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Abstract
We consider the fundamental problem in non-
convex optimization of efficiently reaching a sta-
tionary point. In contrast to the convex case,
in the long history of this basic problem, the
only known theoretical results on first-order non-
convex optimization remain to be full gradient
descent that converges in O(1/ε) iterations for
smooth objectives, and stochastic gradient de-
scent that converges inO(1/ε2) iterations for ob-
jectives that are sum of smooth functions.

We provide the first improvement in this line of
research. Our result is based on the variance re-
duction trick recently introduced to convex opti-
mization, as well as a brand new analysis of vari-
ance reduction that is suitable for non-convex op-
timization. For objectives that are sum of smooth
functions, our first-order minibatch stochastic
method converges with an O(1/ε) rate, and is
faster than full gradient descent by Ω(n1/3).

We demonstrate the effectiveness of our methods
on empirical risk minimizations with non-convex
loss functions and training neural nets.1

1 Introduction
Numerous machine learning problems are naturally formu-
lated as non-convex optimization problems. Examples in-
clude inference in graphical models, unsupervised learning
models such as topic models, dictionary learning, and per-
haps most notably, training of deep neural networks. In-
deed, non-convex optimization for machine learning is one
of the fields’ main research frontiers.

1Full version of this paper first appeared online on March 17,
2016 on arXiv: http://arxiv.org/abs/1603.05643.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Since global minimization of non-convex functions is NP-
hard, various alternative approaches are applied. For some
models, probabilistic and other assumptions on the input
can be used to give specially designed polynomial-time al-
gorithms (Arora et al., 2014; 2013; Hsu et al., 2012).

However, the multitude and diversity of machine learning
applications require a robust, generic optimization method
that can be applied as a tool rather than reinvented per each
specific model. One approach is the design of global non-
convex heuristics such as simulated annealing or bayesian
optimization. Although believed to fail in the worst case
due to known complexity results, such heuristics many
times perform well in practice for certain problems.

Another approach, which is based on more solid theoreti-
cal foundation and is gaining in popularity, is to drop the
“global optimality” requirement and attempt to reach more
modest solution concepts. The most popular of these is the
use of iterative optimization methods to reach a stationary
point. The use of stochastic first-order methods is the pri-
mary focus of this approach, which has become the most
common method for training deep neural nets.

Formally, in this paper we consider the unconstrained min-
imization problem

minx∈Rd
{
f(x)

def
= 1

n

∑n
i=1 fi(x)

}
, (1.1)

where each fi(x) is differentiable, possibly non-convex,
and has L-Lipschitz continuous gradient (a.k.a. L-smooth)
for some parameter L > 0.2 Many machine learn-
ing/imaging processing problems fall into Problem (1.1),
including training neural nets, ERM (empirical risk mini-
mization) with non-convex losses, and many others.

Following the classical benchmark for non-convex opti-
mization (see for instance (Ghadimi & Lan, 2015)), we fo-
cus on algorithms that can efficiently find an approximate
stationary point x satisfying ‖∇f(x)‖2 ≤ ε.

2Even if each fi(x) is not smooth but only Lipschitz con-
tinuous, standard smoothing techniques such as Chapter 2.3 of
(Hazan, 2015) usually turn each fi(x) into a smooth function
without sacrificing too much accuracy.

http://arxiv.org/abs/1603.05643
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Unlike convex optimization, a point with small gradient
may only be close to a saddle point or a local mini-
mum, rather than the global minimum. Therefore, such
an algorithm is usually combined with saddle-point or
local-minima escaping schemes, such as genetic algo-
rithms or simulated annealing. More recently, Ge et
al. (Ge et al., 2015) also demonstrated that a simple noise-
addition scheme is sufficient for stochastic gradient descent
to escape from saddle points.

However, for the general problem (1.1) where smoothness
is the only assumption and finding approximate stationary
point is the simple goal, the only known theoretical conver-
gence results remain to be that for gradient descent (GD)
and stochastic gradient descent (SGD).

• Given a starting point x0, GD applies an update x′ ←
x− 1

L∇f(x) with a fixed step length 1/L per iteration.
In order to produce an output x that is an ε-approximate
stationary point, GD needs T = O

(L(f(x0)−f(x∗))
ε

)
it-

erations where x∗ is the global minimizer of f(·). This
is a folklore result in optimization and included for in-
stance in (Ghadimi & Lan, 2015).

