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Abstract

An approach inspired by the Minimum Description Length (MDL) principle is proposed for
adaptively selecting features during online learning based on their usefulness in improving
the objective. The approach eliminates noisy or useless features from the optimization
process, leading to improved loss. Several algorithmic variations on the approach are
presented. They are based on using a Bayesian mixture in each of the dimensions of the
feature space. By utilizing the MDL principle, the mixture reduces the dimensionality of
the feature space to its subspace with the lowest loss. Bounds on the loss, derived, show that
the loss for that subspace is essentially achieved. The approach can be tuned for trading
off between model size and the loss incurred. Empirical results on large scale real-world
systems demonstrate how it improves such tradeoffs. Huge model size reductions can be
achieved with no loss in performance relative to standard techniques, while moderate loss
improvements (translating to large regret improvements) are achieved with moderate size
reductions. The results also demonstrate that overfitting is eliminated by this approach.

Keywords: Minimum Description Length (MDL), online learning, regularization

1. Introduction and Overview

Model selection techniques (see, e.g., Hansen and Yu, 2001; Kadane and Lazar, 2004; Kearns
et al., 1995; Quinlan and Rivest, 1989; Viswanathan et al., 1999) are limited in their ability
to select the best features for an online model. They are also constrained on their ability to
trade off between prediction model size and its expected accuracy, when size constraints are
imposed. Regularization Lo or L, (see, e.g., Shalev-Shwartz and Tewari, 2011; Vidaurre
et al., 2013; Zou and Hastie, 2005), is often employed to limit model size. Various techniques
were developed for L; regularization in online learning (Beck and Teboulle, 2009; McMahan,
2011; Tsuruoka et al., 2009), and in batch training (Duchi and Singer, 2009; Duchi et al.,
2011; Ravikumar et al., 2010) for this purpose. These rely heavily on the magnitude of
the model coefficient at each coordinate, but not directly on how useful the coordinates are
for the objective. This can lead to suboptimal loss to sparsity tradeoffs as well as either
underfitting or overfitting the model to the training data.

The Minimum Description Length (MDL) principle, initially developed by Rissanen
(1978, 1984, 1986) (see also Barron et al., 1998; Grunwald, 2004; Grunwald et al., 2005;
Grunwald, 2007), measures the optimal tradeoffs between the gain to the objective from
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the Mazimum Likelihood (ML) estimate of a model parameter and the additional regret
necessary to learn the parameter. The benefit of a parameter is the overall sum of both
terms. A model should consist only of parameters with positive benefit. Offline model
selection techniques have been based on this principle (see, e.g., Hansen and Yu, 2001;
Quinlan and Rivest, 1989; Kearns et al., 1995; Viswanathan et al., 1999).

To the best of our knowledge, no prior work applied the MDL principle per-parameter
to online learning with a general convex loss, as it was not understood how the concept can
be properly utilized. In this paper, we solve this problem. We start with the observation
that any online learning algorithm can be modified to precisely compute an MDL benefit
for all its features. For each feature, the model is updated with and without it, and the
difference between the cumulative losses is accumulated as the benefit score of the feature.
Only features with positive or sufficiently large benefit scores are used in prediction. This
realization is the basis to the novel online MDL regularization presented, which leads to
optimal sparsity tradeoffs. It is then shown that MDL regularization can be viewed as a
low-complexity approximation of a Bayesian mixture algorithm that mixes over all possible
subspaces of the complete feature space. This mixture has exponential complexity in the
number of features. However, a per-feature linear complexity mixture which only negligibly
increases the loss can be designed. The MDL Regularization algorithm essentially performs
an algorithm very close to the per-feature mixture algorithm, dropping unuseful features.

The MDL algorithm wraps over some general base algorithm. We focus, though, on
Follow-The-Regularized-Leader (FTRL) base algorithms (Auer et al., 2002; Hazan, 2012;
Kakade and Shalev-Shwartz, 2008; Kalai and Vempala, 2005; McMahan and Streeter, 2010;
McMahan, 2011; Rakhlin et al., 2005; Shalev-Shwartz, 2007; Shalev-Shwartz and Singer,
2007; Shalev-Shwartz et al., 2010; Shalev-Shwartz, 2012), specifically on FTRL-Prozximal
versions. We also focus on linearized versions (McMahan, 2011; McMahan et al., 2013;
McMahan, 2014), which are more practical to implement. The analysis relies on some
results from McMahan (2014). It shows that the loss of the MDL mixture algorithms
converges to that of the subspace of the feature space with the smallest loss. Dropping
lowest benefit features leads to optimal accuracy with imposed size constraints.

