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Abstract

Recent successes in training large, deep neural networks (DNNs) have prompted active
investigation into the underlying representations learned on their intermediate layers. Such
research is difficult because it requires making sense of non-linear computations performed
by millions of learned parameters. However, despite the difficulty, such research is valuable
because it increases our ability to understand current models and training algorithms and
thus create improved versions of them. We argue for the value of investigating whether
neural networks exhibit what we call convergent learning, which is when separately trained
DNNs learn features that converge to span similar spaces. We further begin research into
this question by introducing two techniques to approximately align neurons from two net-
works: a bipartite matching approach that makes one-to-one assignments between neurons
and a spectral clustering approach that finds many-to-many mappings. Our initial ap-
proach to answering this question reveals many interesting, previously unknown properties
of neural networks, and we argue that future research into the question of convergent learn-
ing will yield many more. The insights described here include (1) that some features are
learned reliably in multiple networks, yet other features are not consistently learned; and
(2) that units learn to span low-dimensional subspaces and, while these subspaces are com-
mon to multiple networks, the specific basis vectors learned are not; (3) that the average
activation values of neurons vary considerably within a network, yet the mean activation
values across different networks converge to an almost identical distribution.

1. Introduction

Many recent studies have focused on understanding deep neural networks from both a
theoretical perspective (Arora et al.l 2014; Neyshabur and Panigrahy, [2013;|Montavon et al.,
2011}; [Paul and Venkatasubramanian), 2014; |Goodfellow et al., |2014]) and from an empirical
perspective (Eigen et al, 2013} Szegedy et al.,[2013;|[Simonyan et al., [2013; Zeiler and Fergus|,
2014; Nguyen et al., 2014} Yosinski et al., [2014;|Mahendran and Vedaldil 2014; [Yosinski et al.|
2015)). In this paper we continue this trajectory toward attaining a deeper understanding
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of neural net training by proposing a new approach. We begin by noting that modern deep
neural networks (DNNs) exhibit an interesting phenomenon: networks trained starting at
different random initializations frequently converge to solutions with similar performance
(see |Dauphin et al. (2014) and Section [2] below). Such similar performances by different
networks raises the question of to what extent the learned internal representations differ:
Do the networks learn radically different sets of features that happen to perform similarly,
or do they exhibit convergent learning, meaning that their learned feature representations
are largely the same?

This paper makes a first attempt at asking and answering these questions. Any im-
proved understanding of what neural networks learn should improve our ability to design
better architectures, learning algorithms, and hyperparameters, ultimately enabling more
capable models. Specifically, we investigate the similarities and differences between the rep-
resentations learned by neural networks with the same architecture trained from different
random initializations. We employ an architecture derived from AlexNet (Krizhevsky et al.|
2012) and train multiple networks on the ImageNet dataset (Deng et al., |2009) (details in
Section . We then compare the representations learned across different networks. Our
specific contributions are asking and shedding light on the following questions:

1. By defining a measure of similarity between unitsﬂ in different neural networks, can we
come up with a permutation for the units of one network to bring it into a one-to-one
alignment with the units of another network trained on the same task? Is this match-
ing or alignment close, because features learned by one network are learned nearly
identically somewhere on the same layer of the second network, or is the approach
ill-fated, because the representations of each network are unique? (Answer: a core
representation is shared, but some rare features are learned in one network but not
another; see Section |3)).

2. Are the above one-to-one alignment results robust with respect to different measures of
neuron similarity? (Answer: yes, under both linear correlation and estimated mutual
information metrics; see Section [3.2)).

3. When an accurate one-to-one neuron alignment is not possible, can we cluster groups
of neurons from one network with a similar group from another network? (Answer:
yes. To approximately match clusters, we introduce a hierarchical clustering algorithm
that enables partial matches to be found between networks. We demonstrate the
effectiveness of this method by both visually and quantitatively showing that the
features learned by some neuron clusters in one network can be quite similar to those
learned by neuron clusters in an independently trained neural network. See Section.

2. Experimental Setup

All networks in this study follow the basic architecture laid out by Krizhevsky et al.| (2012)),
with parameters learned in five convolutional layers (convl — convb) followed by three
fully connected layers (fcb6 — fc8). The structure is modified slightly in two ways. First,
Krizhevsky et al.| (2012)) employed limited connectivity between certain pairs of layers to

1. Note that we use the words “filters”, “channels”, “neurons”, and “units” interchangeably to mean
channels for a convolutional layer or individual units in a fully connected layer.
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enable splitting the model across two GPUSE| Here we remove this artificial group structure
and allow all channels on each layer to connect to all channels on the preceding layer, as
we wish to study only the group structure, if any, that arises naturally, not that which is
created by architectural choices. Second, we place the local response normalization layers
after the pooling layers following the defaults released with the Caffe framework, which does
not significantly impact performance (Jia et al., [2014). Networks are trained using Caffe
on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset (Deng
et al., [2009).

