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Abstract
We introduce and study the learning scenario of supervised dimensionality reduction, which

couples dimensionality reduction and a subsequent supervised learning step. We present new gen-
eralization bounds for this scenario based on a careful analysis of the empirical Rademacher com-
plexity of the relevant hypothesis set. In particular, we show an upper bound on the Rademacher
complexity that is in Õ(

√
Λ(r)/m), where m is the sample size and Λ(r) the upper bound on the

Ky-Fan r-norm of the operator that defines the dimensionality reduction projection. We give both
upper and lower bounds in terms of that Ky-Fan r-norm, which strongly justifies the definition of
our hypothesis set. To the best of our knowledge, these are the first learning guarantees for the
problem of supervised dimensionality reduction with a learned kernel-based mapping. Our anal-
ysis and learning guarantees further apply to several special cases, such as that of using a fixed
kernel with supervised dimensionality reduction or that of unsupervised learning of a kernel for
dimensionality reduction followed by a supervised learning algorithm.
Keywords: PCA, supervised learning, dimensionality reduction, manifold learning, reproducing
kernel Hilbert space, learning kernels.

1. Introduction

Dimensionality reduction techniques are common methods in machine learning used either to re-
duce the computational cost of working in higher-dimensional spaces, or to learn or approximate a
manifold expected to be more favorable to a subsequent learning task such as classification or re-
gression. They include classical techniques such as Principal Component Analysis (PCA) (Pearson,
1901) and more recent techniques such as Isometric Feature Mapping (Tenenbaum et al., 2000) and
Locally Linear Embedding (Roweis and Saul, 2000). More generally, the dimensionality reduction
techniques just mentioned and most others have been shown to be specific instances of the kernel
PCA (KPCA) algorithm (Ham et al., 2004), for different choices of a kernel. An even broader view
of dimensionality reduction techniques is that they first map input points to the reproducing kernel
Hilbert space (RKHS) of some positive semi-definite (PSD) kernel K, and next project vectors onto
a low-dimensional space.

Standard dimensionality reduction techniques seek to determine a lower-dimensional space pre-
serving some geometric properties of the input. However, it is not clear which of these properties
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Figure 1: A simple example showing that simply preserving some geometric properties can be
detrimental to the subsequent learning task. The original data in (a) has four points from the blue
and red classes. The eigenvectors of the covariance matrix are v1 = ( 1

0 ) and v2 = ( 0
1 ). Standard

rank-one PCA projects both blue and red points onto v1, thus merging them (as plotted in (b)). Any
classification on the reduced data will necessarily incur a classification error of at least 1

2 .

would be most beneficial to the later discrimination stage. Since they are typically unsupervised,
standard dimensionality reduction techniques also present a risk to the later classification or re-
gression task: the lower-dimensional space found may not be the most helpful one for the second
supervised learning stage and, in fact, in some cases could be harmful. Figure 1 shows a very sim-
ple example where PCA can lead to a projected space that is detrimental to the subsequent learning
stage. More complex variants of this example can occur similarly in higher dimension and for the
broader case of KPCA, which covers most known techniques. How should we design dimensional-
ity reduction techniques to most benefit the subsequent supervised learning stage?

This paper seeks precisely to create a theoretical foundation guiding the design of dimensional-
ity reduction with learning guarantees. To do so, we consider a scenario where the dimensionality
reduction step is not carried out blindly and where, instead, it is coupled with the subsequent super-
vised learning stage. Since, as already discussed, the key choice defining dimensionality reduction
is that of a mapping to an RKHS defined by some PSD kernelK, the learning problem then consists
of selecting a PSD kernelK out of a familyK such that the hypothesis learned on a low-dimensional
space after projection admits a small generalization error. We call this the supervised kernel projec-
tion (SKP) setting.

The framework just described bears some similarity with that of learning kernels (Lanckriet
et al., 2004; Cortes et al., 2009, 2010; Kloft et al., 2011) (see (Gönen and Alpaydın, 2011) and
references therein for a recent survey). However, while the selection of a kernel is common to both
frameworks, the learning problems and analyses are distinct, in particular because of the learner’s
freedom to select a projection space after mapping to an RKHS in the dimensionality reduction case.
Nevertheless, we will adopt the same common choice for the familyK as in much of the literature for
learning kernels, that is that of convex combinations of p base PSD kernels. The RKHS we consider
is thus associated to a kernel in that family K and the projection is over the top r eigenspace of
an operator that is a function of the covariance operators of the weighted base kernels. For the
scenario of learning kernels, tight generalization bounds are known for this choice of K (Cortes
et al., 2010). The main contribution of this paper is to similarly derive generalization bounds for
the SKP framework. Note that, while we consider a broader framework, our generalization bounds
also apply to the special case of algorithms proceeding in two decoupled stages of dimensionality
reduction followed by supervised learning with a linear model in an RKHS.
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The choice of our learning framework is further justified by some previous empirical studies
showing that tuning a dimensionality reduction algorithm in a supervised fashion, i.e. taking into
account the subsequent learning algorithm using the reduced features, can result in a considerably
better performance (Fukumizu et al., 2004; Gönen, 2014). Some recent work also explores learning
kernels in the setting of dimensionality reduction (Lin et al., 2011), though no theoretical analysis
or justification is provided for the algorithms considered. The vast majority of existing theoreti-
cal analyses of dimensionality reduction techniques, even with a fixed kernel, do not directly take
into consideration the subsequent learning task and, instead, focus on the optimization of surrogate
metrics such as maximizing the variance of the projected features (Zwald and Blanchard, 2005).
One exception is the work of Mosci et al. (2007), which provides a generalization guarantee for
learning with hypotheses defined by KPCA with a fixed kernel followed by a regression algorithm
minimizing the squared loss. Dhillon et al. (2013) also shows that the risk of PCA combined with
ordinary least squares regression is at most 4 times that of ridge regression. Recent related work also
includes that of Gottlieb et al. (2013), which derives Rademacher complexity generalization bounds
for learning Lipschitz functions in a general (fixed) metric space. They show that the intrinsic di-
mension of the data can significantly influence learning guarantees by bounding the corresponding
Rademacher complexity in terms of dimension of underlying manifold and the distortion of training
set relative to that manifold.