Paper Outline: Section 2 formulates the problem. In Section 3, MDL Regularization
is presented. Section 4 presents various mixture approaches. Section 5 presents loss analysis
for the mixture algorithms. Section 6 ties between the MDL Regularization algorithm of
Section 3 and the mixture algorithms. Finally, real-world experimental results are presented
in Section 7.

2. Problem Formulation, Background, and Notation

We consider online convex optimization over a series of rounds ¢ € {1,2,...,T} as in (McMa-
han, 2014) (see also Boyd and Vandenberghe, 2004; Rockafellar, 1997; Shalev-Shwartz,
2012, for basic tools and results). Each round, a predictor x; € R* is selected. An ad-
versary, then, selects a convex loss function f;. The algorithm suffers loss fi(x;). The
goal is to minimize L(.A) 2 Ethl fe(x¢) for algorithm A over all T' rounds. The regret
relative to a some fixed comparator x*, selected possibly with knowledge of the losses, is
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Regret(x*) 2 S fe(xe) = SO fi(x*). We also define Regret(X) 2 SUpy«c x Regret(x*).

We use compressed summation notation, fi.; (x) 2 St f(x).

It is possible that the smallest possible loss can be achieved by optimizing over some
sparse subspace of R¥, designated by a (feature) selector vector s € {0, 1}k, whose 1 co-
ordinates specify selected features. The dimension of the subspace is ||s|, < k. A vector
Xs,t is constrained to have nonzero entries only at the nonzero indices of s. We use ng)
to denote a vector with nonzero entries only at coordinates specified by s which is played
only with features selected by s, attaining loss and regret L£(s) and Regret(s,x*), respec-

tively. An overall algorithm attempts to drive down its loss by utilizing the possibility that
L(s) < L(1 2 (1,1,...,1)T). The idea is to force “bad” coordinates to 0 quickly without
accruing the regret that is usually accrued while learning them.

Somewhat complicated notation must be defined for various vectors to describe the
algorithms. Boldface letters denote (column) vectors. An wunregularized (by MDL) k-
dimensional vector played by a base algorithm, which can have its own internal regular-
ization, is denoted by x;. A full dimensional MDL mized predictor is denoted by X;. A
reqularized predictor, which is played after dropping low-benefit features from x;, will be
denoted by x. A base predictor, derived with the base algorithm for the MDL regularized
algorithm, will be denoted by x;. The i¢th component of x; is denoted by x;;. The set of
all nonzero indices in s is denoted by {s} = {i:8 =1}, xs4 = Diag(s) - x; designates x;
with 2;; =0, Vi & {s} (where Diag(s) is a diagonal matrix with diagonal s). Similarly, xgs)
designates a vector obtained when playing the online problem only on the subspace of R¥
spanned through s. A selector vector whose only nonzero coordinate is at i will be denoted
by s;, and s(x) denotes s, such that, s; = 1 < x; # 0, and s; = 0 < z; = 0. Negative
indices will be used to denote vectors for which the entries in the respective indices were
set to 0, e.g., x_;; and x{7 denote x; which was played with all components, but its ith
component was then set to 0, and the vector played on the subspace spanned without the
ith coordinate, respectively. A plus sign on index 7 indicates a mixed or a regularized vector,

. _ A _ - VAN _
that takes the ith component of X, e.g., xfi’t = x’fu + ZTigsi and X4 = X_it + TiSi.

Similarly, x(fl) 2 ((sUsi),

A specific problem of interest is logistic regression, which predicts probabilities of binary
labels. It is simpler to use to demonstrate the exponential mixture algorithm. In each
round, a vector a; € R¥ represents the feature magnitudes. The positive label probability
is predicted by p; = o(a; - x;), where ‘-’ denotes inner product, and o(z) 2 1/(1 4 e7%)
is the Sigmoid function. The adversary reveals the label y, € {0,1}. The loss incurred
is U(pt,yt) = —yrlogpr — (1 — y¢) log(1l — py). Logistic regression is a convex optimization
problem with f;(x) = ¢(o(as - X), yt).

