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Abstract

We present a framework for feature extraction and mode decomposition of spatiotemporal
data generated by ergodic dynamical systems. Unlike feature extraction techniques based
on kernel operators, our approach is to construct feature maps using eigenfunctions of the
Koopman group of unitary operators governing the dynamical evolution of observables and
probability measures. We compute the eigenvalues and eigenfunctions of the Koopman
group through a Galerkin scheme applied to time-ordered data without requiring a priori
knowledge of the dynamical evolution equations. This scheme employs a data-driven set
of basis functions on the state space manifold, computed through the diffusion maps al-
gorithm and a variable-bandwidth kernel designed to enforce orthogonality with respect
to the invariant measure of the dynamics. The features extracted via this approach have
strong timescale separation, favorable predictability properties, and high smoothness on
the state space manifold. The extracted features are also invariant under weakly restrictive
changes of observation modality. We apply this scheme to a synthetic dataset featuring su-
perimposed traveling waves in a one-dimensional periodic domain and satellite observations
of organized convection in the tropical atmosphere.

Keywords: Feature extraction, ergodic dynamical systems, Koopman operators, kernel
methods, spatiotemporal data

1. Introduction

An important problem in data science is to perform feature extraction from spatiotemporal
data. When the data are generated by ergodic dynamical systems (as is the case in many
science and engineering applications) they acquire an important property, namely that the
system’s state space can be densely explored by long time series of snapshots of sufficiently
high resolution. In many cases of interest, the sampled data lies in a low-dimensional subset
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of the ambient data space (an attractor) with a nonlinear geometric structure. Modern data
analysis techniques, such as kernel and manifold learning methods (e.g., Blanchard et al.,
2007; Storcheus et al., 2015; Lee and Verleysen, 2007), take advantage of such geometric
structures to perform efficient feature extraction, but oftentimes do not take into consider-
ation the temporal structure of the data which is a direct manifestation of the underlying
dynamical system.

In the context of ergodic theory, an alternative viewpoint (introduced by Koopman
(1931)) is to characterize a nonlinear dynamical system operating on a nonlinear state
space through a group of linear operators acting on vector spaces of observables, i.e., func-
tions on the state space (Budisié¢ et al., 2012; Mezié¢, 2013, and references therein). In this
operator-theoretic viewpoint, spaces of observables are generally equipped with a Hilbert
space structure, and dynamical evolution is represented by a group of unitary operators on
those Hilbert spaces which translate observables along the orbits of the dynamics. Specif-
ically, let ®; : M +— M be the dynamical evolution map on the state space such that
a; = P¢(ap) is the point on M after dynamical evolution for time ¢ starting from the point
ag. Let also p be a ®;-invariant probability measure, and f an arbitrary observable in the
Hilbert space L?(M,u) of complex-valued square-integrable functions on M with respect
to p. Assuming that @, is invertible with @, ' — &_,, the Koopman operator for time ¢
is the unitary operator U : L?(M, u) + L?(M, u) such that Uy(f) = f o ®; (the unitarity
of U; is a consequence of the measure-preserving property of ®;). The set {U; | t € R}
forms a group under composition of operators, called Koopman group, which is generated
by a vector field v = dU;/dt|;—p on M with vanishing divergence with respect to p. If ®; is
non-invertible, then {U; | t > 0} forms a semigroup of isometric operators on L?(M, p).

