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Abstract

We study the fixed design segmented regression
problem: Given noisy samples from a piecewise
linear function f, we want to recover f up to a
desired accuracy in mean-squared error.

Previous rigorous approaches for this problem
rely on dynamic programming (DP) and, while
sample efficient, have running time quadratic
in the sample size. As our main contribution,
we provide new sample near-linear time algo-
rithms for the problem that — while not being
minimax optimal — achieve a significantly better
sample-time tradeoff on large datasets compared
to the DP approach. Our experimental evalua-
tion shows that, compared with the DP approach,
our algorithms provide a convergence rate that is
only off by a factor of 2 to 4, while achieving
speedups of three orders of magnitude.

1. Introduction

We study the regression problem — a fundamental inference
task with numerous applications that has received tremen-
dous attention in machine learning and statistics during the
past fifty years (see, e.g., (Mosteller & Tukey, 1977) for a
classical textbook). Roughly speaking, in a (fixed design)
regression problem, we are given a set of n observations
(xi, i), where the y;’s are the dependent variables and the
x;’s are the independent variables, and our goal is to model
the relationship between them. The typical assumptions
are that (i) there exists a simple function f that (approxi-
mately) models the underlying relation, and (ii) the depen-
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dent observations are corrupted by random noise. More
specifically, we assume that there exists a family of func-
tions F such that for some f € F the following holds:
yi = f(x;) + €;, where the ¢;’s are i.i.d. random variables
drawn from a “tame” distribution such as a Gaussian (later,
we also consider model misspecification).

Throughout this paper, we consider the classical notion of
Mean Squared Error (MSE) to measure the performance
(risk) of an estimator. As expected, the minimax risk de-
pends on the family F that f comes from. The natural
case that f is linear is fully understood: It is well-known
that the least-squares estimator is statistically efficient and
runs in sample-linear time. The more general case that f is
non-linear, but satisfies some well-defined structural con-
straint has been extensively studied in a variety of contexts
(see, e.g., (Gallant & A., 1973; Feder, 1975; Friedman,
1991; Bai & Perron, 1998; Yamamoto & Perron, 2013;
Kyng et al., 2015; Avron et al., 2013; Meyer, 2008; Chat-
terjee et al., 2015)). In contrast to the linear case, this more
general setting is not well-understood from an information-
theoretic and/or computational aspect.

In this paper, we focus on the case that the function f is
promised to be piecewise linear with a given number k of
unknown pieces (segments). This is known as fixed de-
sign segmented regression, and has received considerable
attention in the statistics community (Gallant & A., 1973;
Feder, 1975; Bai & Perron, 1998; Yamamoto & Perron,
2013). The special case of piecewise polynomial functions
(splines) has been extensively used in the context of in-
ference, including density estimation and regression, see,
e.g., (Wegman & Wright, 1983; Friedman, 1991; Stone,
1994; Stone et al., 1997; Meyer, 2008).

Information-theoretic aspects of the segmented regression
problem are well-understood: Roughly speaking, the min-
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imax risk is inversely proportional to the number of sam-
ples. In contrast, the computational complexity of the prob-
lem is poorly understood: Prior to our work, known al-
gorithms for this problem with provable guarantees were
quite slow. Our main contribution is a set of new provably
fast algorithms that outperform previous approaches both
in theory and in practice. Our algorithms run in time that is
nearly-linear in the number of data points n and the number
of intervals k. Their computational efficiency is established
both theoretically and experimentally. We also emphasize
that our algorithms are robust to model misspecification,
i.e., they perform well even if the function f is only ap-
proximately piecewise linear.

Note that if the segments of f were known a priori, the seg-
mented regression problem could be immediately reduced
to k independent linear regression problems. Roughly
speaking, in the general case (where the location of the seg-
ment boundaries is unknown) one needs to “discover” the
right segments using information provided by the samples.
To address this algorithmic problem, previous works (Bai
& Perron, 1998; Yamamoto & Perron, 2013) relied on dy-
namic programming that, while being statistically efficient,
is computationally quite slow: its running time scales at
least quadratically with the size n of the data, hence it is
rather impractical for large datasets.

