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Abstract

In this paper, we use a random decision forests
(RDF) classifier with a conditional random field
(CRF) for pixelwise object class labeling of real-
world scenes. Our ultimate goal is to develop an
application which will provide safe human-robot
collaboration (SHRC) and interaction (SHRI) in
industrial domain. Such an application has many
aspects to consider and in this work, we particu-
larly focus on minimizing the mislabeling of hu-
man and object parts using depth measurements.
This aspect will be important in modelling hu-
man/robot and object interactions in future work.
Our approach is driven by three key objectives
namely computational efficiency, robustness, and
time efficiency (i.e. real-time). Due to the ulti-
mate goal of reducing the risk of human-robot in-
terventions. Our data set is depth measurements
stored in depth maps. The object classes are hu-
man body-parts (head, body, upper-arm, lower-

arm, hand, and legs), table, chair, plant, and stor-
age based on industrial domain. We train an RDF
classifier on the depth measurements contained
in the depth maps. In this context, the output
of random decision forests is a label assigned
to each depth measurement. The misclassifica-
tion of labels assigned to depth measurements
is minimized by modeling the labeling problem
on a pairwise CRF. The RDF classifier with its
CRF extension (optimal predictions obtained us-
ing graph cuts extended over RDF predictions)
has been evaluated for its performance for pix-
elwise object class segmentation. The evaluation
results show that the CRF extension improves the
performance measure by approximately 10.8%
in F1-measure over the RDF performance mea-
sures.
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1 Introduction

In this paper, the proposed approach of pixelwise object
classification using depth maps is intended for use in ar-
eas of challenging industrial environment (Fraunhofer IFF,
2015) for safe human-robot collaboration (SHRC) and in-
teraction (SHRI). The objective is to apply the resulting
system in our robotic workspace for classification of ob-
jects in areas of interest of the robot in real-time. High
safety standards with full elimination of any kind of pos-
sible risk of injury to humans and the optimization of
the workflow must be met in industrial workspace. The
demonstration of the model incorporates the interaction
of humans with different industrial-grade objects while
optimizing interaction and collaboration processes. The
proposed approach covers a wide range of applications
in human-robot interaction: for reliable collision detec-
tion, in manufacturing operations hand-in-hand with hu-
mans, in aviation/automobile industry for integrating air-
craft/automobile components, for efficient handling and lo-
gistic tasks for fetch-and-carry services, in health care in-
dustry that facilitates minimally-invasive-surgery, in medi-
cal and rehabilitation sectors, to control traffic services.

In classification as a segmentation task, minimizing mis-
classification of labels assigned to each pixel is a research
area with a lot of room for further research (Boykov et al.,
2001) (Boykov et. al., 2006). In this paper, we focus on
RDF and CRF approaches for this purpose. We chose RDF
for classification, since RDF can generalize more than sup-
port vector machine (SVM). The major advantage of RDF
over SVM and boosting is that random forests can handle
both binary and multi-class problems with the same classi-
fication model.

In our approach, depth measurements are directly pro-
cessed to provide an accurate and spatially resolved infor-
mation about the available object classes (human, table,
chair, storage, and plant) in the scene in real-time from
“top-view” . Our work is primarily intended for manu-
facturing and automation industry, where we keep track of
humans and industrial-based objects from “top-view” for
a proactive task. Meantime, it is important to reduce the
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cost of surveillance. It is infeasible in terms of costs to use
an expensive set of computers, sensors, and algorithms for
segmentation. Therefore, our goal is to obtain an efficient
and robust segmentation with computational efficiency and
real-time support using minimum hardware and software
gadgets. Our main contributions are as follows:

• This work is intended for manufacturing and automa-
tion industry in challenging environments for SHRI
and SHRC. Our work is a step towards scene analy-
sis, and we are proposing a model for pixelwise ob-
ject class segmentation formulated as a labeling prob-
lem in low-level vision tasks for industrial domain.
The proposed approach covers a wide range of appli-
cations in human-robot interaction: (a) works in real
time, (b) with reduced mislabeling error compared to
state-of-the-art, (c) is depth invariant, (d) aims at iden-
tifying human-robot occlusions (hence reduces risks
of accidents due to robot hitting a human in the same
workspace), (e) uses for testing, real world data com-
posed of images taken by scenes from real-world,
where there are real world objects and humans, (f) fo-
cuses on object-object and human-object occlusions.