In general, the space L?(M, p) is infinite-dimensional even if the dimension of M is finite,
but due to its intrinsically linear structure, the Koopman formalism opens up the possibil-
ity to use finite-dimensional operator approximation methods (such as pseudospectral and
Galerkin methods) for nonlinear dynamical modeling and nonparametric forecasting (Berry
et al., 2015; Giannakis, 2015). In the applications of interest here, we assume that we do
not have explicit knowledge of the Koopman group or the evolution map. Instead, we will
construct approximations of v from a time series {y;} of data generated by the dynamical
system. In particular, we consider that y; is a snapshot lying in a Hilbert space H (details of
which will be made precise below), and it is the result y; = F'(a;) of a mapping F' : M — H
where a; is the dynamical state in M given by a; = ®;(ag). We also assume that the y; and
a; are in one-to-one correspondence, i.e., that F' is invertible on its image (note that this
assumption can be relaxed using Takens delay-coordinate maps as described in section 4).
We refer to F' and H as the observation map and the ambient data space, respectively.
Due to our invertibility assumption, the sets {y;} and {a;} are equivalent, but we prefer to
keep these objects distinct to be able to deal with situations where one has access to data
generated by the same dynamical system but acquired through different observation maps.

Besides their use in a predictive setting, Koopman operators have several desirable
properties for feature extraction. In particular, if v has eigenfunctions {z;} in L?(M, p),
then these eigenfunctions can be used to construct mappings of M to low-dimensional
Euclidean spaces as in kernel eigenmaps, but with the difference that the feature spaces are
complex (the z; are complex orthogonal eigenfunctions and the corresponding eigenvalues
A; lie on the imaginary line by unitarity of U;). That is, given an appropriately selected set
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{#1,...,2m} of Koopman eigenfunctions, we construct the feature map 7 : M — C™, where

w(a) = (z1(a),...,zm(a)). (1)

The key properties of feature extraction with Koopman eigenfunctions are as follows (Mezi¢,
2005; Budisié et al., 2012; Mezi¢, 2013; Giannakis, 2015).

1. The Koopman eigenfunctions are intrinsic to the dynamical system generating the
data, in the sense that they depend only on U; and not on the observation map F.
Thus, (1) can be used to construct a universal low-dimensional Euclidean space to
represent data generated by the dynamical system and acquired via different sensors
corresponding to distinct observation maps.

2. The dynamics are projectible under m, in the sense that for any two points on M
mapping to the same point in C™ the corresponding images of the generator under
the tangent map T'm agree, i.e., if m(a) = w(a’) then T,7(v) = Tymw(v). Thus, the
dynamics in C™ are Markovian and closure issues are avoided.

3. The eigenfunctions and eigenvalues have a group structure under multiplication, in
the sense that if z; and zy are eigenfunctions with corresponding eigenvalues A; and
Ao, then z129 is also an eigenfunction corresponding to the eigenvalue AjXo. This
means that the full spectrum of can be generated recursively from a finite set of
eigenfunctions corresponding to rationally independent eigenvalues.

4. The dynamics in the feature space C" are simple harmonic oscillations with frequen-
cies given by the Koopman eigenvalues, even if the dynamical system is nonlinear.
Specifically, if (;(t) = z;(®(a)) is the time series of the values of the eigenfunction
z; sampled along an orbit starting at an arbitrary point a € M, then d(;/dt = iw;t,
where w; = Im A;. Thus, feature maps constructed from Koopman eigenfunctions
produce a decomposition of the dynamics into uncoupled simple harmonic oscillators,
whose frequencies are intrinsic to the dynamical system. In the feature space, the
multiple timescales that may present in the observed data {y;} are separated into dis-
tinct coordinates with known temporal evolution which can be used for nonparametric
(model-free) forecasting of observables and probability measures.

The spatial patterns Fj = (z, F) = Jas % (a)F(a) du(a) obtained by projecting the data
onto the Koopman eigenfunctions using the Hilbert space inner product are referred to as
Koopman modes and the decomposition of the observed data into the triplets {(z;, A;, FZ)}
is called dynamic mode decomposition (Mezié¢, 2005).

