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Abstract

Unravelling the causal link of neuronal pairs has considerable impacts in neuroscience,
yet it still remains a major challenge. Recent investigations in the literature show that
the Generalized Transfer Entropy (GTE), derived from information theory, has a great
capability of reconstructing the underlying connectomics. In this work, we first generalize
the GTE to a measure called Csiszár’s Transfer Entropy (CTE). With a proper choice of the
convex function, the CTE outperforms the GTE in connectomic reconstruction, especially
in the synchronized bursting regime where the GTE was reported to have poor sensitivity.
Akin to the ensemble learning approach, we then pool various measures to achieve cutting
edge neuronal network connectomic reconstruction performance. As a final step emphasize
the importance of introducing regularization schemes in the network reconstruction.

Keywords: Csiszár’s Transfer Entropy, Metric Score Pooling, Network Regularization,
Inverse Correlation

1. Introduction

Understanding the structure and mechanism of the human brain at the cellular and subcel-
lular levels has long been the most challenging issue of science, as echoed in both the recent
USA BRAIN project and the EU HBP project. Such a deep understanding will reveal
the functions of brain and further inspire the development of the diagnosis, treatment and
prognoses of major neurological disorders, such as Alzheimer’s disease. We note that recent
investigations usually start from understanding learning capability - one of the prominent
features of the brain. It is therefore a key issue to reliably recover both the exact wiring
patten and the wiring strength of the network at the neuronal level; these are tightly asso-
ciated with the learning capability of the brain, as the result of the Hebbian learning rule
and spike time-dependent plasticities.

Although the traditional neuroanatomic method of axonal tracing can characterize the
connectivity for some very small networks, it cannot be applied directly to networks with
large scales. Recent advances in calcium imaging has provided an alternative for unveiling
the complex neuronal circuitry (Grienberger and Konnerth, 2012). Optical imaging of
neuronal activity makes it possible to monitor the simultaneous activity of tens of thousands
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of neurons, with a time resolution of 20 ms. With the help of computational algorithms,
the causal relationship between neuronal pairs can be determined and the corresponding
large scale of the neuronal network reconstructed (Stetter et al., 2012).

To advance research on neuron network reconstruction from Calcium fluorescence imag-
ing data, a platform calling participants to compare and improve their network recon-
struction algorithms was established by the committee of 2014 Connectomics Challenge.
Synthetic calcium fluorescence recordings generated from realistically simulated neuronal
network were presented to the participants to reconstruct synaptic wiring. A few samples,
with ground truth topology, were provided to train participants’ models, one validation set
without ground truth topology was provided to validate their solutions, and the perfor-
mances of the solutions were benchmarked on a test sample using the so-called Area Under
ROC Curve (AUC) score. In this short paper, we introduce our approach for solving the
challenge, which finally ranks 9th on the platform.

The remainder of this paper is organized as follows. In Section 2, we first describe the
preprocessing steps adopted, then we detail the CTE measure, score pooling and regular-
ization procedure. The results are presented in Section 3. Finally in Section 4, we discuss
the limitations of our approach and point out a few potential future directions.

2. Methods

2.1. Preprocessing of Calcium imaging

The following preprocessing steps have been adopted to generate input data for computing
the metric scores used in the reconstruction of neuronal wiring.

Two schemes have been used to separate the synchronized and unsynchronized dynam-
ical regimes. First one is simple thresholding, the period during which mean Calcium
imaging intensity exceeding certain threshold is identified as synchronized bursting regime.
Multiple thresholding parameters are used (from 0.12 to 0.25). The second approach ex-
plicitly extracts the synchronized dynamics and deflates it from the individual recordings.
Specifically, the first eigenvector of the principal component of the raw fluorescence data is
identified as synchronized dynamics and is projected out from the recordings.

Both the simple discretization and more elaborate OOPSI package (Vogelstein et al.,
2010) were used to infer the spike trains from the Calcium waves. Signals with and without
deflation of the synchronized dynamics were all discretized using the above two schemes. For
the OOPSI scheme, we used the fast oopsi implementation to speed up the preprocessing.
The iteration runs were set to 5-8 depending on the SNR of the data. After filtering with
OOPSI, the 1% largest non-zero entries were identified as spiking time points while the rest
were identified as noise and discarded.

