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1 Introduction

Reinforcement learning is a paradigm that is both very
general and widely applied for interacting agents. De-
spite tremendous progress on both model-based and
model-free algorithms, reinforcement learning does
however still requires a substantial amount of man-
ual task design. One of the major burdens for a truly
autonomous operation of RL agents is the design of
task-appropriate features [Kober and Peters, 2012] of
state and action. These features need to be compre-
hensive for RL to perform effectively, yet compact in
terms of dimension to perform efficiently.

In particular dimension reduction in reinforcement
learning is a tedious issue. While standard di-
mension reduction of unsupervised problems (e.g.
PCA) has to deal only with a single and fixed
probability distribution, reinforcement has a dis-
tribution of environmental states, and a space of
actions (with no adhoc probability distribution),
and a scalar reward. Unsupervised schemes can
be employed in RL to reduce the dimension of
the environmental state [Legenstein et al., 2010]
or believe state [Roy and Gordon, 2002,
Poupart and Boutilier, 2002], but such schemes
can not account for the actions (except when expert
demonstrations are given [Bitzer, 2011]). Another
attempt has been to learn reduced rank regression of
transition probabilities of state and action to guide
exploration [Nouri and Littman, 2010], but which
cannot account for the actual relevance with respect
to the reward. The only existing models that can
consider states, actions, and reward at the same
time estimate the reward function based on bi-linear
regression and reduce the rank of the parameter
matrix [Koren et al., 2009, Chu and Park, 2009].

In contrast to reinforcement learning, adaptive con-
trol formulations [Nguyen-Tuong and Peters, 2011] al-
ready come with expressive and typically low-
dimensional goal and task representations, which have
been generally considered more expressive than the
RL setting [Kaelbling et al., 1996]. Goal and ac-

tual values in motor control define a relation sim-
ilar [Rolf and Steil, 2014] to actual and target out-
puts in classical supervised learning settings by pro-
viding “directional information” in contrast to a mere
“magnitude of an error” in reinforcement learning
[Barto, 1994]. Recent work [Rolf and Asada, 2014]
however showed that these two problem formulations
can be transformed into each other. Hence, highly de-
scriptive task representations can be extracted out of
reinforcement learning problems by transforming them
into adaptive control problems. After introducing the
method called Latent Goal Analysis, we discuss the
possible application of this approach as dimension re-
duction technique in reinforcement learning. Experi-
mental results in a web recommender scenario confirm
the potential of this technique.

2 Latent Goal Analysis

In order to derive a mathematical learning rule,
we first introduce the basic formalism of adaptive
control or coordination problems [Chung et al., 2007,
Nguyen-Tuong and Peters, 2011, Rolf et al., 2010]
and its (well established) transformation into a
reward or cost based problem. We will then show
how to transform a general RL problem back into a
control problem [Rolf and Asada, 2014].

2.1 Reward Transformation

Adaptive motor control problems as shown in Fig. 1(a)
follow a simple protocol: (1): The world provides a
goal x∗ to the agent that is situated in some observa-
tion space X⊆Rn. (2): The agent chooses an action a
from some action space A⊆Rm. (3): The world pro-
vides a causal outcome f(a)=x of the agent’s action,
again situated in X. The agent’s task is to choose an
action such that the outcome x matches the goal x∗:
x = f(a) = x∗. Many coordination problems provide
redundancy : the action space is substantially higher
dimensional than the observation space (n � m),
such that multiple actions ai 6= aj map to same out-
come f(ai) = f(aj). In such scenarios additional cost
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(a) Adaptive motor control.

Action space A

r = r(c,a)  Reward3

Context space C

(b) One-step reinforcement learning. (c) Latent goal analysis (LGA).