Traditionally, methods for computing Koopman eigenfunctions are based on iterative al-
gorithms (such as Arnoldi algorithms) operating directly in the ambient data space (Rowley
et al., 2009; Williams et al., 2015). A drawback of these approaches is high computational
cost due to the dimension of ambient data space (which can far exceed the intrinsic di-
mension of M) and risk of numerical instabilities. Moreover, the computed eigenfunctions
generally have no smoothness guarantees, e.g., with respect to the Dirichlet form inherited
by M through the observation map. Recently, Giannakis (2015) (hereafter, G15) developed
an alternative approach for the computation of Koopman eigenfunctions which is based on

105



GIANNAKIS, SLAWINSKA, AND ZHAO

a finite-dimensional representation of the generator v of the Koopman group in a smooth
orthonormal basis of L?(M, p1). This basis is constructed from the observed data {y;} using
a kernel method developed earlier by Berry et al. (2015) which generates orthonormal func-
tions on M with respect to the correct ergodic measure p (as opposed to the ambient-space
Riemannian measure). The method of Berry et al. (2015) employs a variable-bandwidth
kernel (Berry and Harlim, 2015) and the diffusion maps algorithm (Coifman and Lafon,
2006) to construct the basis from the eigenfunctions of the generator of a gradient flow on
M. G15 employs this basis in a spectral Galerkin formulation of the eigenvalue problem
for v whose computational cost depends on the bandwidth of the Koopman eigenfunctions
in the diffusion maps basis (as opposed to the ambient space dimension), and isolates the
eigenfunctions with maximal smoothness on L?(M, i) through Tikhonov regularization.
The applications in G15 demonstrated the utility of this scheme for feature extraction and
nonparametric forecasting of dynamical systems on tori with multiple timescales, but were
limited to synthetic data of low ambient-space dimension.

In this paper, we further develop and apply the framework of G15 to time-evolving data
in spatially extended domains; e.g., a line interval or the surface of a sphere. Mathemati-
cally, this situation corresponds to the case that the ambient data space H has the structure
of an infinite-dimensional Hilbert space L?(X) on a set X (the spatial domain) of sufficient
smoothness. For example, X could be a Lipschitz domain in R", or a compact Riemannian
manifold. Our applications are motivated by a current open problem in the atmospheric
sciences, namely the extraction of a multiscale hierarchy of traveling convective waves in
the tropical atmosphere (Dias et al., 2013). These waves collectively exert global influences
on the weather climate, yet are poorly represented by numerical models and in some cases
are incompletely understood theoretically. As a result, their objective detection in obser-
vational data is important for both model guidance and improvement of existing scientific
understanding and theories.

The plan of this paper is as follows. In section 2, we describe our approach for computing
Koopman eigenfunctions from spatiotemporal data. In sections 3 and 4, we present appli-
cations of this technique to synthetic traveling-wave data in 1D and atmospheric convection
data from satellite observations, respectively.

2. Kernel methods for Koopman eigenfunctions

Let {yo,y1,--.,yn—1} be a dataset consisting of n time-ordered snapshots y; = F'(a;) sam-
pled from the orbit a; = @4, (ag) of the dynamics on the state space M at times t; = (i—1) 6t
for a uniform timestep dt. Here, we assume that M is a smooth, compact, orientable m-
dimensional manifold without boundary, and we also assume that the dynamics ®; are
smooth. Moreover, as stated in section 1, we are interested in the case that the snapshots
are real-valued, square-integrable scalar fields on a spatial domain X. Thus, y;(z) is a real
number corresponding to the evaluation of y; at x € X, and we have the Riemannian in-
ner product (y;,v;) = [y yi()y;(x) dz. Numerically, we approximate such inner products
by quadrature on a finite set {z1,z2,...,24} of nodes on M with corresponding weights
{w1,wa, ..., wq}. That is, we have (y;,y;) ~ (¥, ¥;), where y; = (yi(x1),...,xi(zq)) are d-
dimensional vectors and (y;, ;) = Zzzl wrYi(Tr) Yy (Tk)- Sirililarly, we represent complex-
valued functions f € L?(M,u) by n-dimensional vectors f = (f(ap),. .., f(an—1)) with
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components equal to the function values at the sampled states on M. By ergodicity, the
inner product on L?(M, ;1) can be approximated by time averages along orbits of the dy-
namics, i.e., (f1, f2) ~ (f1, f2) := E?:_ol fi(ai) f2(aj)/n. In what follows, we assume that all
expressions involving inner products on L?(X) and/or L?(M, i) are evaluated in practice
using the corresponding discrete formulas.