We trained four networks in the above manner using four different random initializations.
We refer to these as Netl, Net2, Net3, and Net4. The four networks perform very similarly on
the validation set, achieving top-1 accuracies of 58.65%, 58.73%, 58.79%, and 58.84%, which
are similar to the top-1 performance of 59.3% reported in the original study (Krizhevsky
et al., 2012).

We then aggregate certain statistics of the activations within the networks. Given a
network Netn trained in this manner, we use the scalar random variable X;, ™ to denote the
series of activation values produced over the entire ILSVRC validation dataset by unit ¢ on
layer [ € {convl, conv2, conv3, conv4, conv5, fcb, fc?}E| We collect the following statistics by
aggregating over the validation set (and in the case of convolutional layers also over spatial
positions):

Mean: “l(g) = E[X l(?)]
Standard deviation: O'l(;-L) = /(E] (X, (n - "))2})
Within-net correlation: cl(f)] = E[(X l(;) — ul(z))(X ) ,ul(r;))] Jo," ‘71 ;
Between-net correlation: cl(?;n) = E[(Xl(’?) — ul(z))(X( - ,ulj )]/oln)al(T

Intuitively, we compute the mean and standard deviation of the activation of each unit
in the network over the validation set. For convolutional layers, we compute the mean and
standard deviation of each channel. The mean and standard deviation for a given network
and layer is a vector with length equal to the number of channels (for convolutional layers)
or units (for fully connected layers)ﬂ The within-net correlation values for each layer can
be considered as a symmetric square matrix with side length equal to the number of units
in that layer (e.g. a 96 x 96 matrix for convl as in Figure ,b). For a pair of networks,
the between-net correlation values also form a square matrix, in this case non-symmetric

(Figure [I,d).

2. In|Krizhevsky et al.|(2012]) the conv2, conv4, and conv5 layers were only connected to half of the preceding
layer’s channels.

3. For the fully connected layers, the random variable Xl(f;) has one specific value for each input image;
for the convolutional layers, the value of X l(f;) takes on different values at each spatial position. In other
words, to sample an Xl(,?) for an FC layer, we pick a random image from the validation set; to sample

X l(f;) for a conv layer, we sample a random image and a random position within the conv layer.

4.  For reference, the number of channels for convl to fc8 is given by: S =
{96, 256, 384, 384, 256, 4096, 4096, 1000}. The corresponding size of the correlation matrix in each
layer is: {s®> | Vs € S}. Furthermore, the size of each channel in each convolutional layer is given by:
{convl : 55 x 55,conv2 : 27 x 27,conv3 : 13 x 13, conv4 : 13 x 13, conv5 : 13 x 13}
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We use these correlation values as a way of measuring how related the activations of
one unit are to another unit, either within the network or between networks. We use
correlation to measure similarity because it is independent of the scale of the activations
of units Within-net correlation quantifies the similarity between two neurons in the same
network; whereas the between-correlation matrix quantifies the similarity of two neurons
from different neural networks. Note that the units compared are always on the same layer
on the network; we do not compare units between different layers. In the Supplementary
Information (see Figure @, we plot the activation values for several example high correla-
tion and low correlation pairs of units from convl and conv2 layers; the simplicity of the
distribution of values suggests that the correlation measurement is an adequate indicator
of the similarity between two neurons. Furthermore, we adopt mutual information as a
complementary measurement of similarity between the representations of two neurons (see
Section . Our results have shown that using mutual information yields qualitatively the
same results as using correlation statistics.

3. Is There a One-to-One Alignment Between Features Learned by
Different Neural Networks?

We would like to investigate the similarities and differences between multiple training runs
of same network architecture. Due to symmetries in the architecture and weight initial-
ization procedures, for any given parameter vector that is found, one could create many
equivalent solutions simply by permuting the unit orders within a layer (and permuting the
outgoing weights accordingly). Thus, as a first step toward analyzing the similarities and
differences between different networks, we ask the following question: if we allow ourselves
to permute the units of one network, to what extent can we bring it into alignment with
another? To do so requires finding equivalent or nearly-equivalent units across networks,
and for this task we adopt the magnitude independent measures of correlation and mutual
information. We primarily give results with the simpler but faster to calculate measure of
correlation (Section but then confirm that using the complete mutual information does
not significantly change the results (Section .