We make the standard assumptions for convexity (Boyd and Vandenberghe, 2004; McMa-
han, 2014; Shalev-Shwartz, 2012) of the loss functions. The function ¢ : R¥ — R U {oo}
over domain {x : 1(x) < oo} has the sub-differential set 9y (x). A sub-gradient g € 99 (x)
satisfies ¥(y) > ¢¥(x) + g (y — x); Vy. A function ¥ (x) is o-strongly convexr w.r.t. a norm
|-l on X if Vx,y € X and any g € dp(x), ¥(y) > (%) + g (y —x) + 5 ly — x|,

We focus on the FTRL algorithms (see, e.g., McMahan, 2011; McMahan et al., 2013;
McMahan, 2014)), specifically Prozimal variants. Let ry(x),t € {0,1,...,T} denote a
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strongly convex incremental regularizer V¢, which also leads to a strongly convex composite

objective hg.:(x) 2 f1:4(x) + 7r0:4(x) (see Bartlett et al., 2007). Then, the algorithm plays
Xi+1 = argming fi.4(x) + 704(x). For FTRL-Proximal, the incremental regularizer r; is
globally minimized by x;.

Of specific practical interest are linearized algorithms, that bound the convex loss at any
t by a linear function for convex differentiable functions f;. These are particularly appealing
because they are usually more practical to implement. Let g; = <7 f;(x¢), then, as observed
in (Zinkevich, 2003), by convexity, for any comparator x*, fi(x;) — fi(x*) < g - (x¢ — x*).
This implies that if f;(x) is replaced by fi(x) = g - X;, the regret against f; upper bounds
that against f;.

3. The MDL Regularization Algorithm

The extended version of this paper (Shamir, 2015) presents a more general algorithm.
Here, we focus on the linearized algorithm, with a base FTRL (and later FTRL-Proximal)
algorithm. We restrict the regularizer to regularizers for which minimizing per coordinate
yields the global minimum, e.g., arg miny ro..(x)|; = arg ming, 7o.¢(x), Vt. General Ly norm
regularizers ro.4(x) = 2%71& ||x||5, where 7; is the algorithm’s learning rate at round ¢, satisfy
this condition. For FTRL-Proximal, we use ro(x) = 0 for x € X (0o outside X'), and for all
t>0, r(x) = & ||x— x¢||3 7t 2 i. With this 7, as shown in (McMahan, 2011, 2014),
the algorithm is a Stochastic Gradient Descent (SGD) algorithm with learning rate 7; (see,
e.g., Bottou and Bousquet, 2008; Bottou, 2010; Shamir and Zhang, 2012, for some recent
results on SGD). By adding Ag ||x[3 to 74(x), we add Ly regularization, and by adding
A1 ||x¢||ly, L1 regularization is added.

Algorithm 1 shown below is the Linearized MDL Regularization algorithm. It takes an
inner regularization schema as a parameter, and four more parameters: p - the threshold on
the minimum benefit score a feature should have in order to be included in prediction; v - a
cap on the minimum benefit (if no such limit is desired, v = —00); p - a scale factor applied
to the benefit score to derive x; from X;; £ - a bias (margin) added to the scaled benefit
prior to using it as a mixing argument. Any of these can be configured globally or per-
coordinate. We store a base predictor X; and a cumulative benefit score vector B;. Mixed
and regularized vectors, X; and x[, are derived from %; and B;. After playing x/ at ¢, the
algorithm updates all coordinates of benefit scores B;;1 and base predictors X;41. It derives
mixed predictors for all ¢ with B; ;41 > p by mixing Z; ;11 with 0, using weights which are
functions of B; 11, and regularizes any coordinate with B; ;1 < p to 0. The benefit score
of a coordinate accumulates the difference in losses with and without the coordinate.

Steps 6-7 compute a sub-gradient for each coordinate ¢ (whether mft = 0 or not) by

taking x[?, replacing the ith entry by Z;t, and computing the ith coordinate of the sub-
gradient of the loss f; at this constructed predictor. Then, the respective coordinates of
the sub-gradients computed are assembled into a single vector g; (Step 7). In other words,
the gradient of a base value of a coordinate is computed in the presence of the values of
all other coordinates used in the actual prediction played by the algorithm. Results in
Section 5 show why the update should be done in this manner. The benefit score is then
updated in Step 8, using the same xfu used to compute the gradient to compute the loss
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Algorithm 1 Linearized FTRL MDL Regularization
1: procedure LINEARIZED MDL REGULARIZE(Parameters: 7y, schema for ry~o, £, 7,