Our main motivation comes from the availability of large
datasets that has made computational efficiency the main
bottleneck in many cases. In the words of (Jordan, 2013):
“As data grows, it may be beneficial to consider faster infer-
ential algorithms, because the increasing statistical strength
of the data can compensate for the poor algorithmic qual-
ity.” Hence, it is sometimes advantageous to sacrifice sta-
tistical efficiency in order to achieve faster running times
because we can then achieve the desired error guarantee
faster (provided more samples). In our context, instead of
using a slow dynamic program, we employ a subtle itera-
tive greedy approach that runs in sample-linear time.

Our iterative greedy approach builds on the work
of (Acharya et al., 2015a;b), but the details of our algo-
rithms here and their analysis are substantially different. In
particular, as we explain in the body of the paper, the nat-
ural adaptation of their analysis to our setting fails to pro-
vide any meaningful statistical guarantees. To obtain our
results, we introduce novel algorithmic ideas and carefully
combine them with additional probabilistic arguments.

2. Preliminaries

In this paper, we study the problem of fixed design seg-
mented regression. We are given samples x; € R? for
i € [n](= {1,...,n}), and we consider the following

classical regression model:

yi = f(xi) + € . (L
Here, the ¢; are i.i.d. sub-Gaussian noise variables with
variance proxy o2, mean E[¢;] = 0, and variance s? =

E[e?] for all i. We will let € = (1, ..., €,) denote the vec-
tor of noise variables. We also assume that f : R* — R is
a k-piecewise linear function. Formally, this means:

Definition 1. The function f : R — R is a k-piecewise
linear function if there exists a partition of the real line into
k disjoint intervals 1, . . . , I, k corresponding parameters
01,...,0, € RY and a fixed, known j such that for all
x = (11,...,74) € R? we have that f(x) = (0;,x) if
x; € I;. Let Ly, ; denote the space of k-piecewise linear
functions with partition defined on coordinate j.

Moreover, we say f is flat on an interval I C R if I C I;
forsome i =1,..., k, otherwise, we say that f has a jump
on the interval I.

In the full paper, we also discuss the agnostic setting where
the ground truth f is not piecewise linear itself but only
well-approximated by a k-piecewise linear function. For
simplicity of exposition, we assume that the partition coor-
dinate j is 1 in the rest of the paper. We remark that this
model also contains the problem of (fixed design) piece-
wise polynomial regression as an important subcase (see
the full paper for details).

Following this generative model, a regression algorithm re-
ceives the n pairs (x;,y;) as input. The goal of the algo-
rithm is then to produce an estimate fthat is close to the
true, unknown f with high probability over the noise terms
€; and any randomness in the algorithm. We measure the
distance between our estimate fand the unknown function
f with the classical mean-squared error:

MSE(f) = %Df(wi) — Fl@a))? .

Throughout this paper, we let X € R™*% be the data ma-
trix, i.e., the matrix whose j-th row is wf for every j, and
we let r denote the rank of X.

The following notation will also be useful. For any func-
tion f : R — R, we let f € R™ denote the vector with
components f; = f(x;) fori € [n]. For any interval I, we
let X! denote the data matrix consisting of all data points
a; fori € I, and for any vector v € R", we let v! € Rl
be the vector of v; fori € I.

2.1. Our Contributions

Our main contributions are new, fast algorithms for the
aforementioned segmented regression problem. We now
informally state our main results and refer to later sections
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for more precise theorems.

Theorem 2 (informal statement of Theorems 13 and 14).
There is an algorithm GREEDYMERGE, which, given X
(of rank 1), y, a target number of pieces k, and the variance
of the noise s%, runs in time O(nd?logn) and outputs an
O(k)-piecewise linear function fso that with probability
at least 0.99, we have

MSE(}\) < 0 (JQkT—i—U\/Elogn) .
n n

That is, our algorithm runs in time which is nearly linear
in n and still achieves a reasonable rate of convergence.
While this rate is asymptotically slower than the rate of the
dynamic programming estimator, our algorithm is signifi-
cantly faster than the DP so that in order to achieve a com-
parable MSE, our algorithm takes less total time given ac-
cess to a sufficient number of samples. For more details on
this comparision and an experimental evaluation, see Sec-
tions 2.2 and 4.