To construct an orthonormal basis of L2(M, i) we start from the kernel K : M x M
R4 given by (Berry and Harlim, 2015)

C a2
K (a;, a;) = exp ( lyi yaq/m(w)). (2)

eagl/m(ai)ae

In (2), ||-|| is the Hilbert space norm of L?(X), € is a positive bandwidth parameter, o, is a
function approximating the sampling density o at O(e) accuracy, and 7 is an estimate of the
dimension of M. The function o, can be computed using any suitable density-estimation
technique, and in what follows we employ the kernel method described in Berry and Harlim
(2015) and Berry et al. (2015). This method uses an updated formulation of an automatic
bandwidth-selection procedure originally developed in Coifman et al. (2008), which also
provides an estimate m for the dimension of M. Alternatively, this parameter can be set
using one of the dimension estimation techniques available in the literature (e.g., Hein and
Audibert (2005); Little et al. (2009)).

Assuming that for every a € M the function K,(b) = K(a,b) is in L?(M, i), the kernel
in (2) induces an integral operator K : L2(M, p) + L?(M, ) such that K(f)(a) = (K, f).
By performing the sequence of normalizations introduced in the diffusion maps algorithm,
and further developed by Berry and Sauer (2015), we use K to construct the Markov operator
P(f) = K(f)/K(1), where in the last expression 1 denotes the function equal to one every-
where on M. For the choice of kernel in (2), and as the bandwidth parameter € tends to zero,
the eigenfunctions of ¢, ¢1,... of P converge to the eigenfunctions of a Laplace-Beltrami
operator A associated with a Riemannian metric A on M whose volume has uniform density
relative to the invariant measure of the dynamics (G15); i.e., the ¢; provide an orthonormal
basis of L?(M, u). Moreover, the A-eigenvalues corresponding to ¢;, denoted here by 7,
can be estimated from the logarithms of the corresponding P-eigenvalues. In applications,
we tune the kernel bandwidth parameter € using the tuning procedure of Berry and Harlim
(2015). Note that the 7; are also equal to the Dirichlet energies E(¢;) = [,,|lgrady, ¢;* du
measuring the roughness of the corresponding eigenfunctions in the Riemannian metric h.

Next, consider the eigenvalue problem for the generator v of the Koopman group,
v(z;) = Niz;. Instead of solving this eigenvalue problem directly, we solve the eigenvalue
problem for the advection-diffusion operator L = v+vA, where v is a positive regularization
parameter. Here, the role of A is to suppress highly oscillatory eigenfunctions from the spec-
trum of L, and one can verify through simple perturbation expansions that the effect of A
to the eigenfunctions and eigenvalues of v is O(v) and O(v?), respectively (G15). We solve
the eigenvalue problem for L in weak form, setting the trial and test spaces to the Sobolev
space H'(M, h, ) associated with the Riemannian metric h and the invariant measure on
the dynamics. Our basis for this space consists of the rescaled diffusion eigenfunctions
wi = ¢i/ 171-1 / ? ordered in order of increasing eigenvalue (i.e., Dirichlet energy). This basis
is tailored to the H'(M, h, i) regularity of the problem in the sense that for any sequence
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(c1,c2,...) € £% the function Y o0, cip; is in H' (M, h, u) (this would not be the case in the
{¢;} basis since the basis elements exhibit unbounded growth of Dirichlet energy). More-
over, in finite-dimensional Galerkin schemes constructed in this basis, the diffusion operator
A is represented by the identity matrix, (¢;, Ap;) = d;j, and remains well conditioned at
large spectral orders. Restricting the trial and test spaces to the I-dimensional subspaces
of HY(M, h, ;) spanned by {p1,...,¢;}, the weak form of the eigenvalue problem for L
becomes the matrix generalized eigenvalue problem

Aci = 5\ch¢, (3)

where A and B are [ x [ matrices with elements A;; = (s, v(¢;)) + v6;; and By = (@i, ¢;),
respectively, and ¢; = (¢4, 24, - - - ,cli)T are [-dimensional column vectors such that Z; =
2221 cjipj approximates the Koopman eigenfunction z;. Also, the imaginary part of the

generalized eigenvalue i provides an approximation to A;.