P €)
2: X1, fq,x{% +~0 > Coefficients’ initialization
3: B+ 0 > Benefit initialization
4: for t=1,2,... do
5: Play xF, observe f;, incur loss f;(x[?)
6: Compute sub-gradient gt(’) € 0fi (Xfijt) , V1. > Distinct gradient vector per
coordinate ‘
7 Assemble g; 2 { gl(zt) e=1,..., k:} > Gradient vector assembled
8: Biy41 < Biy — [ f; (xﬁm) — (xfi,tﬂ Vi > Update benefit
9: If Bit41 <7, Bit41 <7, Vi > Set benefits to minimum limit
10: St+1 < S(Bep1 > p) > Selector for (new) nonzero coordinates
11: Choose 14, possibly using X; and g
12: Xi4+1 ¢ argming [g1.4 - X + 7o (X)] > Update base values
13: ji,t—i—l — 0o (pBi,t-l—l + f) . ﬂ?i7t+1,Vi € {St—i—l} > Update mixed values
14: :L‘ft L1 gf’tﬂ’ z)tehjfviftsle} , Vi > Update regularized values
15: end for

16: end procedure

with the coordinate. The ith coordinate is removed for the loss without it. The actual f;
can be replaced in this step by the linearized objective f;. After thresholding the benefit
scores, the set of (more beneficial) coordinates may have changed. It is updated in Step 10.
An inner regularizer r4 for the next round can be chosen in Step 11, as function of X;.

The base predictor X;y1 is computed in Step 12 using linearization with the accumu-
lated gradient g1.t, updated in Step 7, adding the regularizer r(X) chosen in Step 11. For
FTRL-Proximal with restricted regularizer w.r.t. X, Step 12 becomes as follows: Z; 41 =
arg ming, {gmztfi + Zizl % (z; — 531‘,7)2} ,Vi. If in addition, Lo regularization is performed,

an Lo term of )\gi‘? is added to the minimized objective, yielding Z; ;41 = Z; s — gt g

14+2X9my
(A2 = 0 with no Lo).

Next, the coordinates in {s;+1} are mixed with 0 in Step 13 using the Sigmoid func-
tion. The argument of the Sigmoid, and thus B;;, as well, are regarded as logarithms of
odds (log-odds). This is justified by viewing exp{—>__ fT(xf”)} as a likelihood that the
coefficient is nonzero. Similarly, exp{—>_ fT(xl_%w)} is viewed as the likelihood that the
coefficient is zero. Then, £ is a prior for the binary distribution determining whether the
coefficient is 0 or not. Thus the weight given to the nonzero value of the coefficient is essen-
tially a posterior probability of the coefficient taking a nonzero value. A round is concluded
with Step 14, which sets xfil, performing the regularization, resetting coordinates with low

benefit.
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4. MDL Regularization as a Bayesian Mixture

MDL regularization is presented as an exponential Bayesian mixture over all feature sub-
spaces. It is simplified to a per-feature linear mixture, concluding with a version that drops
unuseful features.

4.1 Complete MDL Bayesian Mixture

The Complete MDL Mizture algorithm is presented below for logistic regression (for sim-

plicity). Let wts) denote the weight assigned to pgs) =o(a; - ng)) derived and played for s

at t. The algorithm assigns a probability to label sequence yi 2 (y1,-..,yr) for each s. A
final probability is then a mixture of these over all s. The algorithm is an ensemble method
(see, e.g., Dietterich, 2000) over the (exponential) ensemble of all s. Let A; denote the com-
plete mixture probability of 4!, which is a normalizer for the probability at ¢. Algorithm 2
is shown below. It takes r; and a single parameter « designating the prior probability of
x; # 0 (global or per-feature). It maintains a predictor xgs) and a weight wgs) for each of
the 2* values of s, as well as the normalizing sum A;. Step 10, specified in a general manner,
can be linearized as in Algorithm 1. Steps 12 and 13 update the weights for each s based
on its predictions. Better s subsets will have larger portions in the mixture. In (Shamir,
2015), it is also shown how this algorithm can be applied to general losses.

Algorithm 2 Complete MDL Mixture for Logistic Regression

1: procedure COMPLETE MDL Mix(Parameters: rg, schema for r;~0, @)

2 ng) + 0, wgs) = allsllo(1 — )k=lisllo s

3 A+ 1 > Initialize normalizing factor
4 for t=1,2,... do

5: Observe a;

6 ) ola %)

7 e Yo wpl”

8 Play p¢, observe y; € {0,1}, incur loss fi(ps, y¢1) = —yilogpr — (1 — y;) log(1 — py)
9 Choose 14, possibly using p;
10: xgi)l — argmings) [fl;t(x(s)) + ro:t(x(s))] , Vs
1 P ) () (1= pi)te, s
12: Apr Ay D wgs) ~p§s> (ye) > Update normalizing factor
13: wgi)l = ﬁ - wgs) -pgs)(yt , Vs > Update weights
14: end for