The results of this paper are organized as follows. In Section 2 and 3 , we describe in detail the
learning scenario and the hypothesis set we consider. Section 4 presents our main results, which
include an upper bound on the empirical Rademacher complexity of the hypothesis set, and our main
generalization bound. In Section 5, we show a lower bound on the sample Rademacher complexity
as well as other quantities, which demonstrates a necessary dependence on several crucial quantities
and helps to validate the design of the suggested hypothesis class. Finally, in Section 6, we briefly
discuss several implications of our results.

2. Learning scenario

Let X denote the input space. We assume that the learner receives a labeled sample of size m,
S = ((x1, y1), . . . , (xm, ym)), drawn i.i.d. according to some distribution D over X × {−1,+1},
as well as an unlabeled sample U = (x′1, . . . , x

′
u) of size u, typically with u � m, drawn i.i.d.

according to the marginal distribution DX over X .
We assume that the learner has access to p PSD kernels K1, . . . ,Kp. Instead of requiring the

learner to commit to a specific kernel K defining an RKHS, we consider the case of an RKHS de-
fined by a kernelKµ =

∑
k=1 µkKk that is a convex combination ofK1, . . . ,Kp. The non-negative

mixture weights µk, k = 1, . . . , p, are parameters that can be selected by the learner to minimize the
error of the classifier using the result of the dimensionality reduction (see Figure 2). The hypothesis
set H we consider is thus that of linear hypotheses in a space obtained after projection in the RKHS
H defined by Kµ:

H =

{
x 7→ 〈w,ΠUΦ(x)〉H : ‖w‖H ≤ 1,µ ∈M

}
. (1)

Here, 〈·, ·〉H and ‖ · ‖H denote the inner product and norm in H, Φ: X → H is the feature map-
ping associated to Kµ, ΠU a projection using the unlabeled set U , andM a regularization set out
of which µ is selected. Note that to avoid a heavier notation, we do not explicitly indicate the
dependency of Φ on µ as this should be clear from the context.
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Figure 2: Illustration of the supervised learning scenario: (a) raw input points; (b) points mapped
to a higher-dimensional space where linear separation is possible but where not all dimensions are
relevant; (c) projection over a lower-dimensional space preserving linear separability.

We now specify the choices of ΠU and µ. For any k ∈ [1, p], let CU,k : Hk → Hk denote the
empirical covariance operator based on the unlabeled sample U associated to the PSD kernel µkKk

with RKHS Hk. LetCU be the operator defined byCU = CU,1+· · ·+CU,p, which acts on the sum of
reproducing spaces H = H1+· · ·+Hp. For a fixed r, ΠU is the rank-r projection over the eigenspace
of CU that corresponds to the top-r eigenvalues of CU denoted by λ1(CU ) ≥ . . . ≥ λr(CU ).1 We
define similarly the operators CS,k and CS for the sample S, as well as the projection ΠS .

Note that the dimensionality reduction method just described is in general somewhat different
from the standard KPCA with kernel Kµ. Of course, in both cases, the projection is onto the top-r
eigenspace of an operator. But, while for KPCA that operator is the empirical covariance operator
associated to kernel Kµ, in the setting just described, the operator CU is the sum of the empirical
covariance operators associated to each base kernel. In the special case p = 1, the two methods
coincide. Also, both methods fall into the general SKP framework. Here, we consider the operator
CU or CS as they admit a favorable structure further discussed in Section 3.

We define the setM of admissible weight vectors µ as follows:

M =

{
µ ∈ Rp : ‖µ‖(r) ≤ Λ(r), ‖µ‖1 ≤ 1,

p∑
k=1

1

µk
≤ ν, µ ≥ 0

}
, (2)

where Λ(r) ≥ 0 and ν ≥ 0 are hyperparameters and where ‖µ‖(r) is the Ky-Fan r-norm of CU
(Bhatia, 1997):2

‖µ‖(r) = ‖CU‖(r) =

r∑
i=1

λi(CU ) . (3)

We will later show that this choice of regularization is key as it appears as a crucial term in gener-
alization guarantees and in lower bounds. The vector µ is further upper bounded by an L1-norm
inequality ‖µ‖1 ≤ 1 as is standard in the learning kernel literature with similar kernel combina-
tions. The lower bound constraint on µ,

∑p
k=1 µ

−1
k ≤ ν, implies an upper bound on the eigengap of

the induced covariance operator, which is a fundamental quantity that influences the concentration
of eigenspaces. In Section 5, we give a simple example demonstrating that the dependency on the
eigengap is tight, which implies the necessity of this lower bound regularization.