At a high level, our algorithm first forms a fine partition of
[n] and then iteratively merges pieces of this partitions until
only O(k) pieces are left. In each iteration, the algorithm
reduces the number of pieces in the following manner: we
group consecutive intervals into pairs which we call “can-
didates”. For each candidate interval, the algorithm com-
putes an error term that is the error of a least squares fit
combined with a regularizer depending on the variance of
the noise s. The algorithm then finds the O(k) candidates
with the largest errors. We do not merge these candidates,
but do merge all other candidate intervals. We repeat this
process until only O(k) pieces are left.

A drawback of this algorithm is that we need to know the
variance of the noise s2, or at least have a good estimate. In
practice, we might be able to obtain such an estimate, but
ideally our algorithm would work without knowing s2. By
extending our algorithm, we obtain the following result:

Theorem 3 (informal). There is an algorithm BUCKET-
GREEDYMERGE, which, given X (of rank r), y, and a
target number of pieces k, runs in time O(nd?logn) and
outputs an O(klogn)-piecewise linear function fso that
with probability at least 0.99, we have

MSE(]?) <0 (JQIM()g?l—l—a\/Elogn) .
n n

At a high level, there are two fundamental changes to the
algorithm: first, instead of merging with respect to the sum
squared error of the least squares fit regularized by a term
depending on s2, we instead merge with respect to the av-
erage error the least squares fit incurs within the current
interval. The second change is more substantial: instead
of finding the O (k) candidates with largest error and merg-

ing the rest, we now split the candidates into logn buck-
ets based on the lengths of the candidate intervals. In this
scheme, bucket o contains all candidates with length be-
tween 2% and 2%+, fora = 0, ...,logn — 1. Then we find
the k + 1 candidates with largest error within each bucket
and merge the remaining candidate intervals. We continue
this process until we are left with O(k log n) buckets.

A potential disadvantage of our algorithms above is that
they produce O(k) or O(klogn) pieces, respectively. In
order to address this issue, we also provide a postprocess-
ing algorithm that converts the output of any of our algo-
rithms and decreases the number of pieces down to 2k + 1
while preserving the statistical guarantees above. The guar-
antee of this postprocessing algorithm is as follows.

Theorem 4 (informal). There is an algorithm POST-
PROCESSING that takes as input the output of ei-
ther GREEDYMERGE or BUCKETGREEDYMERGE fo-
gether with a target number of pieces k, runs in time
0] (k3d2 log n) and outputs a (2k + 1)-piecewise linear
function fp so that with probability at least 0.99, we have

MSE(f?) < O (UQIZ—I—U\/Elogn) .

Qualitatively, an important aspect this algorithm is that its
running time depends only logarithmically on n. In prac-
tice, we expect k to be much smaller than n, and hence
the running time of this postprocessing step will usually be
dominated by the running time of the piecewise linear fit-
ting algorithm run before it.

In this document, we only give the formal pseudo code and
proofs for GREEDYMERGE. We refer the reader to the full
version for more details.

2.2. Comparison to prior work

Dynamic programming. Previous work on segmented
regression with statistical guarantees (Bai & Perron, 1998;
Yamamoto & Perron, 2013) relies heavily on dynamic
programming-style algorithms to find the k-piecewise lin-
ear least-squares estimator. Somewhat surprisingly, we are
not aware of any work which explicitly gives the best pos-
sible running time and statistical guarantee for this algo-
rithm. For completeness, we prove the following result
(Theorem 5), which we believe to be folklore. The tech-
niques used in its proof will also be useful for us later.

Theorem 5 (informal). The exact dynamic program runs
in time O(n?(d? + k)) and outputs an k-piecewise linear
estimator fso that with probability at least 0.99 we have
MSE(f) < O (o25).

We now compare our guarantees with those of the DP.
The main advantage of our approaches is computational
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efficiency — our algorithm runs in linear time, while the
running time of the DP has a quadratic dependence on n.
While our statistical rate of convergence is slower, we are
able to achieve the same MSE as the DP in asymptotically
less time if enough samples are available.

For instance, suppose we wish to obtain a MSE of 1 with
a k-piecewise linear function, and suppose for simplicity
that d = O(1) so that » = O(1) as well. Then Theorem
5 tells us that the DP requires n = k/n samples and runs
in time O(k3/n?). On the other hand, Theorem 2 tells us
that GREEDYMERGING requires n = O(k/n?) samples
and thus runs in time O(k/7?2). For non-trivial values of
this is a significant improvement in time complexity.

