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Abstract

In biological imaging the data is often represented by a sequence of anisotropic frames —
the resolution in one dimension is significantly lower than in the other dimensions. E.g.
in electron microscopy it arises from the thickness of a scanned section. This leads to
blurred images and raises problems in tasks like neuronal image segmentation. We present
the details and additional evaluation of an approach originally introduced in Laptev et al.
(2014) called SuperSlicing to decompose the observed frame into a sequence of plausible
hidden sub-frames. Based on sub-frame decomposition by SuperSlicing we propose a
novel automated method to perform neuronal structure segmentation. We test our ap-
proach on a popular connectomics benchmark, where SuperSlicing preserves topological
structures significantly better than other algorithms. We also generalize the approach for
video anisotropicity that comes from the long exposure time and show that our method
outperforms baseline methods on a reconstruction of low frame rate videos of natural scenes.

Keywords: anisotropic data, super resolution, connectomics, segmentation, registration

1. Introduction

Digital imaging defines a quantization of the visual appearence of the world. The intensity
of a pixel is the cumulative energy that has reached the physical sensor. In consequence,
the details of a scene that are smaller than the spatial resolution of the sensor are getting
averaged away (Fig. 1). Visually, averaging overcomes the problem of aliasing, but causes
spatial blur and such data is called anisotropic.

Serial section transmission electron microscopy (ssTEM) Cardona and et al. (2010) of
brain tissue is an important example. This method is the only available technique that
guarantees sufficient resolution for reconstructing neuronal structures on the synapse level
and, thereby, supports the scientific goals of connectomics Seung (2012) to understand brain
functions. This technique renders the volume in a highly anisotropic way — the resolution
across vertical dimension of the stack (thickness) is much lower than that of the horizontal
dimensions.

The same phenomenon can be found in a low frame rate video recording. In case of
anisotropic video1 one can interpret the captured frame as an average of hidden sub-frames

1. Video is called anisotropic or full-exposure if exposure time equals to the time between two frames
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Figure 1: A schematic illustration of our approach: a) neuronal structure in brain tis-
sue sample; b) the tissue sample is cut and captured with ssTEM, producing
anisotropic frames with blur; c) the proposed method SuperSlicing reconstructs
hidden sub-frames with sharp details.

captured with shorter exposure time. The goal is then is to increase temporal resolution:
estimate a high frame rate video from low frame rate.

We propose a method called SuperSlicing (Super resolution frame Slicing). It recon-
structs isotropic hidden subframes from a sequence of anisotropic frames, thereby increasing
the depth or temporal resolution. This reconstruction states an inherently ill-posed problem
as there exists an infinite number of possible sub-frames that can produce the same observed
frame. We propose a regularisation that uses the information from the neighboring frames
to resolve these ambiguities. The problem is formulated as energy minimization which ap-
pears to be convex and therefore guarantees the global optimum. The objective function is
guided by two principal considerations: i) the physical constraints of the imaging process;
ii) the structures in sub-frames should follow the correspondence between structures in the
neighboring frames. To formalize the latter SuperSlicing uses optical flow to find the
correspondences between neighboring frames and interpolates them into sub-frames.

SuperSlicing enables us to propose a novel automated method to perform neuronal
structure segmentation (section 4). It recovers the crisp image of these structures and
facilitates recognition of neural structures. The experiments on Drosophila first instar
larva ventral nerve cord (VNC) dataset Cardona and et al. (2010) demonstrate significant
improvement over the baselines.

2. Related Work

The first group of related techniques for frame enhancement interpolates between two neigh-
boring frames. The simplest approach is a linear frame interpolation, which, although simple
and fast, produces blurry results even when the initial frames are sharp. A more advanced
technique Baker et al. (2011) is based on optical flow estimation and frame warping. How-
ever, in anisotropic data, frames are often reconstructed as blurred as initial frames because
it takes into account no constraints on how imaging is performed. In contrast, SuperSlic-
ing reconstructs the changes within the frame, therefore recovering crisp details in each
sub-frame. We use both of these approaches as baselines in our experiments.
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Figure 2: An illustration of the SuperSlicing pipeline for neuronal structures segmenta-
tion. Based on the non-linear correspondings between neighboring frames Y 1,
Y 2 and Y 3 (a) the algorithm evaluates hidden sub-frames X2,1, X2,2, X2,3 (b).
Then, feature vectors in sub-frame pixels are evaluated: ϕ(xn,1p ), . . . , ϕ(xn,Lp ) (c).
After that the method concatenates them and passes the concatenated feature
vector to a RF classifier (d) that returns the final segmentation (e).

