
Simulated Annealing with an Efficient Universal Barrier

A. An Explanation of Newton’s Method via
Reweighting

Proposition 1 brings out a strong connection between inte-
rior point techniques and the ability to sample from Boltz-
mann distributions. But with this stochastic viewpoint, it is
not immediately clear why Newton’s method is an appro-
priate iterative update scheme for optimization. We now
provide some evidence along these lines.

Assuming we have already computed (an approximation
of) x(✓), and our distribution parameter is updated to a
“nearby” ✓0, our goal is now to compute the new mean
x(✓0).
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Think of the last term as the reweighting factor. Now we
are going to rewrite A(✓) � A(✓0) = �rA(✓)(✓0 � ✓) �
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the following approximation of the exponential: exp(z) ⇡
1 + z for small values of z. We can get a more precise
estimate of �x(✓0) as
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Duality theory tells us that⌃
✓

= r2A(✓) = r�2A⇤
(x(✓))

and ✓0 � ✓ is precisely the gradient of the objective ✓0>x�
A⇤

(x) at the point x(✓). The eKL(P✓,P✓0 ) term is some-
what mysterious, but it can be interpreted as something of
a “damping” factor akin to the Newton decrement damping
of the the Newton update.

B. Proof structure of the Kalai-Vempala
theorem

We hereby sketch the structure of the proof of theorem 1
for completeness. Recall the statement of the theorem:

Algorithm 2 with a temperature schedule that satisfies the
following condition:

The successive distributions are not “too far” in total
variational distance. That is, for every j,
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Guarantees that HITANDRUN requires N =

˜O(n3

) steps
in order to ensure mixing to the stationary distribution P

✓j .

Proof sketch. The proof is based on iteratively applying the
following Theorem from (Lovász & Vempala, 2006):

Theorem 5. Let f be a density proportional to e�a

T
x over

a convex set K such that
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Let �m be the distribution of the current point after m steps
of HITANDRUN applied to f. Then, for any ⌧ > 0, after
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The proof proceeds to show that conditions [a]-[c] of the
theorem above are all satisfied if indeed condition (6) is
satisfied, along the steps below. Once it is established that
the conditions of the theorem hold, then the next HITAN-
DRUN walk mixes and computes warm start and variance
estimates for the next epoch. Then again, the conditions of
the theorem hold, and this whole process is repeated for the
entire temperature schedule.

To show conditions [a]-[c], first notice that condition (6) is
essentially equivalent to condition [c] above. Thus we only
need to worry about conditions [a],[b].

[I]. For simplicity, we assumed that at the current iter-
ation, ⌃

j

= I is the identity. This can be assumed
by a transformation of the space, and allows for
simpler discussion of isotropy of densities (other-
wise, the isotropy condition would be replaced by
relative-isotropy w.r.t the current variance).

[II]. A density f is C-isotropic if for any unit vector
kvk = 1,
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It is shown (Lemma 4.2) that if the density given
by f is O(1)-isotropic, then conditions [a],[b] are
satisfied with S
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[III]. It is shown (Lemma 4.3) that if f is C-isotropic, and
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[IV]. Since condition (6) holds, together with the previ-
ous points [II,III] this implies that f

✓j+1 is isotropic
for some constant. Thus, conditions [a]-[c] of The-
orem 5 hold. Therefore we can sample sufficiently
many samples to estimate the covariance matrix
⌃

j+1

and proceed to the next epoch.

Throughout the proof special care needs to be taken to en-
sure that repeated samples are nearly-independent for var-
ious concentration lemmas to apply, we omit discussion
of these and the reader is referred to the original paper of
(Kalai & Vempala, 2006).

C. Proof of Lemma 5
Proof. We first show by elementary linear algebra that
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Replacing � by ��, we get a completely symmetrical ex-
pression. Next, we observe that
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Notice that to apply Lemma 4, we need the point x((1 +

�)✓) to lie in the Dikin ellipsoid of x(✓), which is exactly
whats proved in the last two lines of the above proof.

The bound on D
A

((1 � �)✓, ✓) follows in precisely the
same fashion, by similar change of variables as before
(again, the condition for applying Lemma 4 is proven in
the last few lines of the equations below):
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It follows that
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D. Interior point methods with a membership
oracle

Below we sketch a universal IPM algorithm - one that ap-
plies to any convex set described by a membership oracle
- that can be implemented to run in polynomial time. This
algorithm is an instantiation of Algorithm 3 with the par-
ticular barrier function A⇤

(x) as defined in section 4.1.

Without loss of generality, we can assume our goal is to
(approximately) compute the update direction

r�2A⇤
(x)(✓ �rA⇤

(x))

for some x which is already within the Dikin ellipsoid of
radius 1/2 around x(✓). First, we note that the IPM anal-
ysis of (Nemirovski, 1996) allows one to replace the in-
verse hessian r�2A⇤

(x) with the nearby r�2A⇤
(x(✓)) =

CovMtx(P
✓

). Of course the latter can be estimated via
sampling, in the sense that the estimate ˆ

⌃ will be “✏-
isotropically close”:

(1� ✏)v>r2

 (✓0)v  v> ˆ

⌃v  (1 + ✏)v>r2

 (✓0)v
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for any unit vector v. See, for example, (Adamczak et al.,
2010) on the concentration of empirical covariance matri-
ces.

