Southampton, UK.

all datasets, results are averaged over 10 trials except
for 20 newsGroups which used 5 trials. The randomly
sampled labels [ are balanced. For all the experiments,
the choice of § is annealed to a value of 2.4 before pre-
diction. Due to computational feasibility, we perform
the experiments in the batch setting rather than on-
line.

4 Conclusion

Here, we use an online learning meanfield approxima-
tion technique for graph labelling in a semi-supervised
setting. If we incorporate the Halving algorithm and
other online graph prediction techniques [6, 4], where
we predict such that maximum number of hypotheses
are eliminated in case of a mistake, as we plan to do
in our future work; we are sure to see meanField chal-
lenging labelProp more often. If we relax the adver-
sary such that in can increase the minimum cut, then
that could be the beginning of another online learning
game, the idea then should be to minimize mistakes
over all such games.
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