• The work is general and our synthetic training adapts
well to real-world scenarios with good segmentation
results. For demonstration, the resulting integrated
system is tested in our robotic workspace for segmen-
tation in real-time using our proposed approach (see
row 2-3 of Fig. 11).

The remainder of the paper is structured as follows. In Sec-
tion 2, the related work is given. Section 3, describes fea-
ture selection, RDF, CRF and Energy Minimization tech-
niques. In Section 4, data collection and experimental setup
is explained. In Section 5, results, discussion and the ex-
perimental evaluation is given and in Section 6, we discuss
the conclusion and future work.

2 Related Work

Object class segmentation aims to assign a class label to
every pixel in the image. Object class segmentation can be
formulated as a CRF based labeling problems (Gonfaus et
al., 2010) (He et al., 2004) (Shotton et al., 2009) in which a
label is assigned to a pixel corresponding to an object class.
In general, an object class labeling problem is formulated
as maximum-a-posteriori estimation over a CRF, which is
generalized as an Ising-Potts model (Boykov et al., 2006).
In such a framework of labeling, one aims to assign a label
to a pixel which represents an object class and which mini-
mizes the energy for the most optimal labeling (Boykov et
al., 2001).

(He et al., 2004) use CRFs to incorporate segmentation in-
formation with varying scales of a pixel patch in order to

predict label information and model context (i.e. contextual
information at the global and local levels) with the help of
coarser and more global features. The modeled CRF uses
a single pixel on the lowest scale in order to segment and
recognize the object class of the pixel. In our case, we also
process a single pixel by the low-level image processing
for pixelwise object class labeling, finally leading to scene
analysis.

(Gonfaus et al., 2010) propose a new framework which is
based on CRF and which is able to encode any possible
combination of class labels varying from local (pixel and
super-pixel), mid-level (feature of neighbouring regions),
to global scale (taking into account the entire image). The
authors combine context at various scales for joint classi-
fication and segmentation. (Shotton et al., 2009) propose
a segmentation approach purely based on pixelwise classi-
fication using boosted classifier. The authors commit that
the performance of their segmentation is efficient because
of the information obtained from pixelwise classification.
Due to this reason, researchers have stepped out of complex
CRF modeling and focused on the pixelwise classification,
without considering the label context.

(Lepetit et al., 2006) apply random forests on simple bi-
nary tests of image intensity neighbouring the key-points
for object recognition. They were the first to apply RDF
classifier for a low-level classification task in computer vi-
sion. They validated that high performance and low train-
ing complexity of RDFs was due to the randomness in the
classifier training. Since then, RDFs became popular for
pixelwise object class segmentation approaches with dif-
ferent pixel feature descriptions and weak learner (or split
function) types.

(Shotton et al., 2013) demonstrate the application of seg-
mentation of human body-parts to human pose segmenta-
tion in real-time using random forests. In their approach,
they trained an ensemble of random decision trees based
on a pixel centered patch in the depth data obtained from
RGB-D sensor. They accomplished fast and impeccable
prediction of human pose in real-time.