1. To simplify the presentation, we assume that the selected dimension r satisfies λr(CU ) 6= λr+1(CU ), but this
assumption is not necessary and our results can be straightforwardly extended to more general cases. Note that this
assumption is satisfied in particular when the eigenvalues are simple.

2. The Ky-Fan r-norm is in fact a semi-norm.
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3. Kernel properties

In this section, we discuss the properties assumed about the base kernels, which turn out to be
rather mild assumptions. We will assume that the base kernels Kk, k ∈ [1, p], satisfy the condition
Kk(x, x) ≤ 1 for all x ∈ X , which is guaranteed to hold for all normalized kernels, such as
Gaussian kernels. We also assume that CU admits at least r non-zero eigenvalues and that at least
one kernel matrix among those associated to kernel Kk on sample S admits rank at least r, and
similarly for the kernel matrices defined over the sample U .

We denote by K the kernel matrix of a kernel K associated to the sample S, [K]i,j = K(xi, xj)
and by K the normalized kernel matrix defined by K = K

m . Note that a kernel matrix thereby
normalized admits the same eigenvalues as the corresponding sample covariance operator (see for
example (Rosasco et al., 2010) Proposition 9.2). In particular, for any k ∈ [1, p] and i ∈ [1,m], we
have λi(Kk) = λi(CS,k).

We will assume the base kernels are linearly independent with respect to the union of the samples
S and U .

Definition 1 (Linearly Independent Kernels) Let K1, . . . ,Kp be p PDS kernels and let S = (x1,
. . . , xn) be a sample of sizem. For any k ∈ [1, p], let Hk denote the RKHS associated toKk and Hk

the subspace of Hk spanned by the set of functions {ΦKk(xi) : i = 1, . . . ,m}. Then, K1, . . . ,Kp

are said to be linearly independent with respect to the sample S if, for any k ∈ [1, p], no non-zero
function in Hk can be expressed as a linear combination of the functions in ∪l 6=kHl.

This condition typically holds in practice, e.g., for polynomial and Gaussian kernels on RN . As
an example, let X = RN and define the sample S = {x1, . . . , xm}. Define two base kernels:
GaussianK1(x, y) = e−‖x−y‖

2
and linearK2(x, y) = 〈x, y〉. Then ΦK1 is defined by ΦK1(x) : t 7→

e−‖x−t‖
2
, that is ΦK1(x) is an exponential function e−‖x−t‖

2
with parameter x and argument t.

Similarly, ΦK2 is defined by ΦK2(x) : t 7→ 〈x, t〉. Thus, H1 is the span of exponential functions
{e−‖x1−t‖2 , . . . , e−‖xm−t‖2} and H2 is the span of linear functions {〈x1, t〉 , . . . , 〈xm, t〉}. Clearly,
no exponential function can be represented as a linear combination of linear functions and likewise,
in general, no linear function is represented as a (finite) linear combination of exponential functions.
Thus, the base kernels K1 and K2 are linearly independent with respect to a finite sample S as in
Definition 1. More generally, the support of the base kernels can be straightforwardly modified to
ensure that this condition is satisfied.

By definition of H = H1 + · · · + Hp and by the results of (Aronszajn, 1950, Section 6), when
the base kernels Kk are linearly independent with respect to sample S, then Hk are orthogonal
subspaces of H, thus we can define H =

⊕p
k=1 Hk, which will be extremely useful in decomposing

the spectra of operators CS . Linearly independent base kernels imply that CS admits at most pm
nonzero eigenvalues of the form µkλj(CS,k).

4. Generalization bound

In this section, we present our generalization bound for learning with the hypothesis set H we
introduced in Section 2. To obtain our generalization bound, we derive an upper bound on the
empirical Rademacher complexity of H for a sample S = (x1, . . . , xm), which is defined by

R̂S(H) =
1

m
E
σ

[
sup
h∈H

m∑
i=1

σih(xi)

]
.
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Here, σis are i.i.d. random variables taking values +1 and −1 with equal probabilities. The hypoth-
esis set H we consider is parametrized by w and µ, thus R̂S(H) can be rewritten as follows:

R̂S(H) =
1

m
E
σ

 sup
‖w‖≤1
µ∈M

〈
w,ΠU

m∑
n=1

σiΦ(xi)
〉 =

1

m
E
σ

[
sup
µ∈M

∥∥∥∥ΠU

m∑
i=1

σiΦ(xi)

∥∥∥∥
]
,

where we used the equality case of the Cauchy-Schwarz inequality. To bound the resulting expres-
sion, it will be more convenient to work with ΠS instead of ΠU , since we are projecting instances
from sample S, and similarly control the Ky-Fan r-norm ‖CS‖(r) rather than ‖CU‖(r). Both of
these issues can be addressed by using concentration inequalities to bound the difference of the
projections ΠU and ΠS (Zwald and Blanchard, 2005) as well as the difference of the operators CU
and CS (Shawe-Taylor and Cristianini, 2003). To that end, we first extend the constraint setM to a
larger one N defined by

N =
{
µ ∈ Rp : ‖CS‖(r) ≤ Λ(r) + κ, ‖µ‖1 ≤ 1,

p∑
k=1

1

µk
≤ ν, µ ≥ 0

}
, (4)

where κ = 4
(

1 +

√
log ( 2p

δ
)

2

)
. Then, the following lemma provides an upper bound in terms of ΠS .