• SGD applies an update x′ ← x − η∇fi(x) per itera-
tion, where i chosen uniformly at random from [n]

def
=

{1, 2, . . . , n}. If η is properly tuned, one can obtain an
ε-approximate stationary point in T = O

((
L
ε + Lσ2

ε2

)
·

(f(x0)− f(x∗))
)

iterations, where σ is the variance of
the stochastic gradient. This result is perhaps first for-
malized by Ghadimi and Lan (Ghadimi & Lan, 2015).

Since computing the full gradient ∇f(·) is usually n times
slower than that of ∇fi(x), each iteration of SGD is usu-
ally n times faster than that of GD, but the total number of
iterations for SGD is very poor.

Before our work, it is an open question to design a first-
order method that is faster than both GD and SGD.

1.1 Our Result
We prove that variance reduction techniques, based on the
SVRG method (Johnson & Zhang, 2013), produce an ε-
stationary point in only O

(n2/3L(f(x0)−f(x∗))
ε

)
iterations.

Since each iteration of SVRG is as fast as SGD and n times
faster than that of GD, SVRG is guaranteed to be at least
Ω(n1/3) times faster than GD. Among first-order methods,
this is the first time the performance of GD is outperformed
in theory for problem (1.1) without any additional assump-
tion, and also the first time that stochastic-gradient based
methods are shown to have a non-trivial3 1/ε convergence
rate independent of the variance σ2.

Our proposed algorithm is very analogous to SVRG of

3Note however, designing a stochastic-gradient method with
a trivial 1/ε rate is obvious. For instance, it is straightforward
to design such a method that converges in O

(nL(f(x0)−f(x∗))
ε

)
iterations. However, this is never faster than GD.

(Johnson & Zhang, 2013). Recall that SVRG has an outer
loop of epochs, where at the beginning of each epoch,
SVRG defines a snapshot vector x̃ to be the average vec-
tor of the previous epoch,and computes its full gradient
∇f(x̃). Each epoch of SVRG consists of m inner itera-
tions, where the choice of m usually depends on the ob-
jective’s strong convexity. In each inner iteration inside an
epoch, SVRG picks a random i ∈ [n], defines the gradient
estimator

∇̃k def
= 1

n

∑n
j=1∇fj(x̃) +∇fi(xk)−∇fi(x̃) , (1.2)

and performs an update x′ ← x− η∇̃k for some fixed step
length η > 0 across all iterations and epochs.

In order to prove our theoretical result in this paper, we
make the following changes to SVRG. First, we set the
number of inner iterations m as a constant factor times n.
Second, we pick the snapshot point to be a non-uniform
average of the last m2/3 elements of the previous epoch.
Finally, we prove that the average norm ‖∇f(xk)‖2 of the
encountered vectors xk across all iterations is small, so it
suffices to output xk for a random k.

Our Technique. To prove our result, we need different
techniques from all known results on variance reduction.
The key idea used by previous authors is to show that the
variance of the gradient estimator ∇̃k is upper bounded by
eitherO(f(xk)−f(x∗)) orO(‖xk−x∗‖2), and therefore it
converges to zero for convex functions. This analysis fails
to apply in the non-convex setting because gradient-based
methods do not converge to the global minimum.

We observe in this paper that the variance is upper bounded
by O(‖xk − x̃‖2), the squared distance between the cur-
rent point and the most recent snapshot. By dividing an
epoch into m1/3 subepochs of length m2/3, and perform-
ing a mirror-descent analysis for each subepoch, we further
show that this squared distance is related to the objective
decrease f(x̃) − f(xk). This would suffice for proving
our theorem: whenever this squared distance is small the
objective is decreased by a lot due to the small variance,
or otherwise if this squared distance is large we still ex-
perience a large objective decrease because it is related to
f(x̃)− f(xk).

Applications. There are many machine learning problems
that fall into category (1.1). To mention just two:

• NON-CONVEX LOSS IN ERM
Empirical risk minimization (ERM) problems naturally
fall into the category of (1.1) if the loss functions are
non-convex. For instance, for binary classification prob-
lems, the sigmoid function —or more broadly, any nat-
ural smoothed variant of the 0-1 loss function— is not
only a more natural choice than artificial ones such as
hinge loss, logistic loss, squared loss, but also generalize
better in terms of testing accuracy especially when there
are outliers (Shalev-Shwartz et al., 2011).
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However, since sigmoid loss is non-convex, it was previ-
ously considered hard to train an ERM problem with it.
Shalev-Shwartz, Shamir and Sridharan (Shalev-Shwartz
et al., 2011) showed that this minimization problem is
still solvable in the improper learning sense, with the
help from kernel methods and gradient descent. How-
ever, their theoretical convergence has a poor polynomial
dependence on 1/ε and exponential dependence on the
smoothness parameter of the loss function.
Our result in this paper applies to ERM problems with
non-convex loss. Suppose we are given n training exam-
ples {(a1, `1), . . . (an, `n)}, where each ai ∈ Rd is the
feature vector of example i and each li ∈ {−1,+1} is
the binary label of example i. By setting φ(t)