We also separated the individual responses during synchronized bursting. We first iden-
tified the spiking time points of the synchronized dynamics using an OOPSI filter. Then the
response of individual neurons, during the synchronized bursting period, was characterized
as the Calcium imaging intensity increase at the spiking time point.
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2.2. Csiszár’s Transfer Entropy

In probability theory, a divergence measure is a function D(P ‖ Q) that measures the
difference between two probability distributions P and Q. The most widely used divergence
measure is the Kullback-Leibler (K-L) divergence, with the mutual information as a special
case. This idea was later generalized by Csiszár, which resulted into a family of divergence
measures (Csiszár, 1963). This is known as the Csiszár’s f-divergence, which is defined as

Df (P ‖ Q) ≡
∫

Ω
f

(
dP

dQ

)
dQ.

where f is an convex function satisfying f(1) = 0.
The transfer entropy (TE) is a non-parametric statistic measuring the amount of directed

(time-asymmetric) transfer of information between two random processes (Schreiber, 2000).
It could be interpreted as the reduced uncertainty of future X given the present Y , or the
K-L divergence of the transition probability with or without the knowledge of Y . Replacing
the log function in TE with the convex function f in the Csiszár’s f-divergence, we obtain
the more general Csiszár’s Transfer Entropy by analogy:

CTEY→X =

∫
Ω
f

(
dP (Xt+1|X(k)

t )

dP (Xt+1|X(k)
t , Y

(k)
t , Yt+1)

)
dP (Xt+1, X

(k)
t , Y

(k)
t , Yt+1).

Here each Z
(k)
t denotes the delay-embedded state vector (Zt, · · · , Zt−k+1), and the additional

Yt+1 in the conditioning conforms to the GTE used in Stetter et al. (2012). Binary valued
spike trains were used to calculated CTE/GTE. In this study, we use the α-divergence
(Liese and Vajda, 2006) specified by

f(t) =


4

1−α2

[
1− t(1+α)/2

]
, if α 6= ±1,

t ln t, if α = 1,

− ln t, if α = −1.

As the K-L divergence is a special case of the alpha-divergence, so their performance could
be directly compared. Here, the ideal value of α should maximize the AUC score in the
training sample. In this studied we discretized the data into binary code indicating whether
the neuron is firing, thus making it comparable to GTE. We note more refined binning of the
neuron’s firing intensity will improve the performance at the cost of larger memory usage.
Some other convex functions have also been tested and produce similar best performances
(data not shown).

2.3. Correlation metrics

The conventional Pearson’s correlation was also calculated to generate the pooled statistics
for optimal connectivity reconstruction as it could be obtained cheaply and proved to be a
quite good metric score when the data is properly preprocessed. Specifically, we used the
correlation and delayed correlation (with lag 1). The correlation metrics were calculated
from the following input data: individual response during the synchronized bursting period,
OOPSI-filtered spikes during unsynchronized bursting period. The spikes used to calculate
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the correlation metrics are real valued to reflect the spiking intensity during bursting and it
is more informative compared to correlation calculated from binary valued spike trains. We
also tested the performance of more general but computationally more intensive nonlinear
kernel-based correlation metric (Bach and Jordan, 2003) after the challenge and is briefly
discussed in Supplementary Information.

2.4. Pooling of different metric scores

Two simple approaches were used to integrate the evidence from different metrics and
different preprocessing schemes using the training data. Specifically, we considered the
Bayesian posterior probability and a linear combination of metrics. First, the original score
obtained from different metric or preprocessing schemes are normalized to the interval [0, 1]
according to their ranks. Then the bayesian posterior probability for the corresponding link
being true, given the observed (normalized) metric score RdataX→Y , is calculated by

P (SX→Y = 1|RdataX→Y ) =
P (SX→Y = 1, RtrainX→Y = RdataX→Y )

P (RtrainX→Y = RdataX→Y )

where SX→Y represents whether there is a true link from X to Y and RX→Y is a vector
of normalized scores. The probability in the above formula could be estimated either by
kernel smoothing or binning. To ensure sufficient samples for estimating the probability,
we restricted the dimension of RCX→Y to two. We also use the following simple linear
combination to aggregate the evidence from two different metrics R̃ and R̂:

RjointX→Y = ωR̃dataX→Y + (1− ω)R̂dataX→Y ,

where ω = arg max
ω

AUC(ωR̃trainX→Y + (1− ω)R̂trainX→Y ).

These two approaches defining the basic hybridization operation on the pool of all metric
scores. Enlightened by staked ensemble learners (Zhou, 2012), we adopted an evolutionary-
like hybridization procedure that heuristically mates two relevant1 or best performing metric
scores and then adds their best offspring to the pool. We then repeated this procedure until
the best AUC score in the pool no longer increased.

2.5. Regularization on the recovered network

We observe that for all the metrics scores we obtained, the degree distribution of the recon-
structed networks differs from the genuine wiring that generated the data. The presynaptic
and postsynaptic links of the estimated hub nodes are often overestimated while some of
the non-hub nodes are disconnected from the estimated network. In this light we argue that
in order to obtain more realistic reconstruction, we must regularize the network topology
- to some extent. In this study, we did this by explicitly reweighting the score metrics to
suppress the links related to the hub nodes and to encourage the links that wire the discon-
nected nodes back to the network. The reweighting procedure is outlined in Algorithm 1 in
Supplementary Information.