Lemma 2 For any δ > 0, with probability at least 1 − δ, the following inequality holds for any
u ∈ H = H1 + · · ·+ Hp:

sup
µ∈M

‖ΠUu‖ ≤ sup
µ∈N

(
‖ΠSu‖+

8κν‖u‖
∆r
√
m

)
, (5)

where ∆r = mink∈[1,p]

(
λr(Ck)− λr+1(Ck)

)
, Ck is the population covariance operator of kernel

Kk and κ = 4
(

1 +

√
log ( 2p

δ
)

2

)
.

The proof of this lemma is given in Appendix A. In view of this lemma, with probability at least
1− δ, R̂S(H) can be bounded as follows

R̂S(H) ≤ 1

m
E
σ

[
sup
µ∈N

(∥∥∥ΠS

m∑
i=1

σiΦ(xi)
∥∥∥+

8κν‖
∑m

i=1 σiΦ(xi)‖
∆r
√
m

)]

≤ 1

m
E
σ

[
sup
µ∈N

∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥
]

+
( 8κν

∆r
√
m

) 1

m
E
σ

[
sup
µ∈N

∥∥∥∥∥
m∑
i=1

σiΦ(xi)

∥∥∥∥∥
]
,

using the sub-additivity of the supremum operator and the linearity of expectation. The second term
can be bounded as follows:

1

m
E
σ

[
sup
µ∈N

∥∥∥∥ m∑
i=1

σiΦ(xi)

∥∥∥∥
]
≤ 1

m
E
σ

[
sup
‖µ‖1≤1

∥∥∥∥ m∑
i=1

σiΦ(xi)

∥∥∥∥
]
≤
√
η0edlog pe

m
, (6)

where η0 = 23
22 , using the bound on the Rademacher complexity of learning kernels given by Theo-

rem 2 of Cortes et al. (2010). The following lemma helps us bound the first term.
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Lemma 3 For any δ > 0, with probability at least 1− δ, the following inequality holds:

1

m
E
σ

[
sup
µ∈N

∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥
]
≤

√
2
(
Λ(r) + κ

)
log (2pm)

m
, (7)

where κ = 4
(

1 +

√
log 2p

δ
2

)
.

The proof of the lemma is given in Appendix B. Combining Lemmas 2 and 3 yields directly the
following result.

Theorem 4 Let H be the hypothesis set defined in (1). Then, for any δ > 0, with probability at
least 1 − δ over the draw of an i.i.d. labeled sample S of size m < u, the empirical Rademacher
complexity of the hypothesis set H can be bounded as follows:

R̂S(H) ≤ 1√
m

[√
2
(
Λ(r) + κ

)
log (2pm) +

8κν

∆r

√
η0edlog pe

m

]
, (8)

where ∆r = mink∈[1,p]

(
λr(Ck)− λr+1(Ck)

)
, Ck is the population covariance operator of kernel

Kk, κ = 4
(

1 +

√
log (2p/δ)

2

)
and η0 = 23

22 .

Note that ∆r is not a random variable and does not depend on the choice of S or U . It only depends
on the spectral properties of the covariance operator for the distribution DX and the choice of the
projection dimension r.

We now compare this bound to the one known for the Rademacher complexity of a similar
hypothesis set in the scenario of learning kernels where a convex combination kernel Kµ is also
used (Cortes et al., 2010). This will help us measure the additional complexity cost due to the
dimensionality reduction step. Of course, the learning kernel scenario and regularization differ
from ours. But, we can make them comparable by considering the case U = S, that is the case
where U is an unlabeled version of S and can express Λ(r) in terms of unscaled sample kernel
matrices as follows:

Λ(r) =
1

m
sup
|I|=r

∑
(k,j)∈I

µkλj(Kk) ≤
1

m
sup
|I|=r

∑
(k,j)∈I

λj(Kk) . (9)

If we define sr = sup|I|=r
∑

(k,j)∈I λj(Kk) as the largest r-sum of eigenvalues selected from
all base kernel matrices, and s′m = supk∈[1,p] Tr[Kk], which is the largest m-sum of eigenvalues
selected from a single base kernel matrix, the Rademacher complexity of our hypothesis class is
in Õ

(√
sr/m

)
, while that of the hypothesis used in the learning kernel setting is in Õ

(√
s′m/m

)
.

Thus, for r = m, the upper bound on the Rademacher complexity in our supervised dimensionality
case is higher. The difference is due precisely to the extra freedom that the learner has to define
a projection space by selecting eigenvectors from different kernel matrices, while in the learning
kernel case he needs to commit instead to a single kernel matrix. For r sufficiently smaller than
m, the complexity term in the supervised dimensionality case could of course be more favorable
(sr ≤ s′m).
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The following is our main generalization bound for supervised dimensionality reduction. We
denote by R(h) the generalization error with respect to the zero-one loss and by R̂S,ρ(h) the empir-
ical margin loss of h ∈ H , that is the fraction of points in S classified with margin less than ρ by
h.

Theorem 5 Let H be the hypothesis set defined in (1). Then, with probability at least 1 − δ over
the draw of a sample S of size m, the following holds for all h ∈ H:

R(h) ≤ R̂S,ρ(h) +
2

ρ
√
m

(√
2
(
Λ(r) + κ

)
log (2pm) +

8κν

∆r

√
η0edlog pe

m

)
+ 3

√
log 4p

δ

2m
.