15: end procedure

4.2 Feature Level MDL Bayesian Mixture

The Linearized MDL Mixture algorithm, Algorithm 3, is presented below. Instead of the
exponential mixture, it mixes per-coordinate with linear complexity in k. While very similar
to Algorithm 1, it differs in playing all coordinates of X; instead of the subset x*. The

parameter £ is replaced by the prior «, there is no minimum benefit threshold, and there
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is no need for p. Mixing without forcing coordinates to 0 simplifies the analysis. The
main result in the paper is derived for this algorithm, and drives the behavior of the other
algorithms.

Algorithm 3 Linearized MDL Mixture
1: procedure LINEARIZED MDL Mix(Parameters: rg, schema for ry~0, v, )
2: Play Algorithm 1 with p = 1, and ¢ = log(a) — log(1 — a), replacing x* by %;,
removing Steps 10 and 14, and performing Step 13 for all i.
3: end procedure

4.3 Regularized MDL Mixture

For practical reasons, we may want to use only beneficial features. The Linearized Regu-
larized MDL Mixture algorithm, Algorithm 4, below, limits prediction, as in Algorithm 3,
only to features with B;; > p. Unlike Algorithm 1, Algorithm 4 still fully trains on all
coordinates.

Algorithm 4 Linearized Regularized MDL Mixture
1: procedure LINEARIZED REGULARIZED MDL Mix(Parameters: rg, schema for 7.0,
1y s @)
2: Play Algorithm 1 with p = 1, and ¢ = log(a) — log(1 — ), replacing x by %X; in
Steps 6 and 8 but not in Step 5, and performing Step 13 for all .
3: end procedure

5. Analysis and Loss Bounds for Mixture Algorithms

Loss bounds for the mixture algorithms are presented. More details are in (Shamir, 2015).

5.1 Loss for Complete MDL Mixture

The Complete MDL Mixture (CMM) algorithm (Algorithm 2), that plays XES) at each
t for each s, attains loss £L(CMM) = —log) wgs) - exp {—E {ng)}>} where {ng)} is
(s)

the sequence of predictors played at all rounds for s, and w;” is the prior assigned to

s. For simplicity, as formulated in Section 2, let L(s) 2 ({XES)}) and Regret(s) 2

sup, (s) Regret(x(®)).

Proposition 1 Define s* 2 arg ming £(s), and m* 2 sllo. Then, for Algorithm 2,
L(CMM) < L(s*) —m*loga — (k —m™)log(1 — ). (1)

Proposition 1 shows that with the complete (ensemble) mixture the loss of the best feature
subspace is achieved with negligible penalty determined by the prior of s*. Unless all
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features benefit the best loss, such loss is not achievable with a standard algorithm that
pays a cost for learning all unbeneficial parameters. Regret bounds, as in (McMahan,
2014; Shalev-Shwartz, 2012), are expressed by bounds R and G on the Ly norms of x and
its sub-gradients g, respectively, under the implicit assumption that R and G are fixed.
The dimension k, however, is generally implicitly embedded in these bounds. Hence, for a
subspace s* of the full space, these bounds are essentially smaller. For example, the regret
of the FTRL-Proximal is O(RGVT) (see, McMahan, 2014), which is at least O(kv/'T),
when accounting for the dimension. With MDL, the regret is O(m*v/T) + O(k), which is
dominated by that of FTRL if m* < k (this is usually the case in many practical systems).
Tuning « to o = m*/k achieves the minimum loss in (1). While not always possible, in
practice, we usually have some advance knowledge to approximate a* from past data.

5.2 Loss for MDL Mixture

The main theorem, stated below, shows that the MDL Mixture (MM) algorithm (Algo-
rithm 3) achieves loss only negligibly larger than Algorithm 2. This only requires a suffi-
cient growth rate for the benefit scores of coordinates. Due to lack of space, the condition
required is described briefly in Appendix A (and in more detail in Shamir, 2015).

Theorem 2 Define s* and m* as in Proposition 1. Assume that benefit scores have suffi-
cient growth rates (as in condition (4) in Appendiz A). Then, for Algorithm 3 with v — —oo,

(k- m*)} -o{Regret(s™)}. (2)

11—«

— o

L(Mmgﬁ(s*)+{cl.1‘)"m*+02-

for some constants C1 and Cs.