This gap also manifests itself strongly in our experiments
(see Section 4). When given the same number of samples,
our MSE is a factor of 2-4 times worse than that achieved
by the DP, but our algorithm is about 1,000 times faster
already for 10* data points. When more samples are avail-
able for our algorithm, it achieves the same MSE as the DP
about 100 times faster.

Histogram Approximation Our results build upon
the techniques of (Acharya et al., 2015a), who consider the
problem of histogram approximation. Indeed, without too
much work it is possible to convert their algorithm to our
regression setting, but the resulting guarantee is not sta-
tistically meaningful (see the full version for a more de-
tailed discussion). To overcome this difficulty, we propose
a merging algorithm based on a new merging error mea-
sure. Utilizing more sophisticated proof techniques than in
(Acharya et al., 2015a), we show that our new algorithm
has good statistical guarantees in the regression setting.

2.3. Mathematical Preliminaries

Tail bounds We will require the following tail bound
on deviations of squares of sub-Gaussian random variables.
We defer the proof to the supplementary material.

Corollary 6. Fix § > 0 and let €1,...,€, be as in (1).
Recall that s = E[e?]. Then, with probability 1— 4§, we have
that simultaneously for all intervals I C [n] the following
inequality holds:

e — 71|

i€l

< O(0” -log(n/0) /I . (2)

Linear regression. Our analysis builds on the classical
results for fixed design linear regression. In linear regres-
sion, the generative model is exactly of the form described
in (1), except that f is restricted to be a 1-piecewise linear
function (as opposed to a k-piecewise linear function), i.e.,
f(x) = (6*, x) for some unknown 6*.

The problem of linear regression is very well understood,
and the asymptotically best estimator is known to be the
least-squares estimator.

Definition 7. Given x1,...,x, and vy, ..., Yyn,, the least
squares estimator f'S is defined to be the linear function
which minimizes Y, (y; — f(x;))? over all linear func-
tions f. For any interval I, we let fFS denote the least
squares estimator for the data points restricted to I, i.e. for
the data pairs {(x;,y;) }ic1. We also let LEASTSQUARES
(X, y, 1) denote an algorithm which solves linear least
squares for these data points, i.e., which outputs the coeffi-
cients of the linear least squares fit for these points.

Following our previous definitions, we let f5 € R™ de-
note the vector whose i-th coordinate is f%°(x;), and sim-
ilarly for any I C [n] we let 75 € RII denote the vector
whose i-th coordinate for i € I is fF°(x;). The following
error rate is known for the least-squares estimator:

Fact 8. Let z1,...,x, and y1,...,y, be generated as
in (1), where f is a linear function. Let f*5(z) be the least
squares estimator. Then,

E [MSE(/5)] =0 (#22) .
n
Moreover, with probability 1 — §, we have

MSE(f8) = 0 <02 “Llogl/‘s) .

n

Fact 8 can be proved with the following lemma, which we
also use in our analysis. The lemma bounds the correlation
of a random vector with any fixed r-dimensional subspace:

Lemma 9 (c.f. proof of Theorem 2.2 in (Rigollet, 2015)).
Fix 6 > 0. Let ey,...,€, be i.id. sub-Gaussian random
variables with variance proxy o>. Let € = (ey,...,¢€,),
and let S be a fixed r-dimensional affine subspace of R™.
Then, with probability 1 — 6, we have

<0 (m/r ¥ 1og(1/5)) ‘

[v” €l
sup ———
veS\{0} [[v]]

This lemma also yields the two following consequences.
The first corollary bounds the correlation between sub-
Gaussian random noise and any linear function on any in-
terval (see the full paper for proofs):

Corollary 10. Fix$ > Oandv € R™. Lete = (e1,...,€p)
be as in Lemma 9. Then with probability at least 1 — 0, we
have that for all intervals I, and for all non-zero linear
functions f : R* — R,

[(e", f1 + vr)]

< O(oy/r +1log(n/d)) .
I fr + vzl

Corollary 11. Fix § > 0 and v € R"™. Let € be as in
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Lemma 9. Then with probability at least 1 — 6§, we have

7|<€"f1+'u1>| < O(U,/kr—&—klog?;) )

11 + v
These bounds also imply the following statement, which
we will need later. We defer the proof to the supplementary
material.