In this paper, we propose a generic classification technique
for pixelwise object class labeling using random forests and
CRF extension. Our approach is driven by three key objec-
tives namely computational efficiency, robustness, and time
efficiency (i.e. real-time) for industrial applications, and it
further differs from (Shotton et al., 2013) in the following
aspects. In (Shotton et al., 2013), all training data were
thereby synthetically generated by applying marker based
motion capture to the detailed and articulated 3D human
body models in a virtual environment. On the other hand,
we use a highly optimized virtual representation of the 3D
human skeleton modeled on a set of 173 spheres in a virtual
environment. We generate the synthetic data of the human
body-parts in a virtual environment (Freese et al., 2010),



Sharma, Dittrich, Yildirim-Yayilgan, Van Gool

using a multi-sensor KINECT setup for skeleton tracking
in real world (Dittrich et al., 2014) (see Fig. 4). We gener-
ate both real and sythetic data for objects in addition to hu-
mans. This way computational expense is reduced. We use
“top-view” whereas in (Shotton et al., 2013) also include
“front-view, side-view”. Still, our results are competitive as
will be shown in the Section 5 .

Some other work, (Sung et al., 2011) use human poses
to understand the human activity and the holistic scene.
While (Grabner et al., 2011) propose imaginary poses of
human appearance to detect objects in the scene. (Jiang
et al., 2012) learn the human activities by inferring object
arrangements and interaction in a 3D scene.

3 Proposed System

Fig. 1 shows the schematic layout of the segmentation sys-
tem. Our approach consists of two phases: a) training
of an RDF classifier with synthetic data, and b) testing
of the trained classifier with new real-world data. Fig. 1
demonstrates the two phases. Given a collection of data
comprising input ground truth image and its correspond-
ing depth map obtained from RGB-D sensor in the syn-
thetic world using VREP simulator (Freese et al., 2010).
The first step performed is sampling, i.e. the number of
frames and samples/depth-measurements per class are cho-
sen randomly for classifier training and evaluation. Next,
individual features v(s) are extracted from 2D patches cor-
responding to object classes. Then, selected features are
passed to the RDF classifier. RDF returns a trained classifi-
cation forest. Now a test depth map obtained from the real-
world KINECT sensor is given as an input to the trained
classification forest. The result obtained is a pixelwise ob-
ject class labeling. The likelihood of an object label as-
signed to a depth measurement/pixel is then integrated in a
pairwise CRF as a unary term in the CRF energy.

3.1 Features Selection

Vector v(s) represents features from a 2D patch corre-
sponding to an object class and it contains depth measure-
ments in the 2D patch (h⇥w). h⇥w is the dimensionality
of the 2D patch and is the feature space in our case, where
h resembles height and w resembles width of the 2D patch
(see Fig. 2). The feature description v(s) of the object class
s is based on the depth information only:

v(s) = (f[1:w],1, f[1:w],2, ..., f[1:w],h) 2 <w.h (1)

f
i,j

= Op(s
x

+ (i� w

2
), s

y

+ (j � h

2
)),

(i, j) 2 {1, ..., w}⇥ {1, ..., h},
(2)

where s is the maximum number of object classes, which
include: human body-parts (head, body, upper-arm, lower-

arm, hands, legs), table, chair, plant and storage. (s
x

, s
y

)

Synthetic Dataset Creation

Definition of Features

Evaluation

CRF Modeling

Sampling and Feature 

Selection
Classifier Training 

Figure 1: Schematic layout of the segmentation system
which shows the steps of data collection, definition of fea-
tures, sampling and feature selection, classifier training,
CRF modeling and evaluation.

is the position of sample in the depth map, the function
Op(., .) returns the depth value from a given position of the
depth map.

Figure 2: Feature extraction of a head pixel sample using
a rectangular region. Left: Ground truth coloured-labels
of depth data/map. Right: Synthetic depth map generated
with a synthetic KINECT sensor. In both of the corre-
sponding frames, the rectangular region is parallel to the
image coordinate system and centered at the sample posi-
tion. h and w resembles the height and width of the rect-
angular 2D patch. The cross sign depicts the center of the
patch and the red dots are the randomly chosen features for
the tree training.