Appendix A shows a sketch of the proof of Theorem 2, which is presented in (Shamir, 2015).
By Theorem 2, the results described following Proposition 1 apply to Algorithm 3. The
negligible mixture cost is usually larger than that achieved in Algorithm 2. If « is tuned
as m*/k or in proximity to that, the loss of Algorithm 3 is always somewhat greater than
that of Algorithm 2.

5.3 Loss for Regularized MDL Mixture

Resulting from the analysis of Algorithm 3, the loss of Algorithm 4, the Linearized Regu-
larized MDL Mixture (RMM) algorithm, can be bounded.

Corollary 3 Let s* and m* be as defined in Proposition 1. Then, under the conditions of
Theorem 2, for Algorithm 4,

l—«

£ (RMM) < ,C(s*)—i—{C’l : % m* + Ch - (k—m*) + (u+ Cs) - m*}-o{Regret(s*)} .
(3)

for some constants C1, Cs, and Cs.

Corollary 3 follows directly from Theorem 2. Features with B;; < u are excluded from
prediction until their benefits exceed pu. They incur additional loss p beyond Algorithm 3
with an additional constant loss incurred in last rounds before they enter into the model.
Algorithm 4 provides a tradeoff between model size and its accuracy. The threshold pu
exchanges model size for accuracy.

267



SHAMIR

6. MDL Regularization as Approximation of Regularized MDL Mixture

Algorithm 1 and Algorithm 4 both use the benefit score threshold to determine which
features to include in prediction. However, Algorithm 1 trains jointly only features for which
B;; > p, whereas Algorithm 4 trains all features jointly. This does not significantly affect
coordinates with B;; > u, but it makes a difference on how features that are excluded from
prediction train. In Algorithm 4, they train jointly with other features currently excluded,
whereas in Algorithm 1, each low benefit feature trains in separation from other low benefit
features. This makes a difference when there is correlation between low benefit features.
Features that newly enter the prediction model in Algorithm 4, trained in tandem with
other such features. Their coefficients are already adjusted to one another. On the other
hand, learning correlated features results in smaller coefficients for each of the features,
and in multiple training costs. In Algorithm 1, multiple training costs are avoided, and
some unnecessary features correlated to ones already in the model may be kept out of
the model, but there is risk of multiple features explaining the same effect entering the
model simultaneously. To mitigate this problem, the parameter p scales down the benefit of
coordinates newly used for prediction. It essentially splits the benefit in a group of correlated
features among the members of the group. The parameter p € (0, 1] should thus be tuned
based on a number of correlated features expected to enter the model simultaneously. (This
can be approximated empirically.) Algorithm 4 thus has no need for p. In the real-world
systems, where the two algorithms were tested, they seem to perform comparably, with
slight advantage to Algorithm 1.

The parameter p measures the tolerance to loss. It trades off between prediction model
size and model prediction accuracy. The parameter £ in Algorithm 1 determines the prior
similarly to « in Algorithm 4. The optimal value shown in Theorem 2 should be used for
determining & by the relation & = log(a/(1 — «)). If we have some prior knowledge of what
fraction of the features become useful for prediction, £ can be tuned by taking the values
as shown following Theorem 2. Finally, the parameter v has two different roles. First, it
allows for nonstationarity. Second, in cases that only the loss on test is important, v allows
reducing the penalty imposed on features with past low-benefit, that are becoming more
beneficial. While this increases prediction model size, experimental results demonstrate that
using 7 can improve performance measured in progressive validation on the latest batch of
the examples.

7. Experimental Results

We report results with Algorithm 1 on real-world data, specifically, on large private data
sets for ad Click-Through-Rate (CTR) prediction for sponsored advertisements. Hundreds
of billions examples are visited, and the model feature sets consist of hundreds of millions
to billions nonzero coefficients. As the standard practice in this domain (McMahan et al.,
2013), progressive validation methodology (Blum et al., 1999) is used to assess performance
on held-out data in an online setting. Results are reported in terms of AUC loss (1 — AUC),
averaged on billions of the final examples seen by the model.