1. Relevant in the sense that they are derived from same input data or same metric score.
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2.6. Evaluation of the reconstruction performance

The network reconstruction was considered as a binary classification problem. The solution
returns a numerical score for each directed neuron pair indicating the confidence that there
is a directed connection, with higher values indicating a more likely connection. The results
of the classification, obtained by thresholding the prediction score, may be represented in
a confusion matrix, where tp (true positive), fn (false negative), tn (true negative) and fp
(false positive) represent the number of examples falling into each possible outcome. The
sensitivity (also called true positive rate or hit rate) and the specificity (true negative rate)
as:
True positive ratio = tp/pos
False positive ratio = fp/neg
Here pos = tp+fp, neg = tn+fn indicating the total number of connected and unconnected
pairs. The prediction results are evaluated with the AUC, which corresponds to the area
under the curve obtained by plotting the “True positive ratio” against the “False positive
ratio” by varying a threshold on the prediction values to determine the classification result.

3. Results

In this section, we present an empirical study of our proposed procedure on the four training
sets (normal-1 ∼ 4) provided in Connectomics Challenge. Each of these training sets
is comprised of approximately 170, 000 continuous recordings sampled at 50 Hz of 1, 000
neurons with 1.2% connected pairs. Interested readers may refer to (Stetter et al., 2012)
for details of the simulation setup.

3.1. CTE

We compared the performance of the CTE with the GTE. A family of the CTE was obtained
by varying the parameter α and the resulting α-AUC curves are shown in Figure 1. For
the 4 datasets, the peak of the α-AUC curves consistently appeared around α ≈ 4. And
the differential sensitivity with respect to the dynamical regime is surprising. While the
CTE only offers small advantage in the non-synchronized bursting regime (∼ 4× 10−3), it
significantly improved the reconstruction in the synchronized bursting regime (∼ 9× 10−2

in this illustration, and even more drastically using some other discretization scheme). It is
interesting to notice that the AUC score of the traditional K-L Transfer Entropy happens
to fall on the bottom of the valley in the synchronized regime.

3.2. Pooling metrics scores

The effectiveness of pooling different metric scores is presented in Table 1. In the upper
panel of the table AUC scores of a representative subset of the the raw metric scores used
along with their pooled metric score (using all the raw metric scores) are tabulated for
the 4 validation datasets. The tuning parameters are optimized for dataset ’normal-3’ and
used by the rest of datasets. As shown, pooling significantly boosts the performance of the
reconstruction evaluated by AUC scores. The fifth column of lower panel of the table gives
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Figure 1: The AUC score of Csiszár’s Transfer Entropy with different values of the param-
eter α. Blue curves are obtained from the non-synchronized regime while the
green curves from the synchronized regime. The intersections with the red curve
correspond to the traditional K-L GTE.
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one of the best (and fastest) winning solutions based on inverse correlation2, and combining
it with our best solution (column POOL) gives extra 4 ∼ 6 × 10−3 boost in AUC score
(column BEST), which beats all best solutions during the contest. Detailed description of
those metric scores and whether they are used in the challenge could be find in Table 2.

Table 1: AUC Score with Pooling and Regularization

CORR1 CORR1D CORR2 CORR2D GTE1 GTE2 POOL

normal-1 0.8888 0.8585 0.8918 0.5568 0.8892 0.6503 0.9240

normal-2 0.8934 0.8556 0.8894 0.5328 0.8930 0.6289 0.9256

normal-3 0.8906 0.8542 0.8920 0.5611 0.8932 0.6545 0.9248

normal-4 0.8876 0.8499 0.8844 0.5380 0.8721 0.6216 0.9217

CORR2 CORR2i CORR2o CORR2io MIC MICo BEST

normal-1 0.8918 0.8955 0.8997 0.9001 0.9412 0.9422 0.9465

normal-2 0.8894 0.8938 0.8986 0.8991 0.9412 0.9422 0.9473

normal-3 0.8920 0.8966 0.9009 0.9015 0.9394 0.9405 0.9461

normal-4 0.8844 0.8883 0.8928 0.8934 0.9376 0.9385 0.9441
† D: delayed correlation, i: regularizing on input (postsynaptic connections), o:regularizing

on output (presynaptic connections), io:regularizing both input and output)

Table 2: Description of the metric scores

CORR1 CORR2 GTE1 GTE2 POOL BEST

individual response (syn) O - - - - -

OOPSI-filtered (non-syn) - O - - - -

discretization (syn) - - O - - -

discretization (non-syn) - - - O - -

use entire sequence - - - - - O

binary - - O O - -

used in challenge O O O O O -

challenge submission - - - - O -

3.3. Network regularization

The gain using network regularization is presented in the lower panel of Table 1. The column
name indicates the regularization used. For the raw metric score CORR2 this could bring
up the AUC score by about 1× 10−2. For the inverse correlation metric it can still elevate
the AUC score by 1×10−3. We noticed that regularizing the output links resulted in larger
gain compared with regularizing the input links. We note that our regularization scheme is
definitely not a universal fix as it certainly depends on the assumption that the distribution
of training data and testing data is the same, and violation of this assumption will lead to
deteriorated performance.