Figure 1: Latent goal analysis (LGA) identifies how to project actions and contexts into a common observation
space. The observed rewards r are thereby explained by distance between action-outcome x (self-detection) and
goal x∗ (goal-detection), such that a reward problem is turned into a control problem.

functions −ea(a) are often used [Chung et al., 2007]
to select an optimal action among those that fulfill
f(a) = x∗. The ground truth function f : A→ X is
called forward function. This problem is often for-
malized by means of an overall cost-function of the
distance of goal and outcome, and ea(a), which is eas-
ily transformed into reward semantics by inverting the
sign. Apart from the self-detection f(a), also the goals
x∗ are typically not simply given, but dynamically se-
lected based on a larger system context. We can de-
note this selection on an abstract level with a function
h(c), which we refer to as goal-detection. Altogether
this gives the reward transformation

r(c,a) = −||h(c)−f(a)||2 + ec(c) + ea(a) , (1)

where the virtual cost term ec(c) expresses that the
quantity of reward can depend on the state, without ef-
fecting action selection. We will later utilize this term
for theoretical considerations. The overall protocol
now corresponds to a one-step reinforcement problem
[Strehl, 2010, Langford and Zhang, 2008] as shown in
Fig. 1(b): (1): The world provides a context c in some
context space C ⊆ Rp. (2): The agent chooses an ac-
tion a from the action space A ⊆ Rm. (3): The world
provides a reward r ∈ R based on latent goals and
action outcomes as in equation 1.

2.2 Latent Goal Transformation

So far we have established a formulation from existing
goals to rewards. The idea for learning of goal repre-
sentations is now to invert this process. Therefore we
need to find functions f̂ , ĥ, êc and êa to resemble any
possible reward function r(c,a):

r(c,a) = r̂(c,a) = −||ĥ(c)− f̂(a)||2 + êc(c) + êa(a) ,
(2)

or value function Q(c,a) expressing expected future
rewards:

Q(c,a) = Q̂(c,a) = −||ĥ(c)− f̂(a)||2 + êc(c) + êa(a)

This work does not tackle the temporal credit assign-
ment problem to estimate Q itself. However, if a value
system [Schultz et al., 1997, Daw and Doya, 2006] to
estimate future rewards Q is already available, decom-
posing either a known estimate of r(c,a) or a known
estimate of Q(c,a) is computationally equivalent since
both are scalar functions of c / a. The major challenge

is to identify f̂(a) = x̂ and ĥ(c) = x̂∗. Thereby goals
and outcomes are considered latent variables of the re-
ward function. These abstractions constitute the con-
trol problem in a low-dimensional observation space
(see Fig. 1(c)). Cost terms depending on context or
action only are considered as remainders, and in fact
are easy to find given f̂ and ĥ.

Ansatz Finding such functions can be formulated as
finding appropriate coefficients of parametrized func-
tions. First, we consider features ψc(c) : C→Rp′ and
ψa(a) : A→Rm′

to describe the contexts and actions.
Assuming an n-dimensional observation space X we
can denote the function candidates with coefficients
M, H, Ra, and Rc as:

x̂∗ = ĥ(c) = H ·Ψc(c) , H ∈ Rn×p
′

x̂ = f̂(a) = M ·Ψa(a) , M ∈ Rn×m
′

êc(c) = Ψc(c)T ·Rc ·Ψc(c) , Rc ∈ Rp
′×p′

êa(a) = Ψa(a)T ·Ra ·Ψa(a) , Ra ∈ Rm
′×m′

.

When we insert these definitions into Eqn. 2 we can
write the reward transformation of a control problem
in matrix notation

r̂(c,a)=

(
ψc(c)
ψa(a)

)T(
Rc-H

TH HTM
MTH Ra-MTH

)(
ψc(c)
ψa(a)

)

as a quadratic form of context- and action-features.
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Observation Space Reconstruction We can now
write the actual reward function r(c,a) similarly:

r(c,a) =

(
ψc(c)
ψa(a)

)T
·K ·

(
ψc(c)
ψa(a)

)
=

(
ψc(c)
ψa(a)

)T(
Kc,c Kc,a

KT
c,a Ka,a

)(
ψc(c)
ψa(a)

)
. (3)

This form with a symmetric coefficient matrix K is a
universal approximator : it can arbitrarily well approx-
imate at least all continuous functions if appropriate
features ψ are chosen. For instance, if the features
ψa and ψc are separate polynomial features of a and
c up to polynomial degree d, then just the subterm
ψc(c)T ·Kc,a · ψa(a) will contain all joint polynomial
terms of a and c up to degree d. Hence, equation 3 can
at least describe all functions that can be described by
polynomials, i.e. all continuous functions.