3.2 RDFs for Object Class Segmentation

We use random decision forest (or random forest) for the
classification task. Random decision forests is an ensemble
of binary decision trees, which gives an impressive high
accuracy on previous unseen data, Such phenomenon is
known as generalization. The methods such as bagging
and randomized node optimization injects randomness into
the trees during the training phase. Bagging helps to avoid
specialization of selected parameters to a single training set
and improves generalization, while randomized node opti-
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mization optimizes each node of the decision tree with re-
spect to the subset of entire parameter space of the weak
learner. This approach of producing diversity via random-
ization has proved to be very efficient and valuable.

In a random forest, the features selection primarily depends
on optimization function and on the basis of that the split
takes place using a split function. A slight difference in the
training sets produces a very high variance in decision tree,
randomly selection of features has proved out to improve
the prediction results with higher efficiency. Each of the
nodes in a decision tree is associated with a split function.
In our approach, we employ a linear discrimination corre-
sponding to a single inequality test, where [.] is the 0 � 1
indicator. The split function at internal nodes is parameter-
ized by the choice of a simple difference between two fea-
ture dimensions {d1, d2} of the vector v and thresholded
by the distance ⌧ :

⇥
v

d1 � v

d2 � ⌧
⇤

(3)

This difference makes the approach depth invariant. At
each node, we calculate 100 candidate offset pairs (v

d1 �
v

d2 ) and 100 candidate thresholds ⌧ per offset pairs, i.e.
100⇥ 100 comparisons for all split nodes.

The optimization of split function proceeds in a greedy ap-
proach. At each node, maximization of information gain
is calculated. Based on it, the incoming training samples
are split into “best” disjoint subsets of training dataset, i.e.
two child nodes are constructed: left-child and right-child
node. The procedure is repeated recursively for all the
newly constructed child nodes until a stopping criterion for
tree growth is met. The stopping criteria in our case were:
maximum depth that a tree could reach, the relative fre-
quency of training samples within a leaf node are similar to
each other, and unavailability of enough training samples.
When any of these stopping criteria is met the split node
becomes the leaf node.

After the decision tree is built, each node contains a subset
of labeled training samples, then an empirical class distri-
bution is calculated for each leaf node. This is how the
binary classification tree is built and an ensemble of more
than 2 trees is called a decision forest. Constructing each
tree on a different random subset of the training samples
(i.e. bagging) or choosing a subset of dimensions at ran-
dom out of a feature space helps producing diversity and
improved generalization by avoiding specialization of se-
lected parameters to a single training set. When a forest
is built this way with randomization it is called a random
decision forest or random forest.

We know each leaf node of a trained tree represents the
class prediction of the tree. Given a new sample (i.e. test
sample) v0, it is routed through the trained tree and the goal
is to infer the class label c. The testing sample traverses the
tree until it reaches a leaf node. At each split node a test is

applied and the sample is likely to end up in the leaf with
training samples which are similar to itself. At the leaf node
the empirical class distribution is read off P (c|v0) and it is
reasonable to assume that the sample which ended up in a
leaf node must also have an associated label similar to it-
self. So the label leaf statistics predicts the label associated
with the test input sample v0. If there are t trees in a forest,
each tree leaf yield the posteriori P

t

(c|v0), then the forest
class posteriori can be defined as:

P (c|v0) =
1

T

TX

t=1

P
t

(c|v0), (4)

where t 2 {1,...,T} and T is the maximum number of trees
in the forest. The forest class posteriori is obtained by av-
eraging each tree posteriori. Fig. 3 shows the graphical ap-
proach to above discussed tree testing.

Figure 3: An example of a simple pixelwise object class
labeling using RDF classifier: a query test pixel (v0) routes
through each trained decision tree in a forest. Each test
pixel traverses the tree through several decision nodes until
it reaches the leaf node and is assigned a stored leaf statis-
tics of the leaf node P (c|v0), where c is the class label.
The forest class posterior is obtained by averaging individ-
ual tree posteriors.

