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Editors: Wilhelmiina Hämäläinen, Francois Petitjean, and Geoff Webb

Abstract

Most analysis of U -statistics assumes that data points are independent or stationary. How-
ever, when we analyze network data, these two assumptions do not hold any more. We
first define the problem of weighted U -statistics on networked data by extending previous
work. We analyze their variance using Hoeffding’s decomposition and also give exponential
concentration inequalities. Two efficiently solvable linear programs are proposed to find
estimators with minimum worst-case variance or with tighter concentration inequalities.

1. Introduction

Nowadays there is a plethora of real-world datasets which are network-structured. These
are examples of relational databases, i.e. data samples are relations between objects, and
so exhibit dependencies. A typical example is the web which, due to the explosion in social
networks and the expansion of e-commerce, is generating an immense amount of network-
structured data. Therefore we need statistical methods that permit us to mine and learn
from this type of datasets. An example of a statistical method that generates unbiased
estimators of minimum variance involves the notion of U -statistics. U -statistics are a class
of measures, proposed by W. Hoeffding (Hoeffding, 1948), which can usually be written
as averages over functions on elements or tuples of elements of samples, e.g., the sample
mean, sample variance, sample moments, Kendall’s τ (see (Kendall, 1938)), Wilcoxon’s
signed-rank sum (see (Wilcoxon, 1945)), etc.

Most analysis of U -statistics assumes that data points are independently distributed.
However, when we consider networked data points, this assumption does not hold any more;
two or more examples may share some common object.

In our previous work (Wang et al., 2014), we provided a statistical theory of learning
from networked training examples. This work generalizes the results and extends the ideas
further. A crucial assumption in our previous work was that every (perhaps correlated) data
point is used only once. In contrast to this, U -statistics (see e.g. (Lee, 1990)) are a class of
measures that allows us to repeatedly use data points. For example, the rank correlation
estimator of Kendall (Kendall’s τ) compares every data point to all other points. When
we consider U -statistics on networked data points, data points are repeatedly used if the
degree, d, of the kernel of U -statistics is greater than 1 (the case d = 1 has been discussed
in (Wang et al., 2014)). Different data points may be also correlated. In this work we
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address the problem of how to design U -statistics, on networked data points, that exhibit
small variance and small probability of deviation from their mean.

There is a vast literature on U -statistics for dependent random variables. However, most
of the work focuses on providing central limit theorems and related results for dependent
stationary sequences of random variables. For example, in (Khashimov, 1988; Hsing and
Wu, 2004; Lee, 1990; Khashimov, 1994; Kim et al., 2011) the authors discuss U -statistics
on several types of stationary sequences, like weakly dependent stationary sequences, m-
dependent stationary sequences, absolutely regular process and random variables with mix-
ing conditions, etc. The assumptions made in those works are not suitable for networked
random variables which will be discussed in this paper. Our contribution is to not only an-
alyze the variance and provide concentration bounds of U -statistics on networked random
variables but also to design good U -statistics for this type of networked data.

In addition, there exists literature on weighted U -statistics. In (Ha et al., 2014), the
authors analyze the asymptotic behavior of weighted U -statistics with i.i.d. data points. In
(Nasari, 2012). the author considers incomplete U -statistics which are similar to our setting,
but the attention is focused towards asymptotic results under the assumption of i.i.d. data
points. In (O’Neil and Redner, 1993), it is shown that non-normal limits can occur for
some choices of weights. In (Rifi and Utzet, 2000), one can find a sufficient condition for
the convergence of weighted U -statistics. In (Hsing and Wu, 2004), the authors consider
weighted U -statistics for stationary processes. Our results differ from the above in the fact
that we do not assume independence and our attention is focused towards different aspects.

The rest of the paper is organized as follows. In Section 2, we define a weighted version
of U -statistics on networked random variables and state the basic questions we are inter-
ested in. In Section 3, we bound the variance of the U -statistics by employing Hoeffding’s
decomposition. Subsequently, in Section 4, we formulate a linear program that allows us
to obtain a concentration inequality for weighted U -statistics. In Section 5, we minimize
the worst-case variance using a convex program. Finally, in Section 6, we draw conclusions
with some remarks and comments on possible future work.