feLk

Lemma 12. Fix § > 0. Then with probability 1 —§ we have
the following: for all disjoint sets of k intervals I, ..., I
of [n] so that f is flat on each Iy, the following inequality
holds:

k
SOUFES = f1l? < 00 k(r +log(n/5))) -
=1

3. A greedy merging algorithm

In this section, we formally state our new algorithm for seg-
mented regression and analyze its statistical and computa-
tional efficiency. See Algorithm 1 for the corresponding
pseudocode. The algorithm expects two tuning parameters
T, because the algorithm does not return a k-piecewise
linear function but instead a O (k)-piecewise linear function
The tuning parameters allow us to trade off running time
for fewer pieces. In typical use cases we have 7,y = ©(1),
in which case our algorithm produces an O(k)-piecewise
linear function in time O(nd? logn) time.

We now state the running time of GREEDYMERGING. The
analysis is similar to the analysis presented in (Acharya
et al., 2015a) and for space considerations is left to the sup-
plementary material.

Theorem 13. Letr X and y be as above.
Then  GREEDYMERGING(T,v,s,X,y) outputs a
((2+%)k+v)-piecewise linear function and runs
in time O(nd?log(n/7)).

3.1. Analysis of GREEDYMERGING

Theorem 14. Let 6 > 0, and let ]?be the estimator re-
turned by GREEDYMERGING. Let m = (2 + 2)k + y be

the number of pieces in J? Then, with probability 1 — §, we
have that

~

MSE(f)
<0 <g2 <m(r+log(n/5)))

NG 5

+ ol i \/Elog (n)) .
n
Proof. We first condition on the event that Corollaries 6,
10 and 11, and Lemma 12 all hold with error parameter
0(9), so that together they all hold with probability at least
1—90. LetZ = {I1,...,I,} be the final partition of [n]
that our algorithm produces. Recall f is the ground truth
k-piecewise linear function. We partition the intervals in Z

into two sets:

F={Ie€Z:fisflatonTl},
J={I€Z: fhasajumponl}.

We first bound the error over the intervals in /. By Lemma
12, we have

YoIfr = Fill* < O F|(r +1og(n/d)) , ()

IeF
with probability at least 1 — O(9).

We now turn our attention to the intervals in J and distin-
guish two further cases. We let 77 be the set of intervals in
J which were never merged, and we let 7> be the remain-
ing intervals. If the interval I € J; was never merged, the
interval contains one point, call it ;. Because we may as-
sume that x; # 0, we know that for this one point, our
estimator satisfies f(ml) = y;, since this is clearly the
least squares fit for a linear estimator on one nonzero point.
Hence Corollary 6 implies that the following inequality
holds with probability at least 1 — O(d):

YolFr = £l =" llel?

IeT, Ieg

<o? Z|I|+O(logg) Z\I\

Ieg Ie

< o2 (m +0 (10g g) \/ﬁ) ) 4)
We now finally turn our attention to the intervals in Jo.
Fix an interval I € J5. By definition, the interval [
was merged in some iteration of the algorithm. This im-
plies that in that iteration, there were (1 + 1/7)k intervals
My, ..., M(141/7) so that for each interval My, we have

lyr = Frl” = 211 < llya, — FA0 12— $% M| . (5)

Since the true, underlying k-piecewise linear function f has
at most k jumps, this means that there are at least k/7 in-
tervals of the M, on which f is flat. WLOG assume that

these intervals are My, ..., My ;.
We have, by definition,
k/T k/T
2 2
>Nl = FG I = *10el = 3 || Fare = £33
=1 =1
k/T k/T
+2) len, far, = fii) + ) D (=57, (©6)
(=1 £=14i€M,
We will upper bound each term on the RHS in turn. First,
since the function f is flat on each My for¢ =1,... k/T,
Lemma 12 implies

k/T

LS ||2 2k7 n
>~ £ <0 (o2 (rereg)) . 0
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Algorithm 1 Piecewise linear regression by greedy merging.

1: GREEDYMERGING(T,7, s, X, y)

{Initial partition of [n] into intervals of length 1.}
2: 0 « {{1},{2},...,{n}}

{Iterative greedy merging (we start with j < 0).}
3: while [Z7| > (2+ 2)k + v do

4:  Lets; be the current number of intervals. { Compute the least squares fit and its error for merging neighboring pairs

of intervals.}

5. forue{l,2,...,%}do
6: 0, < LEASTSQUARES(X, vy, Io,—1 U I3,)
7 ew =y’ — X702 — 5% Iou_1 U I2,,|

8:  end for

9:  Let L be the set of indices u with the (1 +

%)k largest errors e,,, breaking ties arbitrarily.