Proof The theorem follows directly by combining the high-probability upper bound on the Rade-
macher complexity given by Theorem 4 and the standard high-probability Rademacher-based gen-
eralization bound of Koltchinskii and Panchenko (2002) (see also (Bartlett and Mendelson, 2003)).

To our knowledge, this is the first learning guarantee given for the scenario of supervised dimen-
sionality reduction. The bound of the theorem is in O

(√
Λ(r) log(pm)/m

)
. Thus, it suggests that

the Ky-Fan r-norm of the covariance operator plays a key role in the generalization ability of hy-
potheses in this scenario. This is further supported by the presence of that term in a lower bound
proven in the next section. Note that the dependency of the bound on the number of base kernels
p is only logarithmic, which suggests using a rather large number of base kernels. The presence of
the term in the bound depending on ν and ∆r is due to the concentration bound for projections. The
parameter ν controls the eigengap of the learned operator CU , while, as already pointed out, ∆r is a
quantity that does not depend on the sample or on µ, it is entirely defined by the choice of the base
kernel functions. We further elaborate on this in Section 5.

We note that Mosci et al. (2007) and Gottlieb et al. (2013) also give generalization bounds
for a supervised scenario of dimensionality reduction, however, they do not learn a mapping and
projection for dimensionality reduction jointly with a hypothesis learned on the projected space
using a discriminative algorithm. Nevertheless, their generalization bounds are comparable to the
special case of our bound where p = 1.

The analysis of Gottlieb et al. (2013) is presented for general metric spaces, which is more
general than what we consider here. In the case of the Euclidean space, their generalization bound
is inO

(√
d/m+

√
η/m

)
, where d is the dimension of underlying data manifold and η is the average

distance of the training set to that manifold. While both bounds admit a similar dependence on m,
our bound relies on the Ky-Fan norm of the projection rather than the intrinsic dimension of the
dataset. We note that the existence of an approximate low-dimensional manifold is a distributional
assumption which, depending on the task, may not hold. Furthermore, even when it does, the
estimation of the intrinsic dimension is typically a difficult task. The Ky-Fan norm, on the other
hand, can be directly controlled by the choice of the regularization parameter in the definition of the
hypothesis set.

The generalization bound of Mosci et al. (2007) is in O
(
1/
√
m
)
. However, while we fix the

number of eigenvalues for dimensionality reduction to r, their bound requires selecting all eigenval-
ues above a threshold λm = O

(
1/
√
m
)
. Furthermore, as already mentioned, their analysis holds

for the specific setting of KPCA with a fixed kernel (p = 1) followed by Ridge regression.
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5. Lower bounds

In this section, we show a lower bound on the Rademacher complexity of the hypothesis class H
defined by (1). Furthermore, we give a simple example demonstrating the necessity of the eigengap
term appearing in Lemma 2 and also motivate the additional regularization term ν.

Theorem 6 For anym and r there exist samples S and U , a setting of the regularization parameter
Λ(r), as well as a choice of base kernels K1, . . . ,Kp such that the following inequality holds:

R̂S(H) ≥
√

Λ(r)

2m
.

The proof is given in Appendix C. The result proves the tightness of the upper bound we derived in
terms of m, up to logarithmic factors. It further shows the key role of the regularization parameter
Λ(r) and justifies the presence of Ky-Fan r-norm constraint in the definition of the hypothesis set.

We now also give a simple example showing that the projections must necessary depend on an
eigengap quantity. This in turn motivates the dependency of Lemma 2 on the quantity ∆r as well
as the regularization

∑p
k=1 µ

−1
k ≤ ν which is used to bound the eigengap of the learned operator

CS (see equation (12) in the proof of Lemma 2). The fact that the eigengap is essential for the
concentration of projections has been known in the matrix perturbation theory literature (Stewart
and Sun, 1990). The following proposition gives an example which shows that the dependence on
the eigengap is tight.

Proposition 7 There exist operators A and B such that

‖Pr(A)− Pr(B)‖ =
2‖A−B‖

λr(A)− λr+1(A)
,

where Pr(A) (resp. Pr(B)) is the orthogonal projection onto the top r eigenspace of A (resp. B).

Proof Let r = 1 and consider A and B defined as follows: A =
(

1+ε 0
0 1

)
and B =

(
1 0
0 1+ε

)
, thus

A−B =
(
ε 0
0 −ε

)
, which implies that ‖A−B‖ = ε. Also, the eigengap is equal to λ1(A)−λ2(A) =

ε. Now, note that P1(A) is the projection onto e1 = (1, 0)> and P1(B) is the projection onto e2 =
(0, 1)>. Since e1 and e2 are orthogonal, this implies ‖P1(A)−P1(B)‖ = ‖P1(A)‖+‖P1(B)‖ = 2.
On the other hand, 2‖A−B‖

λ1(A)−λ2(A) = 2ε
ε = 2, which completes the proof.

6. Discussion

We now briefly discuss the results presented in the previous sections. Let us first emphasize that
our choice of the hypothesis class H (Section 2) is strongly justified a posteriori by the learning
guarantees we presented: both our upper and lower bounds on the Rademacher complexity (Sec-
tions 4 and 5) suggest that the quantities present in the definition of H play an important role. The
regularization parameters we provide can be tuned to directly bound each of these crucial quantities
and thereby limit the risk of over fitting.