2. Preliminaries

In this section, we give a formal definition of the problem that is addressed in this paper.
Let G = (V (1)∪V (2), E) be a bipartite graph1 and assume that we are given two sets of i.i.d.
random variables that are indexed using the vertices of G. That is, let X (1) = {φv}v∈V (1) be
a set of i.i.d., vector-valued random variables associated to V (1) and let X (2) = {ψv}v∈V (2)

be a set of i.i.d. random variables associated to V (2). Fix any enumeration {e1, . . . , en} of
the edge set E. To every edge ei = (u, v) ∈ E, we associate a pair of random variables by

setting Xi = (φv, ψu) ∈ X (1) ×X (2). We will denote by X
(1)
i the first coordinate of Xi and

by X
(2)
i the second coordinate of Xi. Similarly, e

(i)
j , i = 1, 2, will denote the vertex of ej that

lies in V (i). We will refer to the set X = {Xi}ni=1 as a set of G-networked random variables.

In addition, for S ⊆ {1, 2}, we will denote by X
(S)
i = ×s∈SX(s)

i the (sub)vector formed by

the coordinates of Xi that correspond to S. In particular X
(∅)
i = ∅. For S, T ⊆ {1, 2},

1. We remark that our results can be extended to k-partite hypergraphs but, in order to keep the formalism
simple, we present here the case k = 2.
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we will denote by X
(S)
i · X(T )

j the (sub)vector Y ∈ X (S∪T ) for which Y (S) = X
(S)
i and

Y (T ) = X
(T )
j .

Let f(·, ·) be a real valued function such that if ei and ej are disjoint edges in E (henceforth
denoted ei ∩ ej = ∅) then E[f(Xi, Xj)] = µ and E

[
f2(Xi, Xj)

]
− µ2 = σ2. Such a function

f(·, ·) appears, for example, in the Kendall’s τ rank correlation coefficient (see Example 1
below). Let us illustrate the above definitions with an example.

Example 1 Let the vertex set V (1) represent a set of persons and V (2) represent a set of
films. For every person v ∈ V (1) and every film u ∈ V (2) join the corresponding vertices
with an edge if and only if person v has seen the film u. The result is a bipartite graph,
G = (V (1) ∪ V (2), E). An instance of such a graph can be found in Figure 1. Suppose that
for every person v ∈ V (1) there is feature vector, φv, that contains information on, say, the
gender, age, nationality, etc., of person v and that for every film u ∈ V (2) there is a feature
vector, ψu, containing information on, say, scenography, actor popularity, etc., of film u.
Thus, every edge ei = (v, u) ∈ E is associated to vector Xi = (φv, ψu). Now suppose that we
have two functions, S1(·), S2(·), that take values in [0, 1] and are such that Sk(Xi), k = 1, 2,
represents a rating/certificate that is given to a specific characteristic of film u by person v.
If ei, ej are such that ei ∩ ej = ∅, define the function f(Xi, Xj) by setting

f(Xi, Xj) = (−1)I{S1(Xi)>S1(Xj)}+I{S2(Xi)>S2(Xj)},

where I{·} denotes indicator. Thus f(Xi, Xj) is equal to 1 if the ordering on both ratings
agree and equal to −1, otherwise. Kendall’s τ -coefficient (see (Kendall, 1938)) is defined
as τ = 2

n(n−1)
∑

ei,ej
f(Xi, Xj), where the sum runs over all pairs of disjoint edges, ei, ej.

Note that the fact that the function f(·, ·) is defined only for disjoint edges implies that τ is
an unbiased estimator. �

For a fixed bipartite graph, G = (V,E), let us denote by E0 = {(i, j) : ei, ej ∈ E and ei∩
ej = ∅} the set consisting of all pairs that are indices of disjoint edges from E (as an example,
see Fig. 1. Suppose that we are given a function w : E0 7→ [0,+∞) of nonnegative weights
on the indices of pairs of disjoint edges from E. Set

U(f, w) =
1

|w|
∑

(i,j)∈E0

wi,jf(Xi, Xj), (1)

where |w| =
∑

(i,j)∈E0 wi,j . We will refer to U(f, w) as a weighted U -statistic of f . Note
that, by definition, U(f, w) is an unbiased estimator of µ, or, more formally

