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Abstract

Nonlinear dimensionality reduction techniques
of today are highly sensitive to outliers. Almost
all of them are spectral methods and differ from
each other over their treatment of the notion of
neighborhood similarities computed amongst the
high-dimensional input data points. These tech-
niques aim to preserve the notion of this sim-
ilarity structure in the low-dimensional output.
The presence of unwanted outliers in the data di-
rectly influences the preservation of these neigh-
borhood similarities amongst the majority of the
non-outlier data, as these points ocuring in ma-
jority need to simultaneously satisfy their neigh-
borhood similarities they form with the outliers
while also satisfying the similarity structure they
form with the non-outlier data. This issue dis-
rupts the intrinsic structure of the manifold on
which the majority of the non-outlier data lies
when preserved via a homeomorphism on a low-
dimensional manifold. In this paper we come
up with an iterative algorithm that analytically
solves for a non-linear embedding with mono-
tonic improvements after each iteration. As an
application of this iterative manifold learning al-
gorithm, we come up with a framework that de-
composes the pair-wise error observed between
all pairs of points and update the neighborhood
similarity matrix dynamically to downplay the
effect of the outliers, over the majority of the
non-outlier data being embedded into a lower di-
mension.
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1 Introduction

Nonlinear dimensionality reduction (NLDR) methods
like Laplacian Eigenmaps (1), Locally Linear Embed-
ding (2), Hessian Eigenmaps (3), and Local Tangent
Space Alignment (4) try to preserve the local geometry
of high dimensional data in a low dimensional space.
NLDR methods aim to find a homeomorphic mapping
and assume that a ’representation’ of the local geometry
of high-dimensional data can be preserved on a smooth
manifold of much lower dimension, also referred to as
its intrinsic dimension (6), (7), (8). The problem of
finding such a mapping is also referred to as -Manifold
Learning. In the presence of outliers the information
required to find a homeomorphic mapping is corrupted and
nonlinear dimensionality reduction methods of today fail
to completely recover the manifold of interest.

In this paper, we propose an iterative method for
manifold learning and use it to adaptively downweight
the outliers based on the pair-wise error produced at
any given iteration. The effect of outliers is reduced by
simultaneously updating the priori local neighborhood
information that needs to be preserved after the embed-
ding. This is done using multiplicative updates derived
from the pair-wise error produced between all pairs of
points after any given iteration. Our iterative embedding
algorithm guarantees monotonic improvement after each
iteration as it is based on majorization-minimization,
an optimization framework that guarantees monotonic
convergence. This leads to every iteration of our algorithm
doing better than the previous until it converges to smaller
and smaller improvements after many iterations. The
problem of manifold learning in the presence of noise or
missing data was studied in (9), (10). The focus in this
paper is instead, over the presence of outliers that do not
have the same low-dimensional representation as of the
data of interest, and often get falsely projected over the
smoothened manifold with a lower degree of freedom.
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2 Interleaving Iterative Embedding &
Robust Reweighting of Similarity
Structure

The problem of nonlinear embedding in the presence of
outliers around the high-dimensional data can be tackled
at two levels. The first level is to deal with outlier detec-
tion in the high-dimensional space before the embedding.
This is non-trivial and non-obvious, because of the ’curse
of dimensionality’. The other choice, would be during or
after the embedding. In this paper we focus on dealing with
outliers during the embedding by first presenting an algo-
rithm for embedding iteratively. Our iterative algorithm
is inspired by Laplacian Eigenmaps, a non-iterative tech-
nique that uses a Gaussian kernel exp(— ||Y; — Y. ||§ /o)
to generate weights W;; from a high dimensional data ma-
trix Y, x%, where Y;,Y; are data points in R* and de-
note the rows ¢, 7 of Y respectively. o is a tuning param-
eter that establishes the notion of the extent of neighbor-
hood. In Laplacian Eigenmaps a low-dimensional embed-
ding X, «p, in NP with p < k is obtained by minimizing
the following loss function:

ZW 2 (X (1)

over X, where d3;(X) is the squared Euclidean distance
between row X; , X, The solution is subject to an or-
thornormal constraint over X G'/? that depends on the di-
agonal matrix G, where G;; = > ; Wij and is given by
XTGX = I and thereby prevents a degenerate solution
over X. In this paper we consider the case where W is
a matrix of weights computed over a Y that is plagued
by outliers. Our approach relies on the pair-wise error
matrix E, obtained at any given solution X with entries
E;; = Wijd?j(f( ). The pair-wise residuals E;; can be
decomposed into decoupled pointwise indices of the form
ci, ¢j such that, 3, - v(Ejj, (¢;, ¢;)) is minimum, based on
the model ~(.) that we would like to build over our error.
We refer to ¢;, c;, as point-wise indices, in the rest of the
paper. These indices can be used at this stage to inturn up-
date the weight matrix W.

It would be of practical use to have an iterative update
for non-linear embedding, where the pairwise error terms
can be collected during the process of embedding, and de-
composed into well regularized point-wise indices, which
would in turn be used to dynamically update the weight ma-
trix during the embedding. We aim for ¢}s being restricted
to R+ Vi. Finally, we perform a regularized M-Estimation
to estimate the point-wise indices in this framework.This
gives us the following updates at iteration, t in its basic
form:

arg min Z 2)

X#0

argmm 27 R ct, J 3)

where E}; = 37, . Wld; (X*)? with X" being the min-
imizer of eqn 2 at any given iteration under a constraint
that X is not a matrix of all zeros. In our scheme, Wffl
is updated using a functional of the point wise indices as
Witj'l = W}r(ci, ch). We minimize (2) iteratively, and
learn a new weight matrix based on the error at every itera-
tion using 3.The next two sections build over these updates
shown above, taking the issues of regularization, conver-
gence and robustness into consideration.

3 Unified Iterative Framework for
Nonlinear Dimensionality Reduction

In this section, we propose majorization-minimization
based iterative updates and a linear constraint for nonlin-
ear dimensionality reduction over the loss function given

as: arg min Z Wi; d2 . This can be represented as a

trace optlmlzatlon problem as follows:

arg min O(X) = Tr[XTLX]

X
J

L is also known as the graph laplacian. We build a ma-
jorization function (13), (14) over the above model, based
on the fact that [2Diag[L] — L] is diagonally dominant.
This leads, to the following inequality for any matrix M,y
given by: (X — M)T[2Diag[L] — L}(X — M) = 0 and
this inequality was used by Trosset, in [4], in a different
context; to have a faster algorithm, as a substitution to the
Guttman majorization based MDS. We get the following
majorization inequality over our objective function in (4),
by separating it from this inequality using

9(X, M)

as

Tr(XTLX) + g(X, M) (5)
which is quadratic in X. Hence, we achieve the following
bound over our objective function:

Tr(XTLX)+ f(M) < g(X,M),VX #M

that satisfies the supporting point requirement, and hence
g(.) touches the objective function at the current iter-

ate and the following majorization-minimization iteration
holds true:

X! — arg min g(X, M?) and M = X*
p's

= Tr[XT2Diag(L)X]-2Tr[X T (2Diag(L)—L)M)]
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Also, L;; can be replaced byL;;.7(c;, ¢;) without loss of
any generality. It is important to note that these inequalities
occur amongst the presence of additive terms that are in-
dependent of X unlike a typical majorization-minimization
framework and hence, it is a relaxation. We now propose
a linear constraint for nonlinear dimensionality reduction
over the quadratic loss function proposed in (5). Our con-
straint prevents degenerate solutions, where the rows(or
columns) of X coincide thereby preventing d;;(X) from
going to zero. Its linearity, makes it easier to practically
enforce it due to the quadratic nature of the loss function.

Row Unique Matrix: A matrix M is row-unique, if all the
rows in the matrix are distinct.

Proposition: For any row-unique matrix M, x,, and
for any given Laplacian matrix Ly, xy, if Tr(XTLM) # 0,
then there exist at least two rows in X, ,, that are
distinct.  Tr(XTLM) = 3, wijéij(X, M) where,
¢ij(X7 M) = Z‘Z:l(zm — xja)(mm — mja). HCHCG,
for a row unique M, there exists at least two rows in X,
such that ;. # x; in order to satisty the inequality on
Tr(XTLM) . Note that, ¢;;(X, X) = d?j(X).