Figure 1 shows the trade off between model size and its AUC loss for three algorithms:
an L regularized FTRL-Proximal algorithm with no MDL regularization with a fixed Iy
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—— FTRL-Proximal with L1 Regularization —— FTRL-Proximal with L1 Regularization
MDL wrapped on FTRL-Proximal I with L1
—— MDL Regularization - NO L1

MDL wrapped on FTRL-Proximal | with L1
——MDL ization - NO L1

AUC Loss [% from baseline]
°
AUC Loss [% from baseline]
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Figure 1: Experimental results on real-world AUC loss % change from baseline vs. model
size % change from baseline. Full range shown on the right, and normal operating range on
the left.

threshold, an L; regularized FTRL-Proximal algorithm wrapped with MDL regularization
running Algorithm 1, and an FTRL-Proximal algorithm with no L regularization, wrapped
by Algorithm 1. All algorithms share all common parameters, such as learning rate, and Lo
regularization control. Both L, regularized algorithms are tested varying only the amount
of L regularization between the different points on the graph. The same grid of L; values
is used for both algorithms. When L; is wrapped with the MDL Regularization, the MDL
threshold p is fixed to 0. For the MDL Regularization algorithm with no L; regularization,
the only parameter varied is p.

The x-axis in Figure 1 is the percent increase (decrease if negative) in size (nonzero
coefficients’ count) relative to a base point. The y-axis shows the percent increase (decrease
if negative) in AUC-loss relative to the base point. The better the algorithm the more to the
left or bottom of the graph it is. The base (0, 0) reference is where the base L; regularized
algorithm has its minimal AUC loss. The L; regularized algorithm exhibits a classic regu-
larization curve. With larger L; regularization, it is smaller but less accurate. Decreasing
the L; parameter initially improves accuracy with larger nonzero count. The curve reaches
the optimal (base) point. However, then, the model starts overfitting. Decreasing the L;
parameter farther still increases nonzero count, but degrades accuracy instead of improving
it. Identical behavior is exhibited even when the L; threshold is allowed to increase with
the number of examples seen by the feature. The AUC does not improve, but there is some
size reduction of about 5 — 10%. Wrapping MDL regularization over the L; regularized al-
gorithm shifts the whole curve left, decreasing model size, but with no change to accuracy.
The base optimal point is shifted left by about 20%. Model size decrease is more moderate
in the underfitting region to the left of the base point, while it is more extreme on the
overfitting region, to its right, and is as large as 60% at the most extreme point tested.

Algorithm 1 with no Lj regularization exhibits better behavior than the other algo-
rithms. With equal model size, better accuracy is achieved, and for neutral accuracy smaller
models are necessary. For accuracy neutrality with the optimal point of the L, algorithm,
model, over 60% smaller, is sufficient. For equal model size, a moderate over 0.5% AUC loss
improvement is exhibited. This improvement translates to substantial improvement on re-
gret (which is the loss component the algorithm improves). Similar qualitative results were
obtained for various systems the algorithm was tested on. Precise improvements, though,
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vary among different systems. Even more interesting is the behavior of MDL closer to p = 0.
Unlike L; regularization, the model keeps improving, exhibiting no evidence of overfitting.
This is expected as discribed in Grunwald (2004), yet untypical with standard regulariza-
tions. It implies that tuning p is not as crucial as tuning the L; parameter. Setting p too
low still improves accuracy, and does not degrade the model, unlike L.

The experimental results shown for the MDL Regularization algorithm can be qualita-
tively compared to Corollary 3. The far right end of the curve with g = 0 (with a prediction
model about 650% larger than the reference base point in this case) is the one correspond-
ing to the bound on the loss of Theorem 2. Take the loss for p = 0 as the reference loss
L(p = 0) (with some abuse of notation). Then, for each point obtained for some other ,
L(p) = L(0) + kpu, for some &, fixed for all p. Then, there is a value of x, for which the
resulting curve overlaps the experimental one. This supports Theorem 2, Corollary 3, and
the statement that Algorithm 1 approximates Algorithm 4.

8. Conclusions

A new paradigm, which uses the established MDL principle for online convex optimization
in online learning algorithms was proposed. The paradigm uses the MDL principle to select
features while in the process of online learning, based on their contributions to improving on
the objective. Starting from an ensemble Bayesian mixture over all possible combinations
of features out of a complete set, it was demonstrated that the algorithm can be simplified
to a linear complexity (in time and number of active features) feasible algorithm that
achieves the same performance accuracy as the complete exponential (in number of states)
mixture algorithm. Several variations of the mixture and then of regularization algorithms,
which eliminate useless features from the prediction model, reducing the actual storage/time
costs of predicting with the algorithm, were described. Theoretical guarantees were then
given. These show that MDL regularization can achieve the losses achieved by the best
feature subspace of the feature space to first and second order (where second order is the
order of the regret). Experimental results on real-world large scale systems demonstrated
the advantage of the MDL based algorithms over classical feature reducing regularization
techniques. Huge savings in prediction model size (of over 50% for neutral accuracy) and
also accuracy savings (for neutral or smaller models) were demonstrated. In addition, the
algorithm behavior showed no evidence of overfitting, as we allow more features (that are
less beneficial, but still have some benefit) into the prediction model.
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Appendix A - Proof Sketch of Theorem 2