E[U(f, w)] = µ = E[f ] for all f, (2)

and that, in order to guarantee this condition, it is important to sum over disjoint edges in
Eq. (1). Hence the means of U(f, w) and f are the same, but the same may not be true for
the variance. Our attention in this paper (see Sections 3 and 5) is focused towards analyzing
the variance of U(f, w). Function f(·, ·) will be called the kernel of the U -statistic and will
be considered as fixed throughout the paper; hence from now on we will denote U(f, w) by
U(w). Because the kernel associates a real number to two vectors Xi, Xj ∈ X (1)×X (2), we
say that its degree is two.
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Figure 1: A bipartite graph. It contains nine pairs of disjoint edges: ({1, 5}, {2, 6}),
({1, 5}, {2, 7}), ({1, 5}, {3, 7}), ({1, 5}, {4, 7}), ({1, 6}, {2, 7}), ({1, 6}, {3, 7}),
({1, 6}, {4, 7}), ({2, 6}, {3, 7}), ({2, 6}, {4, 7}). If the kernel is not symmetric then
for each pair, say ({1, 5}, {2, 6}), we have to include also the pair consisting of
the same edges but written in reversed order, i.e., ({2, 6}, {1, 5}).

In classical U-statistics (see (Hoeffding, 1948)), the variables {Xi}ni=1 are i.i.d. and all
wi,j are equal to 1. By introducing weights in the above definition we will be able to obtain
estimators that exhibit small variance and improved bounds on the probability of deviation
from the mean.
Notice that the networked variables {Xi}ni=1 are not independent anymore, because two
or more random variables may share the first or the second coordinate. For example, if

e
(1)
i = e

(1)
j = v, then X

(1)
i = X

(1)
j = φv.

In this paper we shall be interested in following basic questions:

• Can we find a sharp upper bound on the variance of U(w)?

• How can we bound the probability of deviation Pr[U(w)−µ ≥ t] for every fixed t > 0?

• How can we design a good (low variance and/or small probability of deviation) statistic
U(w) by suitably choosing the weight function w?

We investigate these questions in the subsequent sections.

3. Hoeffding’s decomposition

In this section, we apply a technique, which is known as Hoeffding’s decomposition, on
weighted U -statistics of networked random variables. We begin by describing this well
known technique (see (Hoeffding, 1948)).

Fix two independent random variables, say Xi and Xj , for which the corresponding edges

are disjoint, i.e. ei∩ej = ∅. For any two subsets S, T ⊆ {1, 2}, we define µ(S,T )

(
X

(S)
i , X

(T )
j

)
recursively via the following formula:

µ(S,T )

(
X

(S)
i , X

(T )
j

)
= E

[
f(Xi, Xj)|X(S)

i , X
(T )
j

]
−

∑
(W,Z)⊂(S,T )

µ(W,Z)

(
X

(W )
i , X

(Z)
j

)
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U-statistics on network-structured data with kernels of degree larger than one

where (W,Z) ⊂ (S, T ) means, by definition, W ⊆ S, Z ⊆ T but (W,Z) 6= (S, T ) and

E
[
f(Xi, Xj)|X(S)

i , X
(T )
j

]
denotes the conditional expectation of f(Xi, Xj) , given X

(S)
i and

X
(T )
j . Hoeffding’s decomposition allows one to express f(Xi, Xj) in terms of functions

µ(S,T )

(
X

(S)
i , X

(T )
j

)
, or, more formally

f(Xi, Xj) = E[f(Xi, Xj)|Xi, Xj ] =
∑

S⊆{1,2},T⊆{1,2}

µ(S,T )

(
X

(S)
i , X

(T )
j

)
.

It is a well-known result, and in fact not so difficult to see, that the covariance of

µ(S,T )

(
X

(S)
i , X

(T )
j

)
and µ(W,Z)

(
X

(W )
i , X

(Z)
j

)
is zero for (S, T ) 6= (W,Z), i.e., they are

uncorrelated. This implies that

σ2 =
∑

S⊆{1,2},T⊆{1,2}

σ2(S,T ) − µ
2, (3)

where σ2 = E
[
f2(Xi, Xj)

]
− µ2 and σ2(S,T ) = E

[
µ2(S,T )

(
X

(S)
i , X

(T )
j

)]
. In other words, the

variance of f can be partitioned into a sum of variance-components, where every component
corresponds to a pair of subsets of {1, 2}. Therefore, Hoeffding’s decomposition allows us
to write the function f(Xi, Xj) as a sum of several uncorrelated functions.