3.1 Alignment via Correlation

As discussed in Section [2, we compute within-net and between-net unit correlations. Fig-
ure |1 shows the within-net correlation values computed between units on a network and
other units on the same network (panes a,b) as well as the between-net correlations between
two different networks (pane c¢). We find matching units between a pair of networks — here
Netl and Net2 — in two ways. In the first approach, for each unit in Netl, we simply find
the unit in Net2 with maximum correlation, or the max along each row of Figure [Ie. This
type of assignment is known as a bipartite semi-matching in graph theory (Lawler] 1976)),
and we adopt the same nomenclature here. This procedure can result in multiple units of
Netl being paired with the same unit in Net2. Figure [2] shows the eight highest correlation
matched features and eight lowest correlation matched features using the semi-matching
approach (corresponding to the leftmost eight and rightmost eight points in Figure 3|). The
filters on the left have nearly perfect counterparts in each network, but the filters on the
right are unique to one network or the other.
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Figure 1: Correlation matrices for the convl layer, displayed as images with minimum value
at black and maximum at white. (a,b) Within-net correlation matrices for Netl and Net2,
respectively. (c) Between-net correlation for Netl vs. Net2. (d) Between-net correlation
for Netl vs. a version of Net2 that has been permuted to approximate Netl’s feature order.
The partially white diagonal of this final matrix shows the extent to which the alignment is
successful; see Figure [3| for a plot of the values along this diagonal and further discussion.

) order permuted

An alternative approach is to find the one-to-one assignment between units in Netl and
Net2 without replacement, such that every unit in each network is paired with a unique
unit in the other network. This the known as the more common bipartite matching| A
matching that maximizes the sum of the chosen correlation values may be found efficiently
by turning the between-net correlation matrix into a weighted bipartite graph and using the
Hopcroft-Karp algorithm (Hopcroft and Karp| 1973)) to find the max weighted matching.
Figure |1 shows an example between-net correlation matrix; the max weighted matching
can be thought of as a path through the matrix such that each row and each column are
selected exactly once, and the sum along the path is maximized. Once such a path is found,
we can permute the units of Net2 to bring it into the best possible alignment with Netl,
so that the first channel of Net2 approximately matches (has high correlation with) the
first channel of Netl, the second channels of each also approximately match, and so on.
The correlation matrix of Netl with the permuted version of Net2 is shown in Figure [T[.
Whereas the diagonal of the self correlation matrices are exactly one, the diagonal of the
permuted between-net correlation matrix contains values that are generally less than one.
Note that the diagonal of the permuted between-net correlation matrix is bright (close to
white) in many places, which shows that for many units in Netl it is possible to find a
unique unit in Net2 with highly correlated activation values.

Figure [3| shows a comparison of assignments produced by both methods, semi-matching
and matching, for the convl layer; see Figure[§— Figure[11]in the Supplementary Information
for results for other layers. In Figure [3| both the semi-matching and matching are found
for each unit, and then the units are sorted in order of decreasing semi-matching value
and both correlation values are plotted. Insights into the differing representations learned

5. Note that the semi-matching is “row-wise greedy” and will always have equal or better sum of correlation
than the matching, which maximizes the same objective but must also satisfy global constraints.
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best match worst match
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Net2 Netl
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Net2 Netl
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Net2 Ney@

Figure 2: With assignments chosen by semi-matching, the eight best (highest correlation,
left) and eight worst (lowest correlation, right) matched features between Netl and Net2 for
the convl — conv3 layers.

can be gained from both types of assignment. The first conclusion is that for many units,
particularly those with the higher greedy match correlations on the left, the greedy and max
match assignments coincide. Such correspondence between the two matching methods shows
that for many units a one-to-one assignment is possible. The third column of Table [I] gives
the ratio of units that overlap: in convl the overlap is 72.9%, but the extent of one-to-one
neuron assignment varies from layer to layer — with the highest matching capability in convl
and convb a lower values in conv2 — conv4. The results of average correlation between the
paired neurons in different layers also implies that the path from (perfectly matchable) three-
channel pixels and a relatively matchable convl representation to the relatively matchable
convb representation passes through an intermediate middle region where matching is more
difficult. This may be related to previously observed greater complexity in the intermediate
layers as measured through the lens of optimization difficulty (Yosinski et al., [2014).