3.3 CRFs for Object Class Segmentation

The energy of the pairwise CRFs used for object class seg-
mentation can be defined as a sum of unary and pairwise
potential terms as:

E(x) =
X

i2�

'
i

(p
i

) +
X

i2�,j2⌘

'
i,j

(p
i

, p
j

), (5)

where � corresponds to the vertex set of 2D grid with each
vertex corresponding to pixel p in the image and ⌘ is a
neighborhood of the pixels. x is an arbitrary configuration
or labeling. The unary (likelihood) and pairwise (smooth-
ness prior) potential terms of the CRF energy takes the form
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described next in detail. The unary potential '
i

(p
i

) term of
the CRF energy is the likelihood of an object label assigned
to pixel i, obtained from the RDF classifier. The pairwise
potential '

i,j

(p
i

, p
j

) term (prior term) is of the form of
Ising-Potts model (Boykov et al., 2006), which can be ef-
ficiently minimized by ↵-Expansion (move making algo-
rithms). ↵-Expansion based on graph cuts (Boykov et al.,
2001) are used to minimize the pairwise potential smooth-
ness term of the CRF energy function. ↵-Expansion applies
iteratively min-cut/max-flow procedure to an appropriately
constructed pairwise CRF and is guaranteed to find an opti-
mal solution, which is close to the global optimal solution.
In vision applications, like pixel labeling and segmentation,
the best approximation is in the case of graph cuts using ↵-
Expansion with Ising-Potts model, where the final energy is
almost equal to the global minimum energy. (Boykov et al.,
2001) proved that the minimum energy of the ↵-Expansion
move algorithm in the worst case will be at maximum twice
of the global minimum energy. Thus, in simple words the
RDF is only trained and the RDF predictions are injected
as the data term in the energy formulation of the CRF, and
then we do global optimization using the graph cuts algo-
rithm.

4 Data Collection

We generate an extensive dataset for the task of multi-class
image segmentation based on industrial domain using Vir-
tual Robot Experimentation Platform (Freese et al., 2010).
The data is generated in two phases: a) synthetic training
depth data and b) real-world test depth data, with corre-
sponding labeled ground truth data for all object classes.
Pixels in the depth map indicate the depth measurement
rather than color or intensity measurement of the scene. It
is very important and a crucial factor to have a large amount
of high precision depth and ground truth data during the
training phase for learning a realistic model. Here, the pix-
elwise RGB-D data has been synthetically generated in a
virtual environment for 10 object classes. Using synthetic
data for training is very efficient and for that reason, us-
ing synthetic data removes the need to annotate the data
manually. Our generated pixelwise RGB-D dataset is com-
posed of frames with a “top-view” of human body-parts
and industrial-grade components. It is publicly available
for academic and research purposes.

Synthetic and Real-World Data: Here, we discuss the
generation of training and testing human data for synthetic
and real-world. We generate the synthetic data of the hu-
man body-parts (head, body, upper-arm, lower-arm, hand,

and legs) with a 3D human model in a virtual environment
(Freese et al., 2010), using a multi-sensor KINECT setup
for skeleton tracking estimation in real world (see Fig. 4).
The generation of human data is based on appearances from
an industrial environment with broad spectrum of challeng-
ing poses, orientation, shapes, and variable heights. Hu-

man appearance includes: sitting, standing, walking, work-

ing, dancing, swinging, boxing, tilting, bending, bowing,

and stretching with combinations of angled arms, single
and both arms and other combinations. The human height
ranges between 160-190 cm. Due to the high variation in
human data, there is a large number of training samples for
the classifier training. The more the varied training sam-
ples, the better the classifier is trained. Therefore, it is nec-
essary to synthesize a large and varied synthetic training
data set using the real-world poses from an industrial envi-
ronment. We expect that the testing of the generated syn-
thetic data based on real human postures should give better
results compared to the real-world data. For real-world data
generation, we use a KINECT sensor placed at the ceiling.
For more detailed information about human data genera-
tion, refer to (Dittrich et al., 2014). In Fig.(5 - 6), we show
examples of synthetic human data and real-world human
data.