Note that the time ordering of the data is crucial for the evaluation of the matrix ele-
ments A;;. In particular, let {P14, Poi, ..., Pni} be the time series of the ¢; sampled along
the dynamical trajectory. For instance, @j; = ¢;(aj) = ¢i(a;)/n;, where the eigenfunction
values ¢;(a;) are determined by diffusion maps as described above. Because v is the in-
finitesimal generator of the Koopman group, v(g;) can be approximated by finite differences
of the {@;;} time series. For instance,

v(gi)(aj) = (@11 — $j-1.4)/2 + O(6°) (4)

is a second-order centered approximation which we will use in sections 3 and 4 ahead.

After solving the generalized eigenvalue problem in (3), we sort the computed eigen-
functions in order of increasing Dirichlet energy E(Z;). The latter can be conveniently
computed from the 2-norm of the vector of the expansion coefficients of the Z; in the {¢;}
basis. That is, we have E(2;) = ||c;||?, where we have assumed that 2; has been normalized
to unit norm on L2(M, ). We then construct the feature map in (1) by selecting the first m
eigenfunctions corresponding to rationally independent eigenvalues in that sequence. Note
that ordering the eigenfunctions with respect to the Dirichlet energy is important because
the set of the eigenvalues can be dense (yet countable) on the imaginary line (G15).

In summary, the algorithm described above builds a feature map with projectible dy-
namics and timescale separation, and also endows this map with high smoothness for the
given observation modality. The Koopman modes are given by taking the L?(M,u) in-
ner product between the eigenfunctions and the observation map as stated in section 1,
ie., F; = (zi, F'). Using the Koopman modes and the eigenfunctions, we can reconstruct
spatiotemporal patterns in data space though

Yir = Re(Fizi(ar)), (5)

and in the limit [ = n, the sum ), Yj; recovers the input data y; exactly.

3. Demonstration for traveling-wave synthetic data

We begin by demonstrating the feature extraction technique described in section 2 for a
spatiotemporal signal

u(z,t) = (0.5 + sinx)[2 cos(kyz — 01 (t)) + 0.5 cos(kax — 02(t))] (6)
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defined in a 1D periodic domain, z € [0,27). In (6), k1 and k3 are integer-valued wavenum-
bers set to k1 = 2 and ko = 10, and 6;(t) and 62(¢) are time-dependent phases such that
0;(t) = w;t for the rationally independent frequencies wy = 27 /45 and wy = v/10w;. This sig-
nal was chosen following Kikuchi and Wang (2010) as a simple model for three basic features
in the convective variability of the tropical atmosphere as a function of longitude (x): (1) a
time-independent profile, 0.5 + sin z, representing enhanced convective activity over warm
oceans such as the Indian and western Pacific Oceans and suppressed activity over cold
oceans such as the eastern Pacific and continental land; (2) a long-wavelength eastward-
propagating wave, cos(kjx — 61(t)), representing a large-scale mode of organized convec-
tion called Madden-Julian oscillation (MJO); (3) a short-wavelength westward-propagating
wave representing the building blocks of the MJO (so-called convectively coupled equatorial
waves). The natural time units in (6) are days so that the long wave has a period of 45 days
and the period of the short wave is approximately 14 days. These periods are comparable
to the timescales observed in nature (see section 4 ahead).