Next, we can see that where the semi-matching and matching differ, the matching is
often much worse. Omne hypothesis for why this occurs is that the two networks learn
different numbers of units to span certain subspaces. For example, Netl might learn a
representation that uses six filters to span a subspace of human faces, but Net2 learns to
span the same subspace with five filters. In the max matching, five out of the six filters
from Netl may be matched to their nearest counterpart in Net2, but the sixth Netl unit
will be left without a counterpart and will end up paired with an almost unrelated filter.

Finally, with reference to Figure [3[ (but similarly observable in Figure 8| and Figure E[),
another salient observation is that the correlation of the greedy match falls significantly
from the best-matched unit (correlations near 1) to the lowest-matched (correlations near
0.3). This indicates that some filters in Netl can be paired up with filters in Net2 with
high correlation, but other filters in Netl and Net2 are network-specific and have no high-
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Semi- Overlap % '
matching | Matching ratio ?2 0.8 SO
convl 0.703 0.663 72.9% %0.6
conv2 0.577 0.527 58.6% 5
conv3 | 0.483 0.445 61.2%  £o4
conv4 0.374 0.348 54.7% :EO_Z e semimatching
convb 0.577 0.527 68.4% & || matching

o
t=

0 20 40 60 80
unit index (sorted by correlation of semi-matching assignment)

Table 1: The average correlation be-
tween neurons paired using a semi-  Figure 3: Correlations between convl units in
matching (first column) or a matching  Netl and their paired convl unit in Net2, where
(second column). The third column  pairings are made via semi-matching (large light
shows the fraction of pairs where the  green circles) or matching (small dark green
greedy and max match coincide. dots). See text for discussion.

correlation pairing in the alternate network, implying that those filters are rare and not
always learned. This holds across at least the convl — conv3 layers.

3.2 Alignment via Mutual Information

Because the correlation used in the previous section is a simple metric that may miss
some forms of statistical dependence, we also find alignments using mutual information
as a measurement of mutual dependence between the activations of two neurons. Mutual
information between two variables essentially measures how much knowledge one gains
about one variable by knowing the value of the other. The within-net mutual information
matrix and between-net mutual information matrix are similarly shaped as the correlation
matrices.

As a sanity check, we apply the same matching technique described in Section to
the between-net mutual information matricesﬂ Figure [4| shows the eight highest mutual
information matched features and eight lowest mutual information matched features. Com-
pared to the results using correlation matrices in Figure [2, we find that observations from
using mutual information estimator is largely similar to that of using correlation similarity.
For example, seven out of eight highest matched pairs in the convl layer stay the same.
This suggests that the correlation is an adequate measurement of the similarity between
two neurons.

4. Does Relaxing the One-to-One Constraint to Find Many-to-Many
Groupings Reveal More Similarities Between what Different Networks
Learn?

Since the preceding sections have shown that neurons may not necessarily correspond via
a globally consistent one-to-one matching between networks, we now seek to find many-to-
many matchings between networks using a spectral clustering approach (Ng et al., 2001]).

6. The mutual information between each pair of neurons is estimated using 1D and 2D histograms of paired
activation values over 60,000 random activation samples. We discretize the activation value distribution
using percentile bins along each dimension, each of which captures 5% of the marginal distribution mass.
We also add a special bin with range (— inf, 1076] in order to capture the significant mass around 0.
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best match worst match

1.08 . . . . . . . 0.0 0.04

convl
Net2 Netl

conv2
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Figure 4: The eight best (highest mutual information, left) and eight worst (lowest mutual
information, right) features in the semi-matching between Netl and Net2 for the convl and
conv2 layers.

4.1 Spectral Clustering and Metrics for Neuron Clusters

We define three types of similarity graphs based on the correlation matrices obtained above
(see Section|6.5for definition). Define W; € R2%X25! to be the combined correlation matrices
between two DNNs, X and Y in layer [, where wj, is the entry at jth row and kth column
of that matrix. &; is the number of channels (units) in layer I. W; is given by

corr(X;, X;)  corr(X;,Y))

W= corr(X;, Y)) T corr(Y;,Y))

The unnormalized Laplacian matrix is defined as L; = D; — W, where the degree matrix
Dy is the diagonal matrix with the degrees d; = Zi‘zl wjg. The unnormalized Laplacian
matrix and its eigenvalues and eigenvectors can be used to effectively embed points in a
lower-dimension representation without losing too information about spatial relationships.
If neuron clusters can be identified, then the Laplacian L; is approximately block-diagonal,
with each block corresponding a cluster. Assuming there are k clusters in the graph, spectral
clustering would then take the first & eigenvectorsﬂ, U € R*1¥k corresponding to the k
smallest eigenvalues, and partition neurons in the eigenspace with the k-means algorithm.