Figure 4: Synthetic human data generation. (From Left to

Right:) Multi-sensor KINECT skeleton tracking setup at
our robotic workplace. Real-world human skeleton track-
ing (one of our author standing) using KINECT, skeletal
joints of interest of real-world human, 3D human skeleton
modeled on a set of 173 spheres, ground truth labeling of
depth data and corresponding depth data (when KINECT
sensor is above the human model at a height of 3.5 meters).

Figure 5: Synthetic human data for training. (Top) Ground
truth labels of synthetic depth data (Bottom).

The generated synthetic data (i.e. depth data and ground
truth labels of depth data) for industrial-grade object
classes are shown in Fig.(7-8), where Fig. 7 shows the syn-
thetic data for table, chair and Fig. 8 shows the synthetic
data for plant, storage.

Dataset Modeling: We also incorporate modeling a 3D
scene using multiple 3D objects in a virtual environ-
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Figure 6: Real world human data for testing. (Top) Ground
truth labels of synthetic depth data (Bottom).

Figure 7: Synthetic data of chair and table for training.
(Top) Ground truth labels of synthetic depth data (Bottom).

ment for obtaining various possible configurations, ar-
rangements, and interactions between human-object and
object-object relationships for synthetic dataset generation.
This way, the synthetic dataset is made more realistic in
comparison to the real-world scenarios. This considerably
plays a significant role in the correct and better classifica-
tion of human body-parts and object parts, while occlu-
sions of human-object or object-object are being recog-
nized. This modeling of our dataset makes our solution
usable in identifying occlusion compared to (Shotton et al.,
2013) (Dittrich et al., 2014). For the synthetic dataset col-
lection, the workspaces were modeled in the virtual envi-
ronment to maintain consistency with the real-world tar-
geted workspaces and scenarios, but recognizing the same
set of objects. For more detailed information about dataset
modeling, refer to (Sharma et al., 2015).

Figure 8: Synthetic data of plant and storage for training.
(Top) Ground truth labels of synthetic depth data (Bottom).

5 Experimental Evaluation, Results and
Discussion

To evaluate the overall segmentation approach, we use both
synthetic and real-world depth maps. The goal of our work
is to do high quality segmentation in real-time and reduce
mislabeling errors. For demonstration of our work per-
formance, we discuss the effects of tree depth, number of
training frames on the tree training, training time, testing
time and finally evaluation of the results obtained form
RDF classifier and the CRF extension.

A scene is a single frame where there is a single 3D ob-
ject or a combination of multiple 3D objects with a partic-
ular configuration. We have a single synthetic scene with
a single object at a time. All the chosen 3D models of ob-
jects are based on industrial workspace and office domain.
We synthesize 10,000 frames for human object class, and
4000 frames for each of the industrial grade object classes:
chair, table, plant and storage. The synthesized scene has
depth map ranging between 0-3.5 m. As mentioned be-
fore, the human scenes are composed of a high variation
of human poses and shapes The height range of industrial
grade object classes is between 70-90 cm. For chair, table,
plant and storage object classes, 4 instances were chosen
for each object class which are: executive chair with and

without chair handles; conference rectangular table and

conference round table; shrubs, flowers and plants within

pot; small sized shelves and wardrobes based on industrial
workspace and office domain. Each of the frames are still
images, having no temporal or motion information. For the
training process of each tree, 1600 frames from this dataset
are chosen randomly from each object class. A fixed fea-
ture patch size (w, h)=(64,64) was used for the whole train-
ing process. Each frame generated from a KINECT camera
was of size 640⇥ 480 pixels.