From a dynamical systems standpoint, this signal can be described as the outcome of an
ergodic linear flow on the 2-torus. In this case, the state space is M = T? and the generator
of the Koopman group is the vector field v = UlaaTl +v28‘9—92 such that v; = w; and 0; = v(6;).
The signal in (6) is generated by observing this dynamical system through the observation
map F : M — L?(X) where X is the circle equipped with the canonical arclength metric,
and for the point a; € T? with coordinates (01 (t),02(t)) we have F(a;) = y; where y,(x) =
u(z,t). With this embedding and the kernel in (2), M inherits the Riemannian metric h
with components

™ Ou Ou
hi=C | a6, 06, 1
where C is a normalization constant chosen such that the volume element of h is compatible
with the equilibrium measure of the dynamics. It is straightforward to check that h;; = r? kf
for positive constants r;, and that h;; = 0 for j # . Thus, h is a flat metric assigning radii
equal to k;r; to the 2-torus.

In this example, v has constant coefficients and therefore the Koopman eigenfunctions
are Fourier exponential functions on T?; i.e., z;;(a) = el(@01+392) for two integers ¢ and j, and
the corresponding eigenvalues are \;; = i(iw1 + jwe). Note that because w; and wy are ratio-
nally independent, the set {\;j}i jez is dense on the imaginary line. As stated in section 2,
eigenfunctions with low roughness can be selected from this set by examining the corre-
sponding Dirichlet energy in the h metric. In this case, we have F(z;;) = i?kr? + j2k3r3,
and therefore the smoothest eigenfunctions corresponding to rationally independent frequen-
cies are z19(a) = €% and z1(a) = €2, Clearly, the feature map in (1) constructed from
these eigenfunctions recovers the 2-torus in C? from the infinite-dimensional spatiotemporal
dataset. Moreover, the corresponding Koopman modes, given by

Fl() = <210, F> = Alo(l + 0.5 cos aj)eiklx, FOl = <Z()1, F> == A()l(l + 0.5 cos x)eilcgm

for constant A9, Ao1, recover the spatial profiles associated with the two traveling waves.
To verify that our algorithm is consistent with these results, we generated a spatiotem-

poral signal from (6) which we sampled uniformly at temporal and spatial intervals 0t = 0.14

days and dz = 27/70, respectively. We collected a total of n = 62,354 temporal samples
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t (days)

Figure 1: (a) Spatiotemporal dataset on a 1D periodic domain from (6). (b, ¢) Recon-
structed data via (5) for the Koopman eigenfunctions zjo and zg; respectively.

(i.e., approximately 100 multiples of the long-wave period) to produce the dataset shown
in figure 1(a). We solved the generalized eigenvalue problem for the Koopman eigenfunc-
tions in (3) using I = 100 basis functions and the regularization parameter value v = 1076,
Selecting the eigenfunctions with the minimal Dirichlet energy and rationally independent
eigenfunctions as described in section 2 leads to the reconstructed data shown in figure 1(b,
c¢). Visually, it is evident that the reconstructions successfully separate the two traveling
waves in the input signal, while retaining the (non-dynamical) amplitude profile in z. The
numerical eigenvalues, 0.13961i and 0.44122i, agree with the exact values, iw; ~ 0.13963i
and iwy ~ 0.44154i, up to a relative error of 1.4 x 107° and 3.1 x 10™%, respectively. Com-
parably accurate eigenvalues can also be obtained using [ = 20 basis functions.

4. Application to convectively coupled waves in the atmosphere

As a real-world application of our technique, we analyze brightness temperature (7") data
from the CLAUS multi satellite archive (Hodges et al., 2000). Brightness temperature is
a measure of the Earth’s infrared emission in terms of the temperature of a hypothesized
blackbody emitting the same amount of radiation at the same wavelength. In the tropics,
atmospheric convection produces deep, cold clouds and an associated strong negative T
anomaly. For this reason, and due to the availability of high-resolution data dating back to
the early 1980s, satellite observations of brightness temperature are widely used to study
the dynamics of tropical atmospheric convection.