Second, the hypothesis set suggested in this paper provides a unified framework for choosing an
optimal dimensionality reduction method. It suggests to specify a set of potential methods (equiva-
lent to a set of base kernels) and then learn their combination jointly with a projection. Moreover,
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the generalization bound is logarithmic in the number of base kernels, which encourages the use of
a very large base set.

Third, we observe that the hypothesis class H clearly motivates the design of a single-stage
coupled algorithm. Such an algorithm would be based on structural risk minimization (SRM) and
seek to minimize the empirical error over increasingly complex hypothesis sets, by varying the pa-
rameters Λ(r) and ν, to trade-off empirical error and model complexity. It is worthwhile to note that
our hypothesis set is constructed in such a way that the search over the choices of parameters µ does
not incur the bottleneck of recomputing the eigendecomposition of operator CU at every iteration.
Instead, we require the computation of the eigendecomposition of the (unweighted) base kernel
matrices once as a preprocessing step. The key to that is the assumption of linearly independent
kernels, which is typically satisfied in practice.

We note that the existing literature has empirically evaluated both learning kernels with KPCA in
an unsupervised (two-stage) fashion (Zhuang et al., 2011; Lin et al., 2011) and applied supervised
KPCA (single-stage training) with a fixed kernel function (Fukumizu et al., 2004; Gönen, 2014).
While these existing algorithms do not directly consider the hypothesis class we motivated, they
can, in certain cases, still select a hypothesis function that is found in our class. In particular,
our learning guarantees are applicable to hypotheses chosen in a two-stage manner, as long as the
regularization constraints are satisfied and the same family of projections are used. Similarly, the
case p = 1, which corresponds to the standard fixed-kernel supervised learning scenario, is covered
by our analysis. Even in such cases, the bounds that we provide would be the first to guarantee the
generalization ability of the algorithm via bounding the sample Rademacher complexity.

7. Conclusion

We presented a new analysis and generalization guarantees for the scenario of supervised dimen-
sionality reduction with a learned kernel. The hypothesis class is designed with regularization con-
straints that are directly motivated by the upper and lower bounds on its Rademacher complexity.
Our analysis suggests the design of learning algorithms for selecting hypotheses from this specifi-
cally tailored class, either in a two-stage or a single-stage manner. Our analysis can also benefit the
study of other similar hypothesis sets within the SKP framework.

References

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, pages 337–404, 1950.

Peter L Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. The Journal of Machine Learning Research, 3:463–482, 2003.

Rajendra Bhatia. Matrix Analysis. Springer, 1997.

Gilles Blanchard and Laurent Zwald. Finite-dimensional projection for classification and statistical
learning. Information Theory, IEEE Transactions on, 54(9):4169–4182, 2008.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regularization for learning kernels.
In Proceedings of UAI, pages 109–116, 2009.

235



MOHRI, ROSTAMIZADEH, STORCHEUS

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Generalization bounds for learning
kernels. In Proceedings of ICML, pages 247–254, 2010.

Paramveer S Dhillon, Dean P Foster, Sham M Kakade, and Lyle H Ungar. A risk comparison of
ordinary least squares vs ridge regression. The Journal of Machine Learning Research, 14(1):
1505–1511, 2013.

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Dimensionality reduction for supervised
learning with reproducing kernel Hilbert spaces. The Journal of Machine Learning Research, 5:
73–99, 2004.

Mehmet Gönen. Coupled dimensionality reduction and classification for supervised and semi-
supervised multilabel learning. Pattern recognition letters, 38:132–141, 2014.

Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. The Journal of Machine
Learning Research, 12:2211–2268, 2011.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Adaptive metric dimensionality
reduction. In Proceedings of ALT, pages 279–293. Springer, 2013.

Jihun Ham, Daniel D Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of the dimen-
sionality reduction of manifolds. In Proceedings of ICML, page 47. ACM, 2004.

Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and Alexander Zien. Lp-norm multiple kernel learn-
ing. The Journal of Machine Learning Research, 12:953–997, 2011.

Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the
generalization error of combined classifiers. Annals of Statistics, pages 1–50, 2002.

Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I Jordan.
Learning the kernel matrix with semidefinite programming. The Journal of Machine Learning
Research, 5:27–72, 2004.

Yen-Yu Lin, Tyng-Luh Liu, and Chiou-Shann Fuh. Multiple kernel learning for dimensionality
reduction. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(6):1147–1160,
2011.

Pascal Massart. Some applications of concentration inequalities to statistics. Annales de la Faculté
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Appendix A. Proof of Lemma 2

Proof For the first part of the proof, let Ek = E
[
CS,k

]
= E

[
CU,k

]
be the population covari-

ance operator of kernel µkKk. We will show a concentration bound on CS,k and CU,k that holds
uniformly over k ∈ [1, p]. Using the union bound, Lemma 1 from (Zwald and Blanchard, 2005)
(equivalently Corollary 5 from (Shawe-Taylor and Cristianini, 2003)), and assuming u > m, with
probability at least 1− δ, the following holds for all k ∈ [1, p],

max

[
‖Ek − CS,k‖Hk , ‖Ek − CU,k‖Hk

]
≤ µkκ

2
√
m
, (10)

where κ = 4
(

1 +

√
log ( 2p

δ
)

2

)
.