For the RDF tree training, we use a fixed parameter setup
with number of training frames (F)=1600, number of fea-
tures extracted per object class (PC)=300, number of trees
in forest (T)=5, tree depth (D)=19, and weak learner
(Feat)=Linear-Feature-Response. For the randomization
process, the randomization parameter (Ro=200) during tree
training comprises of candidate thresholds (⌧=Ro/2) per
feature and candidate feature ( =Ro/2) function samples
in the node optimizations. All trainings are based on train-
ing of synthetic dataset with additive white Gaussian noise
using a standard deviation of (�)=15 cm.

For the evaluation process, a desktop with Intel i7-2600K
CPU at 3.40GHZ (4 core processor), operating system in-
stalled on solid state drive and 4GByte RAM was used. We
generate recall-precision metrics for the performance eval-
uation of each single object classes, mean average of recall
(mAR) and mean average of precision (mAP) as the com-
bined average of all classes. For demonstration, we gener-
ate qualitative results for both synthetic and real-world data
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and quantitative results for real-world data only.

5.1 Tree Depth

Of all the training parameters, tree depth (D) plays the most
critical and crucial role as it directly impacts the capacity of
the RDF classifier. If a very shallow tree is built, the clas-
sification might suffer from the problem of under-fitting,
where the decision boundaries tend to be very coarse with
low-confidence posteriors. On the other hand, if a deep
tree is built, the classification might suffer from the prob-
lem of over-fitting because it starts coming up with decision
boundaries. This over-fitting problem is solved by using
multiple trees in a forest, which gives better generalization.
It is a very big limitation of this parameter (D) and it is very
important that an optimal D is chosen precisely in order to
avoid the under-fitting and over-fitting problems. The re-
sults in Fig. 9 (Column 1) shows that the recall-precision
metrics improves gradually with the increase in tree depth
and then starts to saturate around D=17 , and there is much
less improvement after D=19.

5.2 Number of Training Frames

The results in Fig. 9 (Column 2) shows that the recall-
precision metrics improve gradually with the increase in
number of training frames, and then the trained tree starts to
saturate around F=1600, and there is much less improve-
ment after F=1600. We found that the increase in num-
ber of training frames monotonically increases the testing
prediction only if the training set is highly varied (i.e. re-
dundancy of training samples do not let the decision forest
learn more, but the precision gains more at the expense of
recall). Fig. 10 shows the pixelwise prediction results based
on the same trained decision forest.
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Figure 9: Evaluation results. (Column 1:) effect of the tree depth
(D) in a Forest on average recall (mAR) and precision (mAP )
measures. (Column 2:) effect of the number of training frames
(F ) on mAR and mAP of pixelwise object class segmentation.
For the evaluation, 65 real-world test depth maps were used.

Figure 10: Prediction results based on synthetic and real-
world test data for number of training frames. The first
column shows the test depth data, and second, third, forth
columns show the corresponding prediction results respec-
tively for F={40, 1600, 4800} with probability threshold-
ing of 0.4. Class predictions with a probability less than the
thresholds are colored black in the result images.

For the classifier training with the chosen fixed parame-
ter setup resulted in 2.076⇥ 106 synthetic labeled training
samples per tree, with a training time of approximately 43
minutes for a forest and calculating the pixelwise predic-
tions using the trained forest took 34 ms. The testing time
is well convenient for the target application and supports
real-time processing.

Our proposed approach uses 1600 frames for building a
RDF tree where 300 depth values are extracted for each
of 10 object-classes in order to compute features specific to
a particular object-class for training the tree. This is suf-
ficient for producing almost comparable results to (Shot-
ton et al., 2013). In (Shotton et al., 2013), the authors
use 300K frames per tree and 2000 pixels per object-class
which takes a high computation cost and a large memory
consumption. For the classifier training, our optimal pa-
rameter setup resulted in a training and testing time of ap-
proximately 43 minutes and 34 ms on a desktop with Intel
i7-2600K CPU at 3.40GHZ. In (Shotton et al., 2013), for
training 3 trees to depth 20 for 1 million images took time
of approximately a day on a 1000 core cluster and 40 sec-
onds of testing time on a 8 core processor. Our work can
distinguish subtle changes such as crossed-arms, which is
not possible in (Shotton et al., 2013).

