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A Appendix

A.1 Experiments

The number of variables and clauses in each model count-
ing problem are given in Table 2.

Table 2. Number of variables and clauses in each model counting
problem.

INSTANCE VARIABLES | CLAUSES
LANG12 576 13584
LANGI15 1024 32320
LANG16 1024 32320
LANG19 1444 54226
LANG20 1600 63280
LANG23 2116 96370
LANG24 2304 109536
LANG27 2916 156114
LANG28 3136 174160
LS8 301 1603
LS9 456 2864
Ls10 657 4761
Lsll 910 7480
LS12 1221 11231
Ls13 1596 16248
Ls14 2041 22789
Ls15 2562 31136
20RDR45 190 20349
23RDR45 253 42504
2BITMAX6 252 766
9SYMML 2604 36994
APEX75 1983 15358
FCLQ18 603 23312
FCLQ20 730 33662
VDAGRRCSW9 6498 130997
A.2 Proofs

Proof of Theorem 1. We closely follow the line of reason-
ing used in the proof of Theorem 3 of Ermon et al. (2014),
which was for the specific case short XORs being the hash
family. That line of reasoning can be distilled down to three
main steps starting with a set S C {0,1}™:

1. Fix an arbitrary € S and, for any w € [n], let y,,
be an arbitrary element of .S at Hamming distance w
from x. Then define a quantity of interest based on the
clash probability:
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where h(w|x) denotes the number of elements of the
set S at distance w from x.

2. Note that h(w|x) is difficult to analyze. To circumvent
this issue, observe that for the case of short XORs,

the clash probability Pr[h(z) = h(y,)] is a non-
increasing function of w.

3. Using the above observation, upper bound the quan-
tity in Eq. (4) by “squeezing” as many y’s at small
distances w as possible, until the total number is | S|:
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We describe how these three steps can be modified to work
with functions f other than short XORs.

For step 1, instead of computing the clash probability for a
particular hash family, we simply use Lemma 1 and replace
Pr[h(x) = h(yw)] with 1 — NS/, (h), which, by Proposi-
tion 2, is precisely 1 — NS, (f).

Next, for step 2, rather than relying on monotonicity of the
clash probability,' we define an ordering 7 over [n] under
which NS’T(“}) (f) is non-increasing. Such an ordering must
clearly exist. It is, in fact, often very close to the identity

permutation.

Finally, for step 3, we use the 7 ordering (rather than the
identity ordering) and “squeeze” as many ys at distances w
but under this ordering (rather than smallest-distance-first)
as possible, until the total number is |S|. This yields:
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The rest of the argument follows precisely that in the proof
of Theorem 3 of Ermon et al. (2014). ]

Proof of Proposition 3. For j, k € [n], it will help to define
p(k,n, j) as:
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This is the probability that if one chooses k& balls uniformly

out of n balls, then an odd number of balls are among some

subset of j “special” balls.

p(k,n,j) =

Following ODonnell (2003), Proposition 2.3.1, we can
write:
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'Fixed distance clash probabilities behave very closely to the
provably monotone model where each bit is flipped indepen-
dently. However, they aren’t always strictly monotone in the fixed
distance model.
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where f (T) are Fourier coefficients of f, zpyr =
IL <1 TiYi, and the expectation is taken over x chosen uni-
formly from {—1,1}" and y uniformly from N,,(x). The
only difference from ODonnell (2003) is in the distribu-
tion of y, which is now take from the fixed-distance model
rather than flipping each bit of = independently. Observing
that zpyp is really only a function of the Hamming dis-
tance between x and y within the index set defined by T,
we can set x = 1" without loss of generality. The result-
ing term, E[yy], is determined by how often y has an odd
number of —1 values in the bits belonging to 7', which is
precisely p(w, n, |T).

Specifically, E[z7yr] = 1 — 2p(w, n, |T|). Further, when
T\ sup(f) is non-empty (here sup(f) refers to the support
of the function f), i.e., T' contains a bit that is not in the
support of f, then f(T') = 0. Thus we have:
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where the last equality follows from Parseval’s iden-
tity which states that for any boolean function f,
2T Csup(f) f(T)% = 1. This proves the first part of the
claim.

As further insight, we consider the case where f is XOR,;.
Then the only non-zero Fourier coefficient is the one
with T = sup(f), and this coefficient is 1, yielding
NS, (XOR;) = p(w, n, j).

For the second part of the claim, we begin with some short-
hand: q(w) = (,",)NS,,_;(h), where ¢ is defined over
w = 1,...,n + 1. This offset is designed to simplify the
application of the Vandermonde inverse. Note that our goal
is to compute the NS/, (h)’s for w = 0,...,n, which we

can easily recover from the g(w)’s.

Using this notation, we can recover n + 1 evaluations of
a polynomial in € whose coefficients are the ¢(w)’s as fol-
lows:
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One can evaluate this polynomial at €;,...,€,41 evenly
spaced between 0 and 1/2. Defining € = [€1,. .y €nti],
and o; = €;/(1 — ¢;), rewriting the above in matrix form
we have

NS, = diag((T = 2)")Varq(w) ®)

where V4 is the classical form of the Vandermonde matrix
with parameters o, whose inverse B can be computed in
closed-form. Using the closed-form Vandermonde inverse
[b;;] we have
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and use that to solve for g(w ) in (8), to calculate
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as desired. Finally, NS/, (f) = q(w +1)/("). O
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