While part of the tropical convective variability has a stochastic, red-noise character,
it also exhibits a significant traveling wave-like coherent component. These disturbances
propagate parallel to the equator, and are organized in a hierarchy of scales. Prominent
coherent structures in this hierarchy are cloud clusters and mesoscale convective systems
with horizontal scales of the order a few hundred kilometers and lifetimes of a few hours.
These objects form the building blocks of the larger and longer-lived convectively coupled
equatorial waves (CCEWSs), which in turn organize into the planetary-scale MJO mentioned
in section 3. Through various teleconnection mechanisms, the MJO exerts global influences
on weather and climate variability, linking short-term weather forecasts and long-term cli-
mate projections. Currently, efforts to extract this hierarchy from observational data are
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consistent only on the coarse features of large-scale structures such as the MJO (but with
important differences in the details), and evidence of preferred organized patterns for the
MJO building blocks has been lacking (Dias et al., 2013). Here, we demonstrate that, ap-
plied to brightness temperature data, the Koopman eigenfunction approach described in
sections 1 and 3 reveals a multiscale hierarchy of modes on timescales spanning years to
days, including the MJO but also traveling waves on timescales characteristic of CCEWs.
While our results are still preliminary, to our knowledge, this is the first time that evidence
of such structures has been detected via comparable eigendecomposition techniques applied
to brightness temperature observational data.

In these experiments, we study brightness temperature data sampled on a uniform
longitude-latitude grid of 0.5° resolution, and observed every 3 hours for the period July
1, 1983 to June 30, 2006. Following Tung et al. (2014), we average the data over the
tropical belt between 15°S and 15°N antisymmetrically about the equator to produce a 1D
spatiotemporal signal T'(x,t). Portions of the raw data for longitudes over the Indian and
Western Pacific Oceans (where strong MJO activity takes place) are shown in Fig. 3(a, e).

A major challenge for analyzing these data via Koopman techniques is that the evolution
of T'(x,t) is not governed by an autonomous dynamical system; this is because the tropical
atmosphere interacts with a multitude of other degrees of freedom of the Earth’s climate
system and knowledge of T'(x,t) at a given time is not sufficient to uniquely determine
its evolution at a later time. One way of partially overcoming this obstacle (which was
adopted by Tung et al. (2014) and we also adopt here) is to embed the data in a higher
dimensional space via delay-coordinate maps (Sauer et al., 1991). Specifically, selecting an
integer parameter ¢ we construct the time series

u(z,t) = (T(x,t), T (z,t — 0t),..., T(x,t — (g —1)0dt)). (7)

Due to a theorem of Takens, for sufficiently large g, the signal u(z,t) is expected to be
more Markovian than the individual snapshots. Here, we set ¢ to 512, corresponding to a
time interval of 64 days for our 3-hour sampling interval. Tung et al. (2014) found that
this value is sufficient to recover the MJO and other physically meaningful patterns using
kernel algorithms. After delay-coordinate mapping, the number of samples available for
analysis is n = 66,693 and the ambient space dimension is ¢ X d = 368,640, where d = 720 is
the number of sampled longitude points at the 0.5° resolution. We have computed diffusion
eigenfunctions for this data using the kernel algorithm described in section 2 with an intrinsic
dimension parameter m = 3 (this is an underestimate of the true intrinsic dimension of the
data, but we found that the results are not too sensitive in the choice of m).

Figures 2 and 3 show representative Koopman eigenfunctions and the associated spa-
tiotemporal reconstructions computed through the eigenvalue problem in (3) using [ = 110
diffusion eigenfunctions and the regularization parameter value v = 0.02. Among the modes
shown here one is periodic (figure 2(a, f)) and does not exhibit propagation in space (fig-
ure 3(b, f)), and the other modes are amplitude-modulated traveling waves. The periodic
mode represents the seasonal cycle (a significant component of brightness temperature vari-
ability), and the amplitude-modulated modes correspond to various types of eastward (fig-
ure 3(c, g)) and westward (figure 3(d, h)) traveling convective organization, which we now
describe.
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The mode in figures 2(c, h) and 3(c) represents the MJO—a planetary-scale (~ 20,000
km wavelength) envelope of convective activity forming over the Indian Ocean at ~ 60°E
latitudes and propagating eastward until it dissipates upon reaching the central Pacific
Ocean at ~ 160°W latitudes. The MJO is mainly active in the boreal winter (November—
March), and its dominant frequency is in the intraseasonal scale of one cycle per ~ 60
days. During the boreal summer (May—September), the MJO is replaced by the so-called
boreal summer intraseasonal oscillation (BSISO), shown in figures 2(b, g) and 3(g). This
pattern originates over the Indian Ocean and propagates northeastward towards the Indian
subcontinent where it affects the variability of the Indian Monsoon on ~ 50 day timescales.