We define our constraint in its basic form for nonlinear
dimensionality reduction as follows: Tr(XTSM) = v
where v > 0 is a user-defined constant and S = n~11 —
eel' is the graph laplacian, with all the weights being one.
As aresult of g(.) being a quadratic majorizer we have

lim ||Xt+1 — MtH —0
t—o0

as a result of which, we have the following over ¢(.) in our
linear constraint

¢ (X g1, My) — d7;(X) e v*

and hence we require that v be non-negative inorder to
simultaneously achieve convergence and enforce regular-
ization.The following is the total loss function, T°(.) ob-
tained when the constraint is combined with our ma-
jorizing function ¢(.), defined in (5) with A being a
positive multiplier over the constraint: 7/(X,\) =
g(X, M) + X[Tr(XTSM) —v]. We get the following
update, by setting the gradient equal to zero: X,;;; =
M; — (0.5) [Diag(L)|"*LM; — 0.25\[Diag(L)]~*SM,
and solving for the constraint, we get the follwing update,
for the multiplier:

N = ATr[MISM,;]) — v) — 2Tr(M} LDiag(L)~*SM,)
B Tr(M{SDiag(L)~1SM;)

(6)

Mt = Xt+1 (7)

Hence, these are updates that satisfy the following set of
inequalities, ©(X;) < g(X¢, Mi—1) < (X1, Xt1) <
O(X;_1) and with every iterate, doing better than the pre-
vious, it proves the convergence of our updates.

4 Robust Multiplicative Updates

In this section, we deal with the estimation of robust point-
wise indices from the error obtained after every iteration
of eqn.s (6), (7) inorder to reweight the weights at each
iteration. We aim to downweight the effect of outliers
during a nonlinear embedding and help retain local infor-
mation, that is required to achieve a homeomorphic map-
ping of the topology of interest. We provide majoriza-
tion minimization based updates, to perform a regular-
ized M-estimation of these indices with a differentiable v
type robust function. We minimize the following function,
that is defined over the residual, e using a robust func-
tion p(.) given by: 37, i p (esjcich); e = Wijd3;(XF).
The Geman Mcclure p(.) function and its first derivative,

which is the influence function v(.) is given by: p(x) =
2

T . _ 2zo
[ B GO ik
ful result for calculating a majorizer if h(.) is an even,
differentiable function such that the ratio h'(z)/x is de-
creasing on (0,00) and the sharpest quadratic majorizer
is given by %yy)(ﬁ —4%) + h(y). Our p(.) function in
(18) does not require an alternative construction for a ma-
jorizer as lim,_, w;w) =0, p(x) = p(—=x) and hence
we have the following sharpest quadratic majorizer up to a
= D ie; éf;z?) We majorize cfc?
inorder to achieve independence of variables in @ over
the gradient as required for constraint qualification and
hence, it also give us closed form updates instead of re-
lying on a block relaxation framework that involves cyclic
updates. We employ the following majorizer that is ob-

tained through the arithmetic-geometric mean inequality,

4 4
aq < 23 [5(2) +4(2)"] = slean ver

where 3(c,c) = c2c?

; and . . also provides us with im-
plicit positivity constraints over @ in a majorization setting
where, z; = c;—1. Employing (22) over (21) we get the

following majorizer &, (.) over the chosen robust function:

2 4 4
Emlc,2z) = Zi<j % zfz? {% (ZT) + % (%) }
We require that the entries in @ corresponding to out-
liers in the data be sparse with the rest of the indices be-
ing large and spread out. We use a combination of L
and Lo norms with coefficients that control the tradeoff be-
tween the sparsity induced by the L; and the reguarization
of large values with the easy to optimize Lo norm. This
framework was previously introduced to improve the per-
formance of the lasso, and to encourage the grouping ef-
fect among the predictors in the regression setting. This
gives us the following loss function with A;,A\2 being the
coefficients over the norms and &, being our majorizer:
l(c,z) = &nlc,z) + Ailclly + A2]lc]l,. The contribu-
tion of A; and A5 can be easily reparametrized using a sin-
gle variable o = 22— giving us the following problem:

(15) suggested a beauti-

constant: &1 (c, 2)

A1+Az
¢ = argmin [(c, z) with the constraint using, r € RT
C



Iterative Embedding with Robust Correction using Feedback of Error Observed

such that: (1 —a)lcll; + al, < r. We ma-
jorize °1_, v/c? using a linear approximation of its tay-
lor expansion to deal with the L; norm as shown below:

2422 .
Em(c,2) + A D0, S + A2 2y f = &(c,z). This

gives us the following quadratic equation which needs to

be solved at every iteration: ¢? = ,% (\% + 2/\26i) and

for the model in (26) we have the following update to ob-

tain ¢;: ¢ = % PP = Hz_ll —204} such that: and

_ t
1T VR (Vpitar:)

5 Experiments

In this section, we present the results of our iterative algo-
rithm presented in section 3, along with the results of these
updates, when combined with the robust framework in sec-
tion 4. We refer to our technique as ’Robust Nonlinear
Embedding’ or 'RNE’ in this section. We initially tested
RNE on this standard dataset, in the presence of outliers
that were uniformly generated around the topology. Fig 1.
shows the results of our expriment on this dataset under the
presence of outliers. The first image in Fig 1. is the Tor-
roidal Helix before adding outliers. The second image has
5% outliers added around it. The ideal recovery upon this
embedding from a Homeomorphic perspective has to be a
circular loop. The third image shows the result obtained by
Laplacian Eigenmap where the result is severely distorted
because of the outliers. The fourth image shows the result
of our RNE, which is close to the ideal of being a circular
loop. The fifth image in this series shows the monotonic
convergence of the error of our iterative embedding algo-
rithm when applied on the non-corrupted Torroidal Helix
prior to even interleaving it with the robust outlier correc-
tion mechanism. Figure 1; shows that our proposed algo-
rithm recovers the topology reasonably well, in comparison
to Laplacian Eigenmaps in the presence of outliers. This
experiment was actually first run on Laplacian Eigenmaps,
with different neighborhood parameters, and the parame-
ters that gave the best possible embedding were chosen, and
the corresponding weight matrix was constructed. We then
ran our proposed (RNE) algorithm, using the weight ma-
trix constructed above. For a real-life data experiment we
used the famous USPS Handwritten Digits standard dataset
to measure the precision and recall of RNE over the Digit
1 corrupted with increasing levels of outliers generated by
uniform sampling from the rest of the digits in this dataset.
The measurements were made using the indices generated
by RNE. Indices that were close to zero, were counted as
points detected as outliers and indices with larger values
were counted as points considered as inliers, and then these
measurements were compared with respect to the ground
truth. Table 1 shows the Precision/Recall measured using
this construction over a repeated series of experiments with
increasing levels of outliers. As the % of outliers increased

Figure 1: Noisy Toroidal Helix: 5% Outliers

Outlier % Precision/Recall
10% Outliers | 98.99 / 98.5
20% Outliers | 98.98 / 98.0
30% Outliers | 98.45/95.5
40% Outliers | 87.45/84.5

Table 1: Precision/Recall with Varying Percentage of Out-
liers

from 10% to 40% the precision-recall have reduced from a
precision of 98.99% and a recall of 98.5% to a precision of
87.45% and a recall of 84.5% respectively in our detection
rate upon the completion of the entire iterative embedding.

From a visual perspective, the Fig.2 shows the compari-
son of the embeddings recovered by Laplacian Eigenmaps
and RNE respectively. The first image shows the result of
Laplacian Eigenmaps where the outliers have been placed
relatively closer to the embedding of the 1’s. Similarly, in
some cases the outliers and inliers have got mixed up as
well, as in by being placed in close proximity to each other.
In comparison, in the second image, the 1’s have densely
amassed themselves on an arc like geometry and a vast ma-
jority of the outliers have got separated from this structure
formed by 1’s. Empirical evidence was collected to see the
effect of the parameter v in our constraint. We used data
depth, an affine invariant, robust measure of scatter to find
that the scatter increases with increasing v to an extent, fol-
lowing which the change in scatter flattens out.

Figure 2: USPS Digit 1
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