We begin with defining the condition that must be satifisfied. A stronger condition with
more detailed discussions is presented in Shamir (2015). Let B}, be defined as B;; for

i € {s*} and —B;; for ¢ ¢ {s*}. Now, for some constant ¢, define the interval I;(c) 2

(cje(3+1)],j =0,1,2,.... Let N;;(c) 2 Ht 1B, € Ij(c)}‘ denote the number of el-

. . _ A _ .
ements over the time ¢t of B}, in interval I;(c). Let x% = max;.pr er;(c) | izl ie., the
maximal absolute base value played for coordinate i in the interval. Then, if there exist a
fixed ¢ > 0, such that

N; j(c) iﬁ% = o {Regret (s™)}, (4)

then, Theorem 2 and Corollary 3 hold.

The condition descibed merely implies that the benefit of a coordinate that is included
in 8* must grow in a sufficient rate in order for the bounds to hold. If the coordinate is not
included in s*, the benefit of its 0 state must grow in a sufficient rate. However, because Z; ;
also eventually diminishes, that rate can slow in later rounds. The condition holds for typical
practical problems such as logistic regression. In the worst case, an adversary can alternate
between losses that increase and decrease the benefit. However, it may be rather hard to
guarantee that ;; does not converge to some average point and still accumulates benefit
at a rate sufficient for the condition to hold. Similarly, if a coordinate should converge to
0, the benefit of the 0 state in the mixture is important mainly at early stages, where MDL
speeds convergence to 0. Then, both z;; and the 0 state eventually become almost equal.
The condition described here is weaker and simpler than the one describred in (Shamir,
2015) in more detail.

To sketch the proof, we first address the sub-gradients g;. Using the observation in
(Zinkevich, 2003), the loss f;(%;) can be replaced by g; - X;,. We now fix the loss of every
round t to be g; - X;. Since, we optimize for X; in each round, this loss must be expressed
in terms of X;. This is done realizing that g; - X; = g; - X; because X; is a constant multiple
of x;. This yields that Step 12 in Algorithm 3 (shown in Algorithm 1) is, in fact, an FTRL
update on a linearized loss. Hence playing X; on the loss, which is linearized in every round
for x;, achieves the FTRL upper bounds for that loss, which upper bounds the loss f;.

By the linearization of the loss we play on, and the condition on the regularizer described
in Section 3, the update in Step 12 does not change if it is done per coordinate. This
implies that x; will give the same coordinates in the indices selected by a vector s, Xs ¢, as

an algorithm that plays )‘{ES) only on the coordinates of s. This ties the regret incurred by

playing X; to that of playing igs), specifically for s = s*.

Now, we do not actually play X;, but instead we play X;. It thus remains to show that
the additional loss from mixing results in the additional terms to the bound. This applies
to both types of terms, for coordinates in s* and for coordinates outside of it. The Sigmoid
over the benefit score, used to weight the coordinate of a feature in the mixture, in both
cases (taking the coordinate for a valuable feature or taking 0 instead of the coordinate for
a useless feature), decays exponentially for the less beneficial value of the coordinate in the
extra loss of playing it (taking the left tail of the Sigmoid). Therefore, as the gap in losses
increases, the weight of the wrong value of the coordinate diminishes. Since an adversary
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can play loss functions that either increase or decrease the benefit, we must require a suffi-
cient growth condition on the benefit. This condition implies that over a sufficient window
of time, the loss with the wrong value of the coefficient increases sufficiently relative to the
loss with the correct value of the coefficient. During rounds the benefit remains bounded
within a given interval, loss linear in the length of the interval is incurred. Between intervals,
however, the weight of the wrong value of the coefficient diminishes exponentially, and the
growth of the overall loss then accumulates over all T rounds to some total which is upper
bounded by a constant multiple of the largest N; ;(c) - jﬁ% for each i. This value is scaled
by a function of the prior, a/(1 — ) for coordinates for which s7 = 1, and by (1 — «)/« for
ones with s¥ = 0. (Note that features with cumulative benefit close to 0 can fall in either
category, and the bounds apply in either case.) O
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