The modes in figures 2(d, e, i, j) and 3(d, h) are westward-propagating traveling waves
with periods in the 10-20 day range. Spatially, these modes are mainly active at longitudes
associated with the Western Pacific warm pool, a region of high sea surface temperature
and moisture that favors deep convection. Based on their timescales and qualitative spatial
features, we believe that these modes represent CCEWs and may act as the building blocks
of the larger-scale intraseasonal oscillations. These waves have so far alluded detection
by means of objective data analysis algorithms (i.e., algorithms that do not apply ad hoc
preprocessing to the data to isolate the temporal and spatial scales of interest).

Despite the success of our method to extract a multiscale hierarchy of convective or-
ganization, it is important to note a feature of our results which is not theoretically com-
patible with the framework of Koopman eigenfunctions, namely strong amplitude modu-
lations. Such modulations, which are evident in figure 2, are theoretically precluded from
the fact that the Koopman operators are unitary with respect to the invariant measure of
the dynamics—this forces the eigenfunctions to lie on a circle in the complex plane, i.e.,
|z| must be constant, and clearly this is not the case in figure 2. A likely source of this
discrepancy is non-Markovianity of the data. That is, the delay-coordinate mapping in (7)
is highly unlikely to have resolved all unobserved dynamical degrees of freedom of the cli-
mate system, meaning that knowledge of the signal u(zx,t) at a given time is insufficient to
uniquely determine its evolution at later time. In this scenario, a stochastic description of
the dynamics would be more appropriate, where the Koopman group of unitary operators
is replaced by a semigroup generated by a Fokker-Planck operator. Indeed, Chen et al.
(2014) show that MJO time series such as those in figure 2(c) are well described by stochas-
tic oscillators, and in the stochastic case time shift methods related to (4) can be used to
approximate the solution semigroup (Berry et al., 2015). We plan to study the spectral
properties of these operators and their application to feature extraction in future work.
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Appendix A.

This Appendix contains plots of representative Koopman eigenfunctions (figure 2) and spa-
tiotemporal reconstructions (figure 3) for the CLAUS brightness temperature data studied
in section 4. The eigenfunctions are shown for a two-year portion of the 23-year dataset
from January 1, 1992 to December 31, 1993. The reconstructions are for three-month por-
tions of this interval highlighting the active MJO (January 1, 1992 to March 31, 1992; figure
3(a—d)) and active BSISO periods (August 1, 1993 to October 31, 1993; figure 3(e-h)).
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Figure 2: Time series (a—e) and power spectral densities (f-j) of Koopman eigenfunctions for
brightness temperature data. (a, f) Seasonal cycle; (b, g) boreal summer intraseasonal oscillation;
(¢, h) Madden-Julian oscillation; (d—j) westward-propagating convectively coupled equatorial waves.
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Figure 3: Raw data (a, e) and spatiotemporal reconstructions (b—d, f-h) of brightness tempera-
ture for the Koopman eigenfunctions in figure 2. Panels (a—d) and (e-h) show reconstructions for
three-month intervals in the boreal winter (January—March) and boreal summer (August-October),
respectively. The modes depicted here are the annual cycle (b, f), the Madden-Julian oscillation
(¢), the boreal summer intraseasonal oscillation (g), and westward-propagating convectively coupled
equatorial waves (d, h).
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