Another approach Hu and et al. (2012) to solving the problem of spatial enhancement
relies on using multiple ssTEM projections. Unlike these methods, we are considering a
more general case and use only one sequence of frames from one ssTEM stack. And the
third type of approaches Shimano et al. (2010) is based on exploring the recurrence of small
self-similar patches in space and time. However, these methods assume that similar patches
appear repeatedly within the frame sequence which is almost never the case for neuronal
structures. In contrast to these methods we do not rely on high recurrence of self-similar
patches and therefore, we solve a more general problem.

Neuronal structure segmentation and recognition has two general approaches.
The first approach Kaynig et al. (2010) focuses on the detection of neuron membranes
in each section independently based only on local information around every pixel. The
second approach Laptev et al. (2012) incorporates context from different sections to resolve
ambiguities that cannot be resolved within one section. The biggest challenge for the
segmentation algorithm is posed by the blurry membranes (see Fig.5), that are often the
result of anisotropy. We propose a novel method that first recovers the sharp sub-frames of
a slice using SuperSlicing and then uses them to perform segmentation. As the recovered
sub-frames contain finer details the segmentation algorithm is able to identify the neuronal
structures with higher accuracy than methods without SuperSlicing.

3. Proposed Method

Let Y n be the observed sequence of frames, n ∈ [1, . . . , N ], ynp – pixel p of the frame Y n,
i(ynp ) – the intensity of pixel ynp . Let ε(xnp ) be a set of neighbors of pixel xnp . We want to

reconstruct L hidden sub-frames Xn,l, l ∈ [1, . . . , L] of the observed frames Y n.

3.1. Optimization task

We define optimization problem 1 to approximate hidden sub-frames as an energy mini-
mization problem for given correspondences Ω. The energy 1 consists of three terms. The
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Figure 3: An illustration of correspondence interpolation. Left: arrows show correspon-
dences between original frames; right: arrows shows interpolated correspondences
between sub-frames. The second term of the energy function encourages the cor-
responding pixels to have low difference in intensities.

first term, the data term, represents the physical constraints that the observed frame should
be equal to the average of the hidden sub-frames: i(ynp ) = 1

L

∑L
l=1 i(x

n,l
p ),∀ynp ∈ Y n.

The second term promotes smoothness by favoring an alignment of pixel’s intensities
in the sub-frames along the structure’s progression between the frames. The algorithm
proceeds by finding correspondences between the anisotropic frames using optical flow and
then interpolates them into the sub-frames using bilinear interpolation (see section 3.2).

The third term encourages the resulting sub-frames to be smooth to avoid visual arte-
facts. This goal is achieved by minimizing the difference of intensities between the neigh-
boring pixels.

E(Xn,1, . . . , Xn,L) =
∑
y∈Y n

(
i(y)− 1

L

L∑
l=1

i(xn,lp )
)2

+ λ
∑

(x̂n,l
p ,x̂n,l+1

q )∈Ω

( ∑
x∈ε(x̂n,l

p )

w(x, x̂n,lp )i(x)

−
∑

x∈ε(x̂n,l+1
q )

w(x, x̂n,l+1
q )i(x)

)2

+ γ
∑

xn,l
p ;xn,l

q ∈ε(xn,l
p )

l=1,...,L

(
i(xn,lp )− i(xn,lq )

)2

(1)

Here λ and γ are Lagrange parameters that control the degree of regularization versus
data fidelity. This is a quadratic functional with respect to i(xn,lq ) and therefore we can
achieve global optimum with any convex optimization technique (we used interior point
method in our experiments).

3.2. Corresponding pixels

How can we find the set Ω of corresponding pixels? A central idea of this paper is to
utilize the context of neighboring frames for reconstructing sub-frames. We first find the
correspondences between the pixels in neighboring frames and only after these constraints
have been identified, we interpolate these correspondences through sub-frames.

Assume that we observe the sequence of three images: Y 1, Y 2 ≡ Y , Y 3. For every pixel
y2
p of y2 we find the corresponding pixel ykp from image yk, k ∈ {1, 3} by finding the set
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Ωk
Y = {(y2

p, y
k
q )|∀y2

p ∈ Y 2} minimizing optical flow energy:

Efl(Ω
k
Y ) =

∑
yp∈Y

(
i(yp)− i(ykq )

)2
+ α

∑
yp∈Y 2

ρ(yp, y
k
q )2

Here α is a model parameter, ρ(yp, yq) is euclidean distance between the pixels yp and yq in
pixel grid. Optical flow results in good correspondences, even though it allows only integer
displacements, because the membrane displacements are smooth and need to be estimated
only up to the thickness of a membrane, which is on average 3 to 7 pixels.