4.2 Spectral Clustering Results

We use Netl and Net2 as an example for showing the results of matching neurons between
DNNs. Figure [f] displays the top 8 neuron clusters with highest between-net similarity
measurement (See Section[6.6 for definition) in conv2 layer. The matching results imply that
there exists many-to-many correspondence of the feature maps between two fully trained
networks with different random initializations, and the number of neurons learning the same
feature can be different between networks. For example, the four units of {89, 90, 134, 226}
in Netl and three units of {2, 39, 83} in Net2 are learning the features about green objects.

We also computed and visualized the matching neurons in other layers as well. The
results of convl are appended in the supplementary material Figure As noted earlier,

7. In practice, when the number of clusters is unknown, the best value of k to choose is where where the
eigenvalue shows a relatively abrupt change.
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#1

#2

#3

#4

Figure 5: The neuron matchings between two DNNs: Netl and Net2. Each of the 3 x 3
block displays the top 9 image patches that cause the highest activations to each neuron.
Each labeled half-row corresponds to one cluster, where the filter visualizations with dashed
boxes represent neurons from Netl and those without are from Net2. For example, there
are 7 neurons learning similar features in cluster #3, where the left four neurons are in Netl
and the right three are from Net2. Best viewed in electronic form with zoom.

the convl layer tends to learn more general features like Gabor filters (edge detectors) and
blobs of color. Our approach finds many matching Gabor filters (e.g., clusters #5, #6, #10,
#11 and #12), and also some matching color blobs (e.g., clusters #1, #3 and #4).

4.3 Hierarchical Spectral Clustering Results

Due to the stochastic effects of randomly initializing centroids in k-means clustering, some
of the initial clusters contains more neurons than others. To get more fine-grained cluster
structure, we recurrently apply k-means clustering on any clusters with size > 2a:-S;, where
« is a tunable parameter for adjusting the maximum size of the leaf clusters. Figure [6]shows
the partial hierarchical structure of neuron matchings in the conv2 layer. The cluster at the
root of the tree is a first-level cluster that contains many similar units from both DNNs.
Here we adopt a = 0.025 for the conv2 layer, resulting in a hierarchical neuron cluster tree
structure with leaf clusters containing less than 6 neurons from each network. The bold box
of each subcluster contains neurons from Netl and the remaining neurons are from Net2.
For example, in subcluster #3, which shows conv2 features, units {62, 137, 148} from Netl
learned similar features as units {33, 64, 230} from Net2, namely, red and magenta objects.

5. Conclusions

We have demonstrated a method for quantifying the feature similarity between different
deep neural networks. We show how insight may be gained by approximately aligning units
from two networks either via a matching approach or a softer spectral clustering approach
borrowed from research in community detection in large graphs. We find that some features
are learned repeatedly in multiple networks, but other rare features are not always learned.
Our findings may shed light on several future research directions, for example:

1. Model compression. Would removing low-correlation, rare filters affect performance?

2. Optimizing ensemble formation. The results show some features (and subspaces)
are shared between independently trained DNNs, and some are not. This suggests
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Ve

18
\Rdl

\

Netl  Net2 Netl Net2

Netl Net2

Figure 6: The hierarchical structure of neuron matchings between two DNNs: Netl and
Net2 (conv2 layer). The initial clusters are obtained using spectral clustering with the
number of clusters k£ = 100 and threshold 7 = 0.2.

testing how feature correlation among different DNNs in an ensemble affects ensemble
performance. Networks’ “shared cores” could be deduplicated, but unique features in
the tails of the feature distribution could be kept.

3. Similarly, one could (a) post-hoc assemble ensembles with greater diversity, or even
(b) directly tune for it during training.

4. Certain visualization techniques (max-patch, deconv, deepvis) have revealed neurons
with multiple functions (e.g. detectors firing for wheels and faces). Our matching
methods could reveal more about why these arise. Are these units consistently learned
because they are helpful or just noisy, imperfect features found in local optima?

5. Model combination: can multiple models be combined by concatenating their features,
deleting those with high overlap, and fine-tuning?