This decomposition simplifies significantly the analysis of the variance of U -statistics
based on an i.i.d. sample. To see this, let {Xi}ni=1 be i.i.d. and suppose that i, j, k are three
different indices. Consider the U -statistics that are defined on {Xi}ni=1 with all weights being
equal to 1. We want to find upper bounds on the variance of U(w). Since the variance of
U(w) equals E

[
U(w)2

]
−µ2 (see also Eq. (1)), we have to find upper bounds on expressions of

the form E[f(Xi, Xj)f(Xi, Xk)] and then add them up. Note that E[f(Xi, Xj)f(Xi, Xk)]−
µ2 is the covariance of f(Xi, Xj) and f(Xi, Xk). Now, in case one uses an i.i.d. sample, it
can be shown that

E[f(Xi, Xj)f(Xi, Xk)]− µ2 = σ2({1},∅) + σ2({2},∅) + σ2({1,2},∅).

Thus, the variance of U decomposes into a sum of smaller variance-components. We re-
mark that in the classical analysis of the variance of U -statistics using an i.i.d. sample we
often assume that the kernel f is symmetric, i.e. f(Xi, Xj) = f(Xj , Xi). The symmetry
guarantees that the covariance of every possible pair, f(Xi, Xj), f(Xm, Xl), can always be
expressed as a sum of several variance-components.

However, the classical variance analysis using Hoeffding’s decomposition cannot be di-
rectly applied to the case of networked random variables, due to dependence. To see this
suppose that we have four different edges, say e1, e2, e3, e4, such that e1 and e3 intersect in

V (1), i.e. e
(1)
1 = e

(1)
3 , and e2 and e3 intersect in V (2), i.e. e

(2)
2 = e

(2)
3 . Then, using the fact
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that the functions µ(·,·)

(
X

(·)
i , X

(·)
j

)
are uncorrelated and some algebra, one can show that

E[f(X1, X2)f(X3, X4)]− µ2 = E
[
µ2({1},∅)(X

(1)
1 ) + µ({2},∅)(X

(2)
2 )µ(∅,{2})(X

(2)
2 )
]

+ E
[
µ({1,2},∅)(X

(1)
1 ·X

(2)
2 )µ({1},{2})(X

(1)
1 , X

(2)
2 )
]

= σ2({1},∅) + E
[
µ({2},∅)(X

(2)
2 )µ(∅,{2})(X

(2)
2 )
]

+ E
[
µ({1,2},∅)(X

(1)
1 ·X

(2)
2 )µ({1},{2})(X

(1)
1 , X

(2)
2 )
]
,

Note that the second and the third term of the last expression do not decompose further
to variance-components, i.e. into a sum of expressions of the form

E
[
µ2(S,T )

(
X

(S)
i , X

(T )
j

)]
= σ2(S,T ).

If we additionally assume that the kernel is symmetric, then the second term can be written

in the form E
[
µ({2},∅)(X

(2)
2 )µ(∅,{2})(X

(2)
2 )
]

= σ2({2},∅), but the third term can not.

Recall that we are interested in finding a sharp bound on the variance of U -statistics
on networked examples. Recall further that the variance of weighted U -statistics is related
to the covariance of f(Xi, Xj) and f(Xm, Xl), where (ei, ej), (em, el) ∈ E0. In order to
formally capture this relation, we will need the following definition.

Definition 1 (overlap index matrix) Given a set of edges E = {ei}ni=1 of a bipartite
graph G, we define the overlap matrix of E, denoted JE to be the n× n matrix whose (i, j)
entry equals

JEi,j = {l ∈ {1, 2} | e(l)i = e
(l)
j }.