We can now find coefficients M, H, Ra, and Rc by
matching equations 2.2 and 3. Starting from the need
to match Kc,a = HTM, we can see that it is not only
always possible to transform rewards into goals and
outcomes, but it is even under-determined. There are
infinitely many decompositions HTM for any matrix
Kc,a. For any choice of H and M, a perfect match
r= r̂ can be generated by the residual terms

Rc = Kc,c + HTH and Ra = Ka,a + MTM .

For a concrete decomposition of Kc,a we can con-
sider its singular value decomposition USVT with or-
thonormal matrices U,V and a positive diagonal ma-
trix S. An exemplary decomposition could be to set
H = S

1
2UT and M = S

1
2VT . Still, the resulting ob-

servation space X, in which f̂ : A→X and ĥ : C→X
map actions and contexts, is very high-dimensional
with min(p′,m′) dimensions, since Kc,a ∈ Rp′×m′

.
However, a dimension reduction is now straightforward
based on the SVD: we can select the diagonal matrix
S′ ∈ Rn×n with the n largest singular values of Kc,a

and their respective singular vectors in U′ ∈ Rp′×n and
V′ ∈ Rm′×n to approximate Kc,a≈U′S′V′T =HTM.

H ∈ Rn×p′ and M ∈ Rn×m′
can be chosen within the

column space of U′ and V′ in order to project into
the n-dimensional observation space. Hence, the la-
tent observation space can be uniquely determined for
any number of dimensions n. For sufficiently large n,
LGA then approximates the reward function arbitrar-
ily well. In order to make a concrete choice for H and
M we choose a further criterion to minimize the the re-
mainder terms êc and êa. This can be operationalized
by minimizing the respective matrix norms:

H,M = argmin
v,s

(‖Rc‖2 + ‖Ra‖2)

such that HTM = Kc,a .

A method to perform this operation efficiently inside
the already chosen n dimensional projection is de-
scribed in [Rolf and Asada, 2014].

2.3 Algorithm and Interpretation

Altogether, LGA starts which a universal approxima-
tion of the reward or value function in the quadratic
form shown in equation 3. The second step is the
SVD of Kc,a. Here we select the axis in column
and row space that have the highest singular val-
ues. This corresponds to the axis of inside the action-
and context space that are most significant to the re-
ward/value function. Hence, this step identifies the
low-dimensional observation space. The third step is
to choose matrices H and M based on the criterion to
minimize the remainder terms. This directly gives the
functions ĥ(c) and f̂(a) and allows to compute êc(c)

and êa(a) if needed. ĥ(c) and f̂(a) can then reduce
the dimension of both states/contexts and actions.

3 News Article Recommendation

Our experiment investigates LGA’s capability for di-
mension reduction in a one-step RL problem: a website
comprising a certain set A(t) of news articles at each
time. One article can be featured at a prominent posi-
tion on the website. The task is to select which article’s
teaser (action a∈A(t)) should be featured. A recom-
mender system is supposed to select these actions such
that the probability that the website visitor interacts
with it (e.g. clicks on the teaser) is maximized. In
order to perform such selection specific to the visitor,
there is information (context c) available due to IP-
address, or a login. With such information a reward
function r(c,a) can be estimated that resembles the
click probability. Dimensionality reduction, however,
is crucial in this domain: both context and action are
typically very high-dimensional, but any recommender
system must react extremely quickly to thousands or
millions of visits. This can only be achieved if the di-
mension of c and a is reduced to allow for an efficient
evaluation of r(c,a).