As soon as we have corresponding sets Ω1
Y and Ω3

Y , we can draw a curve ϕ through
y1
p to y2

q and y3
t for every two correspondings (y1

p, y
2
q ) and (y2

q , y
3
t ). Then we interpolate

the pixels curve ϕ crosses in hidden sub-slices: x̂1
ϕ(1), . . . , x̂

L
ϕ(L) (see Fig. 3). Then Ωϕ =

{(x̂lϕ(l), x̂
l+1
ϕ(l+1))|l ∈ [1, . . . , L− 1]}. The final set Ω is a union of all sets Ωϕ.

If pixel x̂n,lp does not fit to the pixel grid, we emply the bilinear interpolation technique

and rewrite it as a weighted sum of direct neighbors in a grid x̂n,lp =
∑

x∈ε(x̂n,l
p )

w(x, x̂n,lp )x,

w(.) ≥ 0,
∑

x∈ε(x̂n,l
p )

w(x, x̂n,lp ) = 1. Here w(x1, x2) is a bilinear weight that is closer to 1

if the distance between x1 and x2 is small and closer to 0 otherwise. We then write the
second set of constraints enforcing that corresponding pixels of sub-frames assume the same
intensity: ∑

x∈ε(x̂n,l
p )

w(x, x̂n,lp )i(x) =
∑

x∈ε(x̂n,l+1
q )

w(x, x̂n,l+1
q )i(x),

∀(x̂n,lp , x̂n,l+1
q ) ∈ Ω, where Ω is a set of all pairs of corresponding pixels.

4. Neuronal Segmentation

We propose a method that first reconstructs hidden sub-frames and uses features that are
evaluated in pixels of recovered sub-frames for classification. Our workflow is illustrated in
Figure 2. For a given section Y n we first recover sub-frames Xn,1, . . . , Xn,L with Super-
Slicing. Then, for every pixel xn,lp , l ∈ [1, . . . , L] we calculate features ϕ(xn,lp ), concatenate
the feature vectors and use this extended feature vector as input to a Random Forest (RF)
classifier Breiman (2001).

We select the method parameters γ and λ as well as optical flow parameter α with cross
validation. We use RF with 255 trees and perform training on 10% of all the pixels. As
features we use per pixel SIFT histograms Lowe (1999) and line filter transforms Sandberg
and Brega (2007) with different parameters.

5. Experiments

To evaluate our approach we perform experiments on several different tasks and datasets.
For all of the following experiments we select the method parameters γ and λ as well as
optical flow parameter α with 5-fold cross validation and with respect to the corresponding
metric used.
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Figure 4: Two fragments of neuronal tissue captured with ssTEM: original sections (left)
and one of sub-frames (right). Arrows point out membranes that were blurred
out in the original images and appear more visible after sub-frame decomposition.

5.1. ssTEM imaging and Neuronal Reconstruction

We use publicly available segmentation challenge dataset Cardona and et al. (2010). Fig-
ures 4 and 5 qualitatively shows the results of our algorithm for hidden frame recovery.
Membranes recovered in the sub-frames using SuperSlicing are much sharper than the
ones produced by the baseline methods.

To quantitatively test the approach for neuronal membrane segmentation presented in
section 4, we compare segmentation results with two more methods: RF segmentation based
on only features evaluated in one layer Kaynig et al. (2010), and RF segmentation based on
context from neighboring sections Laptev et al. (2012). For fair comparison we implement
the same set of features for all three methods and use the same RF structure with no
post-processing to measure the impact of SuperSlicing.

As we care about neurons topology, but not pixel-wise reconstruction, we also compare
the results in terms of warping error Jain and et al. (2010). The warping error mea-
sures the topological error between proposed labeling X̂ and a reference labeling X?. It
is evaluated as squared Euclidean distance between X? and the ”best warping” F of X̂
onto X? such that the warping F is from the class Λ that preserve topological structure:
minF∈Λ

∑
p δ(F (X̂)p, X

?
p ). For further information about the warping error the interested

reader is referred to Jain and et al. (2010). The results are summarized in table 1. The
results on sub-frame stack produced by SuperSlicing are 17% better than one sections
segmentation and 11% better then the results based on three neighboring sections.