In other words, given two edges ei, ej from E, JEij tells us the part of the graph on which

they intersect. Note that JEi,j is a subset of {1, 2}. For example, in the graph of Fig. 1,

if e1 = {1, 5} and e2 = {1, 6} then JE1,2 = {1}, while if e1 = {1, 5} and e3 = {2, 6}, then

JE1,3 = ∅.
If it is clear from the context, we will drop E from JE and write J instead. Let {Xi}ni=1 be a
set of G-networked random variables associated to E = {ei}ni=1. Fix two pairs of edges, say
(ei, ej) and (em, el), such that ei∩ej = ∅ and em∩el = ∅. One can show that the covariance
of f(Xi, Xj) and f(Xm, Xl), i.e., the quantity Σ(i, j;m, l) = E[f(Xi, Xj)f(Xm, Xl)] − µ2,
is equal to∑

∗
E
[
µ(S∪W,T∪Z)

(
X

(S∪W )
i , X

(T∪Z)
j

)
µ(S∪Z,T∪W )

(
X

(S)
i ·X

(Z)
j , X

(T )
i ·X

(W )
j

)]
, (4)

where the sum
∑
∗ runs over all quadruples (S, T,W,Z) such that S ⊆ Ji,m, T ⊆ Jj,l,W ⊆

Ji,l, Z ⊆ Jj,m.
Now, using the Cauchy–Schwarz inequality (the following expected values can be treated

as inner products) it is easy to see that

E
[
µ(S∪W,T∪Z)

(
X

(S∪W )
1 , X

(T∪Z)
2

)
µ(S∪Z,T∪W )

(
X

(S)
1 ·X

(Z)
2 , X

(T )
2 ·X

(W )
1

)]
≤√

E
[
µ2(S∪W,T∪Z)

(
X

(S∪W )
1 , X

(T∪Z)
2

)]√
E
[
µ2(S∪Z,T∪W )

(
X

(S)
1 ·X

(Z)
2 , X

(T )
2 ·X

(W )
1

)]
=

σ(S∪W,T∪Z)σ(S∪Z,T∪W ).
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Summarizing, we can deduce the following bound on the variance of U(w):

Theorem 2 The variance of U(w), i.e. the quantity E
[
U(w)2

]
− µ2, is at most∑

�
wi,jwm,l

∑
∗
σ(S∪W,T∪Z)σ(S∪Z,T∪W ),

where
∑
∗ is as before and

∑
� runs over all quadruples (i, j,m, l) for which ei ∩ ej =

∅ and em ∩ el = ∅.

This bound is tight because it is possible to choose a kernel whose Hoeffding’s decompo-
sition ensures that the equality is attained in the Cauchy–Schwarz inequality, i.e. so that
µ(S∪W,T∪Z) and µ(S∪Z,T∪W ) are linearly dependent.

If we give every term f(Xi, Xj) the same weight, the variance may not be minimal (see
Section 5), and the same holds for the bound on the probability of deviation from the mean
(see Section 4).

4. Concentration inequalities: a linear program method

In this section, we consider bounded kernels of degree two, i.e. functions, f(·, ·), that satisfy
|f − µ| ≤ M , for some threshold M > 0. We are interested in obtaining concentration
bounds for U -statistics with kernels of that form.

We would like to find a weight function for which the corresponding weighted U -statistics
give sharp concentration inequalities

One way to get a bound is by applying Hoeffding’s inequality as follows. Let us consider
U -statistics that are based on a matching in the graph G. A matching in a hypergraph is a
collection of disjoint edges and so, in the case of networked examples, it corresponds to an
independent sample. If we use an independent sample of size αG (the matching number of
G), i.e., if we set

Uind =
1(
αG
2

) ∑
{i,j∈E∗:i 6=j}

f(Xi, Xj),

where E∗ is a maximum matching of G, then by Hoeffding’s result (see (Hoeffding, 1963,
1948)) we can conclude that if αG ≥ 2, then

Pr[Uind − µ ≥ t] ≤ exp

(
−αGt

2

4M2

)
. (5)

This bound may be sharp. However, it has two disadvantages:

1. It is difficult to find a large matching in a k-partite hypergraph when k ≥ 3 (see
(Garey and Johnson, 1979)), so the bound cannot be computed efficiently in more
general graphs.