Let Πk be the orthogonal projection onto the top r eigenfunctions of Ek. By decomposing
over orthogonal subspaces of H =

⊕p
k=1 Hk as well as adding and subtracting Πk, we can bound

‖ΠS −ΠU‖ by
∑p

k=1 ‖Πk −ΠS‖Hk +
∑p

k=1 ‖Πk −ΠU‖Hk . Now, since CS,k is the restriction of
CS to Hk, the following inequality holds for all k ∈ [1, p]:

‖Πk −ΠS‖Hk ≤
8‖Ek − CS‖Hk

λr(Ek)− λr+1(Ek)
=

8‖Ek − CS,k‖Hk
λr(Ek)− λr+1(Ek)

. (11)

A similar statement holds for the projection with respect to sample U . To obtain the bound above
we consider two cases, either 8‖Ek − CS‖Hk/(λr(Ek) − λr+1(Ek)) ≤ 1/4, which is a sufficient
condition for Theorem 3 of (Zwald and Blanchard, 2005) that directly implies (11). Otherwise, if
the condition does not hold, then the right-hand side of (11) will be larger than 2, which is a trivial
bound on the difference of two projections.

Next, we use the constraint ‖µ‖1 ≤ 1 to upper bound (10) by κ/(2
√
m) and lower bound

λr(Ek) − λr+1(Ek) = µk
(
λr(Ck) − λr+1(Ck)

)
≥ µk∆r, where Ck is the population covariance

operator of kernel Kk and ∆r = mink∈[1,p]

(
λr(Ck) − λr+1(Ck)

)
. Now 4κ/(

√
mµk∆r) is the

uniform bound on the norm of projections in (11). Summing up ‖Πk − ΠS‖Hk + ‖Πk − ΠU‖Hk
over k and applying the uniform bound 4κ/(

√
mµk∆r), which holds for both samples U and S, we

conclude that the following holds:

‖ΠS −ΠU‖ ≤
p∑

k=1

1

µk

8κ

∆r
√
m
≤ 8κν

∆r
√
m
. (12)

For the second portion of the proof, we use a series of inequalities to show

|‖CU‖(r) − ‖CS‖(r)| ≤
r∑
i=1

|λi(CU )− λi(CS)| ≤
√
r

( r∑
i=1

|λi(CU )− λi(CS)|2
)1/2

,

which is in turn bounded by
√
r‖CU − CS‖ using the Hoffman-Wielandt inequality. Next, by

decomposing over orthogonal subspaces of H =
⊕p

k=1 Hk together with adding and subtracting
Ek, we bound ‖CU − CS‖ by

∑p
k=1 ‖Ek − CS,k‖Hk +

∑p
k=1 ‖Ek − CU,k‖Hk . If we again apply

the uniform bound from (10) in the form µkκ/2
√
m, we obtain that with probability at least 1− δ,

the following holds:

|‖CU‖(r) − ‖CS‖(r)| ≤
p∑

k=1

√
rµkκ√
m
≤ κ . (13)
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Combining (12) and (13) yields

sup
µ∈M

‖ΠUu‖ ≤ sup
µ∈N
‖ΠUu‖ ≤ sup

µ∈N

(
‖ΠSu‖+

8κν

∆r
√
m
‖u‖
)
, (14)

with probability 1− δ.

Appendix B. Proof of Lemma 3

We will use the following lemma to give the proof of Lemma 3.

Lemma 8 For each k ∈ [1, p] let λ1(Kk) ≥ · · · ≥ λm(Kk) be the eigenvalues of Kk with cor-
responding orthonormal eigenvectors vk,1, · · · ,vk,m. For µ ∈ N , let Iµ denote the set of indices
(k, j) corresponding to the largest r elements of the set {µkλj(Kk)}k,j , then the following equality
holds: ∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥ =

√
m

∑
(k,j)∈Iµ

µkλj(Kk)(v
>
k,jσ)2 , (15)

where σ = (σ1, · · · , σm)>.

Proof Recall from Section 3 that when H =
⊕p

k=1 Hk, the eigenvalues of CS take the form
µkλj(Kk) with orthonormal eigenfunctions uk,j , where, for each k ∈ [1, p], functions uk,1, . . . , uk,m
belong to the orthogonal component Hk. Thus, we can write ‖ΠSf‖2 =

∑
(k,j)∈Iµ〈uk,j , f〉

2, for
any f ∈ H. When f = Φ(xi), it suffices to take the inner product of uk,j and f in Hk, which, by the
reproducing property, is equal to uk,j(xi). By (Blanchard and Zwald, 2008, Equation (8)), uk,j(xi)
takes the form

uk,j(xi) =

√
µk

λj(Kk)m

m∑
n=1

Kk(xi, xn)[vk,j ]n . (16)

Since vk,j is an eigenvector of Kk, we see that

m∑
n=1

Kk(xi, xn)[vk,j ]n = m
m∑
n=1

[Kk]i,n[vk,j ]n = mλj(Kk)[vk,j ]i , (17)

which means that uk,j(xi) =
√
mµkλj(Kk)[vk,j ]i. In view of this expression, we can write

〈uk,j ,
m∑
i=1

σiΦ(xi)〉 =
m∑
i=1

σiuk,j(xi) =

√
mµkλj(Kk)v

>
k,jσ. (18)

Squaring the terms above and summing them over the set of indices Iµ completes the proof.