10:  Let M be the set of the remaining indices. { Keep the intervals with large merging errors.}
11: I« U {lau_1, I2u} {Merge the remaining intervals. }

uel
12: Zitl <—Ij+1U{I2u,1UI2u|uEM}
132 j<+jg+1
14: end while

15: return the least squares fit to the data on every interval in Z7

with probability at least 1 — O(9).

Moreover, note that the function f]]\ﬁ is a linear function

on M, of the form f}(x) = @73, where # € R? is the
least-squares fit on M. Because f is just a fixed vector, the
vector fas, — f}(ﬁ lives in the affine subspace of vectors of
the form fas, + (Xar,)n where n € R? is arbitrary. So
Corollary 11 and (7) imply that

k:/‘r
<6Mg7fM£ -f]\/[z>
k/T
€r,, X
<$ (entsfur, = 117 -sup LM
(=1 N
n
O a (r+log6)>. 8)

with probability 1 — O(9).
By Corollary 6, we get that with probability 1 — O(J),

kz/f <Z & —S2|Me|> <0 (Ubg%) NS

£=1 \i€M,
Putting it all together, we get that
k/T

> (lloas, — £ - 5210

i=1
<0 (iaQ (r + log Z)) +0 (alog %) NZEEEC))

with probability 1 — O(d). Since the LHS of (5) is bounded
by each individual summand above, this implies that the

LHS is also bounded by their average, which implies that

22
lyr — frll” — s°|1]
k/T

< 237 (lyas, = 517 = 21040
i=1
< 0(0—2 (r+log(%)))+0(olog5> *kf (10)

We now similarly expand out the LHS of (5):
lyr = f1ll” = 5|11
= lfr +er = Fill* = 1]
= |lf1 = Fill* + 2(er, f1 = f1) + lledll” = 211 . (A1)

Next, we aim to upper bound >, ,(f(x;) — ]?(:cz))2
Hence, we lower bound the second and third terms of (11).
The calculations here closely mirror those above.

By Corollary 10, we have that

20er, f1 — fr) > O< r+log< )) £ — fill .
and by Corollary 6 we have

lerl = sl = =0 (olog ) VI,

and so
22
lyr — f1ll° = s°|1]

> s~ Fil* =0 (oyfr+oe (5) ) 151 - 7l

—0 (Ulog ) V. (12)
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Putting (10) and (12) together yields that with probability
1-0(5),

1F1 = Fil* < 0 (o* (r+108(5)))

+0 (g\/m) I il
—&-O(alog%) (Tkn—F I) )

Letting 22 = || f; — f7||%, then this inequality is of the form
22 < bz 4 ¢ where b, ¢ > 0. In this case, we have that

sz(a,/r—HogZ) , and

e=0(* (r+106 () +0 (106 (BL8+ vIT)

We now prove the following lemma about the behavior of
such quadratic inequalities:

Lemma 15. Suppose 2> < bz + ¢ where b,c > 0. Then
22 <O + o).

Proof. From the quadratic formula, the inequality implies

that z < bivbidde VZ;HC. From this, it is straightforward to
demonstrate the desired claim. O

Thus, from the lemma, we have
- i = 0 (o (1 (1)

+O(010g%) (Tfju |1|> .

Hence the total error over all intervals in /5 can be bounded

by:
Sf - f1l? < 0(k02 (T*log (?)))
1€J>
+0(ois) (rvie 3 viT)
Ieg

Cofur (o (2))
+0 (alog %) (T\/ﬁ+ \/%) . (13)

In the last line we use that the intervals I € J5 are disjoint
(and hence their cardinalities sum up to at most n), and that
there are at most k intervals in /> because the function f
is k-piecewise linear. Finally, applying a union bound and
summing (3), (4), and (13) yields the desired conclusion.