It remains to compute rA⇤
(x). Define ✓(x) to be

✓(x) = argmax

✓

✓ · x� log
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exp(�✓ · y)dy = rA⇤
(x)

(17)
Then ✓(x) can be computed in polynomial time by an-
other interior point algorithm – this problem, however,
is much simpler to work with. Define  (✓0) := ✓ ·
x � log

R

K

exp(�✓ · y)dy to be the objective we want
to optimize. Notice that r (✓0) = x � E

X

0⇠P✓0 [X
0
]

and the latter can be estimated to within ✏ via SIMU-
LATEDANNEALING with ˜O(n/✏2) samples. The hessian
r2

 (✓0) = �CovMtx(P
✓

0
) can similarly be estimated

with an ✏-isotropically close empirical covariance. Because
the error gap is multiplicatively close to 1, the inverse op-
eration on r2

 (✓0) maintains the approximation.

E. Some history on the entropic barrier and
the universal barrier for cones

Let K be a cone in Rn and let K⇤
= {✓ : ✓>x � 0 8x 2

K} be its dual cone. We note that a cone K is homogeneous
if its automorphism group is transitive; that is, for every
x, y 2 K there is an automorphism B : K ! K such
that Bx = y. Homogeneous cones are very rare, but one
notable example is the PD cone (matrices with all positive
eigenvalues). Given any point x 2 K, we can define a
truncated region of K⇤ as the set K⇤

(x) := {y 2 K⇤
:

x>y  1}. Nesterov & Nemirovskii (1994) defined the
first generic self-concordant barrier function, known as the
universal barrier in terms of these regions. Namely, they
show that the function

u
K

(x) := log(vol(K⇤
(x)))

is a self concordant barrier function with an O(n) parame-
ter.

There is an alternative characterization of the universal bar-
rier in terms of the larg partition function. Let F

K

(x) :=

log
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⇤ exp(✓
>x)d✓ and equivalently let F
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⇤
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exp(✓>x)dx. It was shown by Güler (1996) that

F
K

(x) = u
K

(x) + n!,

that is, the universal barrier corresponds exactly to a log-
partition function but defined on the dual cone K⇤, modulo
a simple additive constant. We note that this is not the en-
tropic barrier construction we have here, as our function
of interest is A⇤

�(·) ⌘ F ⇤
K

⇤(·) (the Fenchel conjugate of
F
K

⇤
(x)), and not F

K

(x). However, it was also shown by
Güler (1996) that, when K is a homogeneous cone, we

have the identity F
K

(·) ⌘ F ⇤
K

⇤(·); in other words, the uni-
versal barrier and the entropic barrier are equivalent for ho-
mogeneous cones.

It is worth noting that, following the connection of Güler
(1996), A⇤

�(·) is (up to additive constant) the Fenchel con-
jugate of the universal barrier u

K

⇤ for K⇤. It was shown
by Nesterov & Nemirovskii (1994) (Theorem 2.4.1) that
Fenchel conjugation preserves all required self concor-
dance properties and in particular if g is a ⌫-self-concordant
barrier for a cone K, then g⇤ will be a self-concordant bar-
rier for K⇤ with the same parameter ⌫. With this observa-
tion it follows immediately that the entropic barrier F ⇤

K

⇤(·)
on K is an O(n)-self-concordant barrier. Bubeck & El-
dan (2014) took this statement further, proving that F ⇤

K

⇤(·)
enjoys an essentially optimal self-concordance parameter
⌫ = n(1 + o(1)).

It is important to note that the assumption that the set of in-
terest is a cone is, roughly speaking, without loss of gener-
ality. Given any convex set U ⇢ Rn we have the fitted cone
K(U) := {↵(x, 1) : x 2 U,↵ � 0} ✓ Rn+1. Hence once
can always work with the barrier function F ⇤

K(U)

⇤(·) on
K(U), and take its restriction to the set U ⇥ {1} ⇢ K(U)

to obtain a barrier on U (affine restriction preserves the bar-
rier properties).

We conclude by summarizing several results in Güler
(1996) regarding the entropic barrier for various cones, as
well as the associated barrier parameter of each. In these
canonical cases the entropic barrier corresponds exactly to
the “typical” barrier, up to additive and multiplicative con-
stants. We use the notation f(·) ⇠

=

g(·) to denote that f and
g are identical up to additive constants.

1. Assume K := Rn

+

the nonnegative orthant. This is a
homogeneous cone and we have F

K

(x) ⇠
=

F ⇤
K

⇤(x) ⇠
=

�Pn

i=1

log x
i

. This is the optimal barrier for K and the
barrier parameter is ⌫ = n.

2. Assume K := {x 2 Rn

: x2

1

+ . . . + x2

n�1

 x2

n

}
be the Lorentz cone. K is a homogeneous self-dual
cone. K can also be described by the fitted cone of the
radius-1 L2 ball, so we may parameterize elements of
K as ↵(x, 1) where ↵ � 0 and x is vector in Rn�1

with L2 norm bounded by 1. Then F
K

(↵(x, 1)) ⇠
=

F ⇤
K

⇤(↵(x, 1)) ⇠= �n+1

2

log(↵2

(1�kxk2)). This barrier
has parameter ⌫ = n + 1 which is indeed not optimal,
one has the optimal barrer � log(↵2 � x2

) which has
parameter ⌫ = 2, but this is simply a scaled version of
the entropic barrier.

3. The PSD cone K of positive semi-definite matrices, i.e.
symmetric matrices with non-negative eigenvalues, is a
homogeneous self-dual cone. The entropic barrier is
F
K

(x) ⇠
=

F ⇤
K

⇤(x) ⇠
=

�n+1

2

log det(x) and exhibits
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a parameter of ⌫ =

n(n+1)

2

which is multiplicatively
n+1

2

worse than the optimal barrier, the log-determined
� log det(x). However, as can be seen this barrier is
quite simply a scaled version of the entropic barrier.