The following gives the proof of Lemma 3.
Proof [Lemma 3] The term ‖ΠS

∑m
i=1 σiΦ(xi)‖ can be directly bounded using only the Ky-Fan

norm constraint on ‖CS‖(r), since it controls the spectrum of the projection. Thus, we will simplify
the problem to analyze the supremum over choices of µ that satisfy ‖CS‖(r) ≤ ε, where ε =
Λ(r) + κ. This clearly includes all elements in N as well.
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For this proof, we will use the representation of ‖ΠS
∑m

i=1 σiΦ(xi)‖ from Lemma 8, which
will be upper bounded by the supremum over the choice of all size-r sets in order to remove the
dependence of the set of indices on the identity of the top eigenvalues:

sup
‖CS‖(r)≤ε

∑
(k,j)∈Iµ

µkλj(Kk)(v
>
k,jσ)2 ≤ sup

|I|=r
sup

‖CS‖(r)≤ε

∑
(k,j)∈I

µkλj(Kk)(v
>
k,jσ)2 , (19)

where sup|I|=r indicates the supremum over all indexing sets. We can express the sum above as
an inner product uµ · uσ, where uµ is an r−dimensional vector with entries µkλj(Kk) and uσ has
entries (v>k,jσ)2 such that (k, j) ∈ I . By construction, we have ‖CS‖(r) = ‖uµ‖1, thus, we will
reduce the problem to that of analyzing sup‖uµ‖1≤ε. Then, by definition of the dual norm, we can
write:

sup
|I|=r

sup
‖uµ‖1≤ε

uµ · uσ = sup
|I|=r

ε‖uσ‖∞ = εmax
k,j

(v>k,jσ)2 . (20)

Thus, ‖ΠS
∑m

i=1 σiΦ(xi)‖ is bounded by the following:

max
k,j

√
mε(v>k,jσ)2 =

√
mεmax

k,j
|v>k,jσ| =

√
mεmax

k,j
max

st∈{−1,1}
stv
>
k,jσ .

By Massart’s lemma (Massart, 2000), we can write

E
σ

[
max
k,j

max
st∈{−1,1}

stv
>
k,jσ

]
≤
√

2 log (2pm) . (21)

This follows since the norm of stvk,j is bounded by 1 and since the cardinality of the set over
which the maximum is taken is bounded by 2pm. Combining all the intermediate results leads to
the following:

1

m
E
σ

[
sup

‖CS‖(r)≤ε
‖ΠS

m∑
i=1

σiΦ(xi)‖

]
≤
√

2ε log (2pm)

m
. (22)

The final result is obtained by setting ε = Λ(r) + κ.

Appendix C. Proof of Theorem 6

Proof First we let S and U be any two samples, both of size m, such that U is simply an unlabeled
version of S. Now, assume that p = 1 and that the sample kernel matrix K1 of kernel K1 admits
exactly r distinct non-zero simple eigenvalues. Finally, select Λ(r) such that Λ(r)/λ1(K1) ≤ 1.

As calculated in Section 4, sup‖w‖≤1

∑m
i=1 σih(xi) = ‖ΠU

∑m
i=1 σiΦ(xi)‖ and in this par-

ticular scenario ‖CU‖(r) = ‖CS‖(r). Thus, the empirical Rademacher complexity simplifies to
R̂S(H) = 1

m Eσ

[
sup‖CS‖(r)≤Λ(r)

‖ΠS
∑m

i=1 σiΦ(xi)‖
]
, where the projection can be written di-

rectly in terms of the sample S. Here, the L1 constraint on µ is not needed, since it is satisfied by
the Ky-Fan r-norm constraint when Λ(r) ≤ λ1(K1).

Now, following the steps from Lemma 8, we can express the norm of the projection as follows:∥∥∥∥∥ΠS

m∑
i=1

σiΦ(xi)

∥∥∥∥∥ =

√√√√m

r∑
j=1

µ1λj(K1)(σ>v1,j)2 . (23)
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Note that here, unlike the general statement of Lemma 8, the choice of the r entries that appear in
the sum is not effected by the value of µ, since there are in fact only r non-zero eigenvalues in total,
by construction (i.e. there is one base kernel of rank r). The choice of µ, however, still affects the
scale of the r eigenvalues.

The expression is furthermore simplified by introducing the vectors uµ with entries µ1λj(K1)
and uσ with entries (v>1,jσ)2, which is similar to the proof of Lemma 3. By the monotonicity of the
square-root function and using the definition of uµ as well as the dual norm we have

sup
‖CS‖(r)≤Λ(r)

√
uµ · uσ =

√
sup

‖uµ‖1≤Λ(r)

uµ · uσ =
√

Λ(r)‖uσ‖∞ . (24)

Thus, the Rademacher complexity is reduced to

R̂S(H) =

√
Λ(r)

m
E
σ

[√
max
j∈[1,r]

(v>1,jσ)2
]

=

√
Λ(r)

m
E
σ

[
max
j∈[1,r]

|v>1,jσ|
]
. (25)

Finally, we use Jensen’s inequality and Khintchine’s inequality to show

E
σ

[
max
j∈[1,r]

|v>1,jσ|
]
≥ max

j∈[1,r]
E
σ

[
|v>1,jσ|

]
≥ max

j∈[1,r]
2−1/2‖v1,j‖ = 2−1/2, (26)

where the tight constant 2−1/2 used in Khintchine’s inequality can be found in (Nazarov and Pod-
korytov, 2000)[Chapter II]. Plugging this constant back into equation (25) completes the proof of
the theorem.
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