5.2. Natural videos

Rotating Fan We test the proposed algorithm on a rotating fan video from Shahar et al.
(2011) to evaluate our method qualitatively 2. As the rotation speed is higher than the
shutter speed the frame renders blurred fan blades. Based on three neighboring frames and

2. We do not compare with Shahar et al. (2011) directly, as their method operates under different assump-
tions and, moreover, they provide no quantitative results.
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Method Warping error

One-section segmentation Kaynig et al. (2010) 2.876 ∗ 10−3

Three consecutive sections Laptev et al. (2012) 2.693 ∗ 10−3

SuperSlicing segmentation 2.384 ∗ 10−3

Table 1: Warping error on a testing set for one-section segmentation, segmentation based
on three consecutive sections and for SuperSlicing. Our method outperforms
the baseline methods by 17% and 11%, respectively.

Figure 5: A qualitative comparison of our method with the baselines. Column (a) shows
original anisotropic sections. Three following column shows L = 3 interpolated
frames estimated with: linear interpolation (b), optical flow warping (c), Super-
Slicing (d). Arrows point out blurred membranes that are better visible after
sub-frame reconstruction.
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Figure 6: A comparison of SuperSlicing with the results of alternative methods. Column
(a) shows original frames Y 1, Y 2 and Y 3. Each following column shows three
interpolated frames estimated with: linear interpolation (b), optical flow warping
(c), SuperSlicing (d). Arrows point out that SuperSlicing results in less
blurred fan blades.

no prior information we estimate L = 3 hidden sub-frames with linear interpolation, optical
flow interpolation and the proposed method. Figure 6 shows the results of comparison.
As can be seen linear interpolation blurs sub-frames even more. Optical flow interpolation
shows the rotation of the fan, but as the initial frames are blurred, the resulting warping is
blurred as well. SuperSlicing shows superior results: it reconstructs the original shape of
the blades and renders sharp sub-frames.

KTH dataset We perform synthetic experiments on the KTH action database Schuldt
et al. (2004) to quantify the quality of SuperSlicing’s reconstruction. This database
consists of videos recorded at 24 frames per second. We first downsample the frame rate
to 8 frames per second while taking an average of three neighboring frames (low frame rate
videos). Then we reconstruct sub-frames with four different methods: frame repetition,
linear interpolation, optical flow warping and SuperSlicing. Figure 7 shows qualitative
results for the number of hidden sub-frames equal L = 2 or 3. Boxplots in Fig. 8 visualises
the comparison of peak signal to noise ratio (PSNR) evaluated on 25 frames of video for
L = 3 and L = 2 respectively. SuperSlicing outperforms baseline methods for almost all
frames and the average quantitative results appear to be significantly superior: 23% better
for frame repetition and 10% for both linear interpolation and optical flow warping.

6. Conclusion

This paper addresses the problem of anisotropic data restoration in ssTEM microscopy.
Our main contribution is a method called SuperSlicing that decomposes an observed
anisotropic frame into a sequence of hidden isotropic sub-frames. The proposed method
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Figure 7: A comparison of our reconstrction results with the results of different methods and
with ground truth. Top: walking person video reconstruction with L = 3 hidden
sub-frames. Bottom: hand waving person video reconstruction with L = 2 hidden
sub-frames. Column (a) shows original frames Y 1, Y 2 and Y 3 from low frame rate
video. Three following column shows L = 3 interpolated frames estimated with:
linear interpolation (b), optical flow warping (c), SuperSlicing (d). Column (e)
shows ground truth from high frame rate video. Our results are less blurred and
they are qualitatively closer to the ground truth than the results of the baseline
methods.
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Figure 8: An illustration of quantitative results on KTH videos for different methods. Left
plot: walking person video with L = 3 hidden sub-frames, right plot: hand waving
person video with L = 2 hidden sub-frames. Each boxplot shows statistics for
PSNR (in dB) evaluated for: frame repetition (1), linear interpolation (2), optical
flow warping (3) and our method (4).

requires only two neighboring frames to perform the decomposition and it does not assume
any special properties of the data.

SuperSlicing incorporates two types of constraints. One of them represents physical
properties of the involved imaging technique and the other constraint encourages the pixels
that lie along the progression of objects between the frames to be of the same intensity. In
order to find corresponding pixels we first find optical flow between observed frames and
interpolate the flow into the sub-frames.

Based on SuperSlicing we develop an algorithm for an automatic membrane segmen-
tation in ssTEM sections. We show how to increase the performance of the segmentation
algorithm by decomposing an observed anisotropic frame into isotropic sub-frames. We
demonstrate the quality of the method on publicly available dataset where it performs, in
term of warping error, 17% and 11% better than the baselines.

We also provide both qualitative and quantitative results for videos from the KTH
action video dataset. We artificially synthesize blurred low frame rate video and decompose
it into sub-frames. We evaluate PSNR and compare the results with three different baseline
methods. Our results are on average 10% better than state-of-the-art.
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