O

4. Experiments

In addition to our theoretical analysis above, we also study
the empirical performance of our new estimator for seg-
mented regression on both real and synthetic data. As base-
line, we compare our estimator (GREEDYMERGING) to
the dynamic programming approach. Since our algorithm
combines both combinatorial and linear-algebraic opera-
tions, we use the Julia programming language' (version
0.4.2) for our experiments because Julia achieves perfor-
mance close to C on both types of operations. All experi-
ments were conducted on a laptop computer with a 2.8 GHz
Intel Core i7 CPU and 16 GB of RAM.

Synthetic data. Experiments with synthetic data allow
us to study the statistical and computational performance of
our estimator as a function of the problem size n. Our the-
oretical bounds indicate that the worst-case performance of
the merging algorithm scales as O(%¢ + | /k/nlogn) for
constant error variance. Compared to the O(%) rate of
the dynamic program, this indicates that the relative per-
formance of our algorithm can depend on the number of
features d. Hence we use two types of synthetic data: a
piecewise-constant function f (effectively d = 1) and a
piecewise linear function f with d = 10 features.

We generate the piecewise constant function f by randomly
choosing k& = 10 integers from the set {1, ...,10} as func-
tion value in each of the k segments.” Then we draw n/k
samples from each segment by adding an i.i.d. Gaussian
noise term with variance 1 to each sample.

For the piecewise linear case, we generate a n x d data
matrix X with i.i.d. Gaussian entries (d = 10). In each
segment I, we choose the parameter values 3; indepen-
dently and uniformly at random from the interval [—1, 1].
So the true function values in this segment are given by
fr = XB;. As before, we then add an i.i.d. Gaussian
noise term with variance 1 to each function value.

Figure 1 shows the results of the merging algorithm and the
exact dynamic program for sample size n ranging from 102
to 10*. Since the merging algorithm can produce a variable
number of output segments, we run the merging algorithm
with three different parameter settings corresponding to k,
2k, and 4k output segments, respectively. As predicted by
our theory, the plots show that the exact dynamic program
has a better statistical performance. However, the MSE of
the merging algorithm with 2k pieces is only worse by a
factor of 2 to 4, and this ratio empirically increases only
slowly with n (if at all). The experiments also show that

"http://julialang.org/

2We also repeated the experiment for other values of k. Since
the results are not qualitatively different, we only report the &k =
10 case here.
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Figure 1. Experiments with synthetic data: results for piecewise constant models with k& = 10 segments (top row) and piecewise linear
models with & = 5 segments (bottom row, dimension d = 10). Compared to the exact dynamic program, the MSE achieved by the
merging algorithm is worse but stays within a factor of 2 to 4 for a sufficient number of output segments. The merging algorithm is
significantly faster and achieves a speed-up of about 10% x compared to the dynamic program for n = 10*. This leads to a significantly
better trade-off between statistical and computational performance (see also Figure 2).
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Figure 2. Computational vs. statistical efficiency in the synthetic
data experiments. The solid lines correspond to the data in Fig-
ure 1, the dashed lines show the results from additional runs of
the merging algorithms for larger values of n. The merging al-
gorithm achieves the same MSE as the dynamic program about
100x faster if a sufficient number of samples is available.

Dow Jones data Piecewise linear approximation

Figure 3. Results of fitting a 5-piecewise linear function (d = 2)
to a Dow Jones time series. The merging algorithm produces a
fit that is comparable to the dynamic program and is about 200 x
faster (0.013 vs. 3.2 seconds).

forcing the merging algorithm to return at most k pieces
can lead to a significantly worse MSE.

In terms of computational performance, the merging algo-
rithm has a significantly faster running time, with speed-
ups of more than 1,000x for n = 10* samples. As can be
seen in Figure 2, this combination of statistical and com-
putational performance leads to a significantly improved
trade-off between the two quantities. When we have a suffi-
cient number of samples, the merging algorithm achieves a
given MSE roughly 100X faster than the dynamic program.

Real data. We also investigate whether the merging
algorithm can empirically be used to find linear trends in a
real dataset. We use a time series of the Dow Jones index
as input, and fit a piecewise linear function (d = 2) with 5
segments using both the dynamic program and our merg-
ing algorithm with & = 5 output pieces. As can be seen
from Figure 3, the dynamic program produces a slightly
better fit for the rightmost part of the curve, but the merging
algorithm identifies roughly the same five main segments.
As before, the merging algorithm is significantly faster and
achieves a 200x speed-up compared to the dynamic pro-
gram (0.013 vs 3.2 seconds).
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