2. http://www.kaggle.com/c/connectomics/forums/t/8186/fast-matlab-code-to-get-a-score-of-93985
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3.4. Challenge results

The final performance of our challenge solution and post-challenge solution in the 2014
Connectomics Challenge is presented in Table 3 together with the winner’s performance.
Our best post-challenge solution outperform the best challenge solution by a large margin.

Table 3: Result Table

team name killertom

final private leaderboard performance 0.93011 (ranking 9th)

winner’s performance 0.94161 (team AAAGV)

our post-challenge best performance 0.94663 (BEST in Table 1)

4. Discussion

Our method is based on linear combination of correlation coefficient and CTE, using data
preprocessed with simple discretization, OPPSI filter and PCA. Most of the winning teams’
solutions relied on correlation-based metrics, and inverse correlation in particular. Some
teams used more sophisticated machine learning tools such as deep CNN, random forest,
SVM, etc. Some participants also came up with certain network regularization schemes
such as network deconvolution or directly including node-wise relative metric score into
the model. Most teams emphasized the paramount importance of preprocessing the noisy
calcium imaging data. Our approach seems to be the only one which still extensively
uses entropy-based statistics among all the winning parties, possibly due to the costly
computational burden involved. We resolve this by optimizing the MATLAB subroutine
provided by the organizer which ended up running 20 times faster on desktop than the C++
implementation also provided by the organizer on cluster. As shown in column BEST in
Table 1, there is still much room for improvement by combining our approach with other
winning teams’ solutions, even if their AUC score is 1× 10−2 better than our results.

One significant problem that applies to most of the winning team approaches, including
ours, is that the optimal predictability for connectivity is ‘learnt from training samples’
rather than ‘inferred from the dynamics observed’, as in reality it is infeasible to obtain
real training samples and simulation based surrogates might be biased. We argue that it is
the dynamical properties that matter, and instead of statistical solutions, we should start
looking for apparatus from the theory of dynamical systems (Sugihara et al., 2012). Also,
most participants are still determining the causal links in a pair-wise fashion, with the
possibility of gaining information from a more holistic perspective is left uncharted. Those
computationally feasible non-linear association measures (Gretton et al., 2008) might serve
as substitutes for those computationally demanding entropy-based statistics.
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Supplementary Information

Algorithm 1: Regularizing the network via reweighing

1. Sort the neurons according to their largest in(out) score
RCi,· : the column corresponding to ith largest in {max(Ck,·)}

2. Reweigh the first K in(out) links for each neuron via
RCv1i,j = (1 + α j

n)RCi,j

3. Calculate the probability of the in(out) links of the ith-ranking neuron being
connected given the training data (sorted in the same fashion)
PSi,· = average

|k−i|<B
(RStraink,· )

4. Smooth individual neuron’s PS score
PSsmi,· = smooth(PSi,·)

5. Prioritizing the entries with PSsm exceeding the threshold γ while taking the
current estimate of connectivity strength into consideration
RCv2i,j = χ

[PSsm
i,j

>γ]
(1 + PSsmi,j + βRCv1i,j) + χ

[PSsm
i,j

≤γ]RC
v1
i,j

6. Enforcing a minimum number of L in(out) links for each neuron
RCv3i,j = χ

[j<l]
+RCv2i,j

The set of tuning parameters {K,L,B, α, β, γ} are selected to maximize AUC score in
the training data.

kernel-based correlation metric

We used the generalized-variance in Jordan’s ICA paper to characterize the nonlinear kernel
correlation. Specifically, only the first eigenvalue is used. The kernel-based correlation
gives similar performance in instantaneous coupling (Pearson 0.888 ≈ 0.896 V.S. kernel
0.889 ≈ 0.896) while it significantly outperforms Pearson’s correlation in lag-1 correlation
(Pearson 0.550 ≈ 0.564 V.S. kernel 0.706 ≈ 0.711). This is because the lag-1 dynamics
exhibits a highly nonlinear pattern. More detailed results and discussion will be presented
in a separate paper.
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