3.1 Material and Method

For this experiment we use the “Yahoo! Front Page
Today Module User Click Log Dataset, version 2.0”,
which comprises click recordings of yahoo.com’s front
page from 15 consecutive days, from which we utilize
the first day only. This recording contains T =1.6·106

events. Each event contains the actually displayed
teaser, the set of currently available news, a set of
visitor features, and the visitor’s decision to click on
the teaser (r = 1) or not (r = 0). 49 different teasers
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Figure 2: Results for the Yahoo! Webscope R6B data
set. Estimated normalized click-through rates for
LGA, BLR decomposition, and PCA depending on the
number of selected components.

have been available and are represented as m = 49
dim. actions a encoded with a “1-of-m” scheme. The
events contain 116 binary features about the visitor,
which are anonymized in the data. We estimate K
using batch-gradient descent on the empirical error
E[(r̂(c,a,K)−r)2]. We applied 10000 epochs of train-
ing with a step width 0.01 starting from zero ini-
tial parameters. After that the parameters were fine-
tuned by applying a whitening on the contexts and
continuing batch regression for another 1000 epochs
with step width 10−4. As a baseline, we applied a
bi-linear regression model r̂(c,a) = ψc(c)T ·B ·ψa(a)
that was trained with the same procedure. Such
bi-linear regression (BLR) models have previously
[Koren et al., 2009, Chu and Park, 2009] been used to
reduce the dimension in recommender scenarios: the
matrix B can be decomposed into UBSBV

T
B by singu-

lar value decomposition, after which only the n most
significant dimensions are kept. The evaluation cost
for both models is the same as both involve matrix-
vector multiplications of the same size. As further
baselines we used PCA to reduce the dimension of the
context-space before applying either quadratic or bi-
linear regression. In the PCA condition the dimension
of actions cannot be reduced.

3.2 Results

For each method we can denote the policy to choose
a news-teaser a based on the user information c as
π(c) = argmaxa∈A(t) r̂(c,a), where A(t) is the set of
articles available at time t. A natural performance
metric is the click-through rate CTRπ=N+

π /N , where
N is the total number of page visits and N+

π is the
number of clicks generated by selecting teasers with
π. Yet, this measure can only be measured when the
policy is run online on the webpage. For an offline

evaluation [Chu et al., 2009] we can estimate the per-
formance by counting how often an actually clicked
teaser would have been recommended by the policy:

nCTR =
CTRπ

CTR%
≈ |{rt = 1 ∧ at = π(ct)}|∑

t(rt · |A(t)|−1)
,

which is baselined against the performance CTR% of
a uniform random strategy. Fig. 2 shows that LGA
achieves a substantially better performance than the
bi-linear model decomposition (BLR-SVD). With ris-
ing n LGA quickly improves to nCTR>2.25 for n≥5
components and further improves to nCTR>2.3. The
performance of LGA is largely unaffected by using the
cost term êa(a) or not. The bi-linear model requires
n ≥ 8 components to reach only nCTR > 2.15 with
only minimal further improvement for more compo-
nents. Both LGA and bi-linear decomposition out-
perform their counterparts with unsupervised PCA on
the states before running bi-linear (BLR) or quadratic
(QR) regression. Interestingly, PCA&QR substan-
tially outperforms the standard BLR decomposition
approach, which shows the high expressiveness of
quadratic regression in general, but which comes with
higher computational cost.

4 Discussion

We can conclude that LGA allows for an effective di-
mensionality reduction in the recommender setting, in
which it outperforms the standard bi-linear model in
terms of generated clicks. The margin is thereby nu-
merically not very high in the range of 5-10%, but
which is still highly significant to the domain since
clicks are directly related to a website’s monetary in-
come. Other studies have reported much higher abso-
lute values of CTR for other benchmarks, which sug-
gests that the data set used here is rather hard. A
possible reason is that there are no features for the
actions, but only identities. A further interesting ap-
plication (that would require non-anonymized data,
though) would be to analyze the goal semantics in the
observation space and see what kind of user features
have been associated with which features of an article.
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