5.3 Full Method

The numbers presented in the confusion matrix-based qual-
ity measures (Table. 1) are for the RDF classifier and
the CRF extension (optimal predictions obtained using ↵-
Expansion based graph cuts extended over RDF predic-
tions), and the pixelwise prediction results illustrated in
Fig. 11 are based on the same trained decision forest. For
the quantitative evaluation, we use a random number of 65
real-world test depth maps with all object classes.

As a baseline, we implemented the same state-of-the-art
(SOA) RDF classifier as used in (Shotton et al., 2013) for
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pixelwise labeling performance evaluation based on top-
view, and compared with our CRF-extension, using a real-
world test data. Table. 1 shows the prediction results for
the RDF classifier, and the improved prediction results with
CRF extension for pixelwise object class segmentation. It
can be observed that the CRF extension improves the per-
formance measures by approximately 6.9% in mAR, 19.9%
in mAP, and 10.8% in F1-measure over the RDF perfor-
mance measures. Table. 1 shows a mAP of 0.620, mAR
of 0.816, and F1-measure of 0.734 are achieved using the
RDF classifier, while 0.819 mAP, 0.885 mAR, and 0.842
F1-measure are achieved using the CRF extension. As ex-
pected, the results improve using the CRF extension, over
RDF classifier.

Figure 11: Prediction results based on synthetic and real-
world test depth data. The first row is based on synthetic
test data, the second and third rows are based on real-world
test data. The first column shows the test depth maps, the
second and third columns show the predictions obtained
from RDF and the CRF extensions.

As a baseline with (Shotton et al., 2013) (Ganapathi et
al., 2010) (Dittrich et al., 2014), we compare our perfor-
mance results using “top-view” as a comparison parameter
for only human body-parts classification. Fig. 12 shows
comparison of the per-joint proposals of the human body-
parts classification. Our results for per-joint classification
of human body-parts are comparable to (Shotton et al.,
2013) and (Ganapathi et al., 2010), and we improve over
(Dittrich et al., 2014). Also we obtain comparable results
in a faster way than (Shotton et al., 2013). We can see that
the mAP of legs is substantially low. We believe that from
“top-view”, legs object class is least discriminative because
the industrial grade components fall under the same range
of depth measurements as legs (i.e. between foot-waist) ob-
ject class. In future work, we will be working on improving
discriminating legs from other objects in a better way.
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Figure 12: Comparision with (Shotton et al. 2013), (Ganapathi
et al. 2010) and (Dittrich et al. 2014). Our approach is sufficient
for producing almost comparable results for localizing the joints
of the human body-parts.

6 Conclusions and Future Work

We propose a generic classification for pixelwise object
class labeling framework. The work is applied to real-time
labeling (or segmentation) in RGB-D data from a KINECT
sensor mounted on a ceiling placed at the height of 3.5
meters. An optimal and robust parameter setup for pix-
elwise object class segmentation in real-time and high per-
formance scores are achieved in the evaluation. It is found
that increasing the number of training frames (F) mono-
tonically increases the testing prediction. The CRF exten-
sion improves the performance measures by approximately
6.9% in mAR, 19.9% in mAP, and 10.8% in F1-measure
over the RDF performance measures. In (Shotton et al.,
2013), the authors “fail to distinguish subtle changes in the

depth image such as crossed arms”, this is solved by using
our training dataset based on “top-view”. It was demon-
strated that the developed approach is relevant, robust and
well adapted to the application targeted for pixelwise ob-
ject class segmentation in industrial domain with humans
and industrial-grade components. In future work, concern-
ing human safety, the pose and position of human is very
important to be correctly estimated from real-time vision.
Based on that, together with a proactive task and path plan-
ner a safe human-robot collaboration is feasible as the fu-
ture goal. Such that, a pure collaboration in common shared
area, with common shared tasks can be expected.
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