6. Employing the same matching analysis on networks trained for different tasks could
provide a quick check for how similar or different the various features are.
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6. Appendix

6.1 Activation Values: High Correlation vs. Low Correlation
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Figure 7: Activation values are computed across 5,000 randomly sampled images and all
spatial positions (55 x 55 and 27 x 27 for layers convl and conv2, respectively). The joint
distributions appear simple enough to suggest that a correlation measure is sufficient to
find matching units between networks.

6.2 Additional Hard Match Results

Figure [§] — Figure shows additional results of comparison of assignments produced by
greedy-match and max-match methods in conv2 — convb. For each unit, both the greedy
match and max match are found, then the units are sorted in order of decreasing greedy
match value and both correlation values are plotted.
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Figure 8: Match results for conv2 in the manner of Figure
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Figure 9: Match results for conv3 in the manner of Figure
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Figure 10: Match results for conv4 in the manner of Figure
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Figure 11: Match results for convb in the manner of Figure
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6.3 Matching Neurons Between DNNs

Figure displays 12 neuron clusters with high between-net similarity measurement in

convl layer.
Tt e
RprEpea + SEESH

14 1 |
S LGP {0

#1 o 1B

Figure 12: The neuron matchings between two DNNs (Netl and Net2) in convl layer. Here
we display the 12 neuron clusters with relatively high between-net similarity measurement.
Each labeled half-row corresponds to one cluster, where the filter visualizations for neurons
from Netl and Net2 are separated by white space slot. The matching results imply that
there exists many-to-many correspondence of the feature maps between two fully trained
networks with different random initializations. For instance, in cluster #6, neurons from
Netl and Net2 are both learning 135° diagonal edges; and neurons in cluster #10 and #12
are learning 45° diagonal edges.

6.4 Diagonal Structure of Correlation Matrix After Clustering

Figure [I3] shows the permuted combined correlation matrix after apply the spectral clus-
tering algorithm for convl — convb.

6.5 Neuron Similarity Graphs

We define three types of similarity graphs based on the correlation matrices obtained above.

Single-net neuron similarity graphs. Given a fully trained DNN X and a specified
layer [, we first construct the single-net neuron similarity graph Gx; = (V, E). Each vertex
vp in this graph represents a unit p in layer [. Two vertices are connected by an edge of
weight ¢, if the correlation value ¢p, in the self-correlation matrix corr(X;, X;) between
unit p and unit ¢ is greater than a certain threshold .

Between-net neuron similarity graphs. Given a pair of fully trained DNNs X and
Y, the between-net neuron similarity graph Gxy,; = (V, E) can be constructed in a similar
manner. Note that G'xy; is a bipartite graph and contains twice as many vertices as that in
G x since it incorporates units from both networks. Two vertices are connected by an edge
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(e) convb

Figure 13: The permuted combined correlation matrix after apply spectral clustering
method (convl — conv5). The diagonal block structure represents the groups of neu-
rons that are clustered together. The value of k adopted for these five layers are:
{40,100,100,100,100}, which is consistent with the parameter setting for other experiments
in this paper.
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of weight ¢, if the correlation value ¢y, in the between-net correlation matrix corr(X;,Y;)
between unit p in X and unit ¢ in Y is greater than a certain threshold 7.

Combined similarity graphs. The problem of matching neurons in different networks
can now be reformulated as finding a partition in the combined neuron similarity graphs
Gx+vy = Gx,; + Gy, + Gxvy,, such that the edges between different groups have very low
weights and the edges within a group have relatively high weights.

6.6 Neuron Cluster Similarity Measurement

Here we introduce two metrics for quantifying the similarity among neurons grouped to-
gether after applying the clustering algorithm above.

S S

Between-net similarity: Simy,ny;, = (Z Z corr( X, Yl)pq)/Sl2
p=1qg=1

Within-net similarity: Simy,y, = (Simy,_x, + Simy,_y;)/2

We further performed experiments in quantifying the similarity among neurons that are
clustered together. Figure[I4]shows the between-net and within-net similarity measurement
for convl — convb. The value of k£ for initial clustering is set to be 40 for convl layer and
100 for all the other layers. In our experiments, the number of final clusters obtained after
further hierarchical branching is {43, 113, 130, 155, 131}. The tail in those curves with
value 0 is due to the non-existence of between-net similarity for the clusters containing
neurons from only one of the two DNNs. To better capture the distribution of non-zero
similarity values, we leave out the tail after 100 in the plot for conv3 - convb layers.
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Figure 14: The distribution of between-net and within-net similarity measurement after
clustering neurons (convl — conv5). The x-axis represents obtained clusters, which is reshuf-
fled according to the sorted between-net similarity value.
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