2. This method may lose some information of the sample since we remove some random
variables from the sample.
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Notice that finding a maximum matching in a hypergraph can be represented as an
integer program. Integer programs are in general difficult to solve. In contrast to this,
linear programs are much easier. With this in mind, and in order to avoid dealing with the
aforementioned disadvantages, we formulate a linear program (LP) and use the solutions
of the linear program as the weights of weighted U -statistics. This will require the notion
of vertex-bounded weight function. For a given bipartite graph, G = (V,E), recall the
definition of the set E0 = {(i, j) : ei, ej ∈ E and ei ∩ ej = ∅}

Definition 3 A weight function w on E0 is vertex-bounded if wi,j ≥ 0 for all pairs (i, j) ∈
E0 and

for all v, we have
∑

{(i,j)∈E0:v∈ei or v∈ej}

wi,j ≤ 1.

Our main result is the following concentration bound on vertex-bounded weighted U -
statistics:

Theorem 4 Let X = {Xi}ni=1 be a given set of networked random variables. If w is an
vertex-bounded weight function, then the estimator U(w) satisfies

• if |f − µ| ≤M , then for any t > 0 we have

Pr[U(w)− µ ≥ t] ≤ exp

(
−|w|t

2

2M2

)
and (6)

• E
[
U(w)2

]
− µ2 ≤ σ2

|w| ,

where |w| is the sum of all weights wi,j, with (i, j) ∈ E0.

This theorem is an analogue of Theorems 18 and 23 in (Wang et al., 2014). Thus, in
order to minimize the bounds of the previous theorem, one has to maximize |w|. This leads
to the following linear program.

maxw
∑
i,j

wi,j (7)

s.t. ∀v :
∑

{(i,j)∈E0:v∈ei or v∈ej}

wi,j ≤ 1 (8)

∀(i, j) ∈ E0 : wi,j ≥ 0 . (9)

We call the optimal objective value of this linear program the s′-value. Optimal weights
w∗ of this linear program will be referred to as s′-weights. Since the weight function cor-
responding to Uind is vertex-bounded, it follows that s′ ≥ αG

2 , when the matching number
satisfies αG ≥ 2. This shows that the bound given in Eq. (6) is smaller than the bound in
Eq. (5). If the set of networked examples {Xi}ni=1 consists of i.i.d. random variables, then
s′ = n

2 provided n ≥ 2. We remark that the bounds given in Theorem 4 have the advantage
that the quantity s′ can be computed efficiently, in polynomial time.
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Note that the bounds in Theorem 4 depend on |w| but they do not depend on function f .
Note also that the first inequality of Theorem 4 is an analogue of the well known Hoeffding’s
inequality (see (Hoeffding, 1963)). In fact, using similar ideas, one can also show analogues
of other well known exponential inequalities, e.g., Chernoff’s or Bernstein’s.

Now suppose that we use equal weights, i.e., we consider the following U -statistics:

Ueqw =
1

|E0|
∑

(i,j)∈E0

f(Xi, Xj).

Then we should replace the last constraint (9) with a constraint of the form:

wi,j = t ≥ 0, for all (i, j) ∈ E0. (10)

Since we add more constraints to the LP, it follows that the optimal objective value of the
new linear program will be smaller than the s′-value. This implies that the corresponding
bounds on Ueqw cannot be smaller than those of an s′-weighted U -statistic. The following
example shows that the difference between the optimal objective values may be large:

Example 2 Consider the graph in Fig. 1. If we give the same weight to all pairs of disjoint
edges, then

∑
i,j wi,j = 9

8 . If we use an s′-weight function, then
∑

i,j wi,j = 3
2 >

9
8 .

The idea of using linear programs in order to obtain concentration bounds on sums of
dependent random variables appears already in a paper by Svante Janson (Janson, 2004).
However, Janson’s bound involves the optimal objective value of a linear program that
is known to be computationally hard. In (Wang et al., 2014) one can find concentration
bounds on sums of network-structured random variables that improve Janson’s bound and
involve the optimal objective value of linear programs that can be computed efficently.

5. Minimum variance: a convex programming method

From the variance point of view, the s′-weight may not be the optimal solution. In this
section we formulate a convex program which we use to minimize the worst-case variance of
a U -statistics on a set of networked variables. To simplify our discussion, we only consider
symmetric kernels and will provide remarks for the case of general kernels.

Given a bipartite graph, and using the version of Hoeffding’s decomposition that has
been described above, we see that the variance of U(w) depends on the 24−2 (because σ(∅,∅)
does not affect and we fix the total variance σ) values of σ(S,T ), one for each pair (S, T ). Since
we assume that the kernel is symmetric, two symmetric variance-components, e.g. σ({1},∅)
and σ(∅,{1}), should be the same. In practice, we usually do not know the values of σ(S,T ).
Nevertheless, for every weight function w one can find a tight upper bound for var(U(w))
by maximizing w>Σw as a function of the variance components {σ(S,T )}S,T⊆{1,2}, where Σ
is a covariance matrix defined by Eq. (4) (its row index is (i, j) and column index is (m, l)).
We can see that when the structure, i.e. G, of networked random variables is given, the
covariance matrix is determined by the values of σ(S,T ). We will call a covariance matrix,

Σ, for which w>Σw is maximum a worst-case covariance matrix and the corresponding
variance var(U(w)) worst-case variance. A natural problem is to find the weight function,
w, for which the worst-case variance is minimal. We do this by formulating a convex
program. We begin with some lemmas that allow us to simplify this convex program.
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Lemma 5 For any fixed weight w, there exists some {σ∗(S,T )}S,T⊆{1,2} which results in a

worst-case covariance matrix (and equivalently worst-case variance) such that for all S, T ⊆
{1, 2} for which |T |+ |S| ≥ 2 we have σ∗(S,T ) = 0.

The previous lemma holds true for non-symmetric kernels as well and should be com-
pared with Lemma 16 in (Wang et al., 2014); its proof is also similar to the proof of Lemma
16. This result implies that we only need to consider worst-case covariance matrices for
which all elements are zero except {σ({i},∅)}i∈{1,2} and {σ(∅,{i})}i∈{1,2}. Note that in case
the kernel, f , is symmetric then we have σ({i},∅) = σ(∅,{i}) for every i ∈ {1, 2}. We can show
one more lemma which simplifies further our problem.

Lemma 6 Suppose that the weight function is fixed. If the kernel f is symmetric, then
the worst-case variance is attained when σ2({q},∅) = σ2(∅,{q}) = σ2

2 for some q ∈ {1, 2}.

For general kernel f , the worst-case variance-components can be attained by the method
of Lagrange multipliers. Lemma 6 should also be compared with the remarks after Lemma
16 in (Wang et al., 2014).

Consequently, we can formulate the following optimization problem:

minw;t t

s.t. ∀q ∈ {1, 2} :
∑

(i,j)∈E0,(m,l)∈E0

wi,jwm,lI4 ≤ t∑
i,j

wi,j = 1

∀i : wi,j ≥ 0,

where I4 = I{q ∈ Ji,m} + I{q ∈ Ji,l} + I{q ∈ Jj,m} + I{q ∈ Jj,l} and I{·} denotes the
indicator function. This convex program is an analogue of program (7) in (Wang et al.,
2014). Solving this convex quadratically constrained linear program, we can get weights
which minimize the worst-case variance. Note that these weights may be not unique, but
they form a convex region. By construction, these weights correspond to U -statistics whose
variance is smaller than the variace of U -statistics corresponding to the s′-weight. If the
variables {Xi}ni=1 are i.i.d. then optimal solutions of the above optimization problem satisfy
t = s′ = n

2 , provided n ≥ 2.

6. Conclusion

We considered the problem of how to analyze the quality of U -statistics on network data and
how to design good estimators using weights. The analysis of variance based on Hoeffding’s
decomposition was generalized. We obtained a Hoeffding-type concentration bound for
weighted U -statistics and, in order to minimize the bound, we used a linear program which
can be solved efficiently. We also considered the worst-case variance, whose minimization
results in a convex quadratically constrained linear program.

Though we only considered bipartite graphs and kernels of degree 2 in this paper, the
results are valid for general k-partite hypergraphs and kernels of any degree d. A possible
future work is to extend our results to V -statistics which is a class of biased estimators that
are closely related to U -statistics.
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