def
= 1

1+et

to be the sigmoid loss function and setting fi(x)
def
=

φ(li〈ai, x〉) + λ
2 ‖x‖

2, problem (1.1) becomes `2 ERM
with sigmoid loss. We shall demonstrate in our exper-
iment section that, by using SVRG to train ERM with
sigmoid loss, its running time is as good as using SVRG
to train ERM with other convex loss functions, but the
testing accuracy can be significantly better.
• NEURAL NETWORK

Training neural nets can also be formalized into problem
(1.1). For instance, as long as the activation function of
each neural node is smooth, say the sigmoid function or
a smooth version of the rectified linear unit (ReLU) func-
tion (for instance, the softplus alternative), we can define
fi(x) to be the training loss with respect to the i-th data
input. In this language, computing the stochastic gradient
∇fi(x) for some random i ∈ [n] corresponds to perform-
ing one forward-backward prorogation on the neural net
with respect to sample i. We shall demonstrate in our ex-
periment that using SVRG to train neural nets can enjoy
a much faster running time comparing to SGD or SVRG.

1.2 Extensions
Mini-Batch. Our result in this paper trivially extends to
the mini-batch setting: if in each iteration we select fi(·)
for more than one random indices i, then we can accord-
ingly define the gradient estimator and the result of this pa-
per still holds. Note that the speed up that we obtain in this
case comparing to gradient descent is O((n/b)1/3) where
b is the mini-batch size. Therefore, the smaller b is the bet-
ter sequential running time we expect to see (which is also
observed in our experiments).

Other Smoothness Assumptions. Our result generalizes
to the setting when each fi(·) enjoys a different smoothness
parameter. In this setting one needs to select a random in-
dex i ∈ [n] with a non-uniform distribution in order to ob-
tain a faster running time. Our result also generalizes to the
upper-lower smoothness setting. Instead of requiring each
fi(·) to be L-smooth, one can assume it is L-upper smooth
and l-lower smooth, a notation introduced by (Allen-Zhu
& Yuan, 2016); in such a case, faster results can also be

obtained using our same proof techniques.

Sum-of-Non-Convex Objectives. Our analogous proof
also applies to the sum-of-non-convex setting which is the
same Problem (1.1) except f(·) is guaranteed to be σ-
strongly convex. Our obtained running time is Õ(n +√
nL/σ) for SVRG. This is faster than the previous run-

ning time on SVRG which is Õ(n + L2/σ2), however,
it is not faster than using SVRG+Catalyst which gives
Õ(n+n3/4

√
L/
√
σ), see discussion in (Allen-Zhu & Yuan,

2016). We do not include the details about this proof be-
cause it does not outperform SVRG+Catalyst.

Other Variance-Reduction Methods. Our proof gen-
eralizes to all variance-reduction methods. However, for
brevity we demonstrate it only for the SVRG algorithm.

1.3 Other Related Works
For convex objectives, finding stationary points (or equiva-
lently the global minimum) for problem (1.1) has received
lots of attentions across machine learning and optimiza-
tion communities; many first-order methods (Johnson &
Zhang, 2013; Shalev-Shwartz & Zhang, 2013; Schmidt
et al., 2013; Defazio et al., 2014) as well as their accel-
erations (Shalev-Shwartz & Zhang, 2014; Lin et al., 2014;
Zhang & Xiao, 2015; Allen-Zhu et al., 2016; Allen-Zhu,
2016) have been proposed in the past a few years. Even in
the case when f(·) is convex but each fi(·) is non-convex,
the problem (1.1) can be solved easily (Shalev-Shwartz,
2015; Garber & Hazan, 2015; Allen-Zhu & Yuan, 2016).

The results of Li and Lin (Li & Lin, 2015) and Ghadimi and
Lan (Ghadimi & Lan, 2015) unify the theory of non-convex
and convex optimization in the following sense. They pro-
vide general first-order schemes such that, if the parame-
ters are tuned properly, the schemes can converge (1) as
fast as gradient descent in terms of finding an approximate
stationary point; and (2) as fast as accelerated gradient de-
scent (Nesterov, 2004) in terms of minimizing the objec-
tive if the function is convex. For the class of (1.1), their
methods are only as slow as GD; in contrast, in this paper
we prove theoretical convergence that is strictly faster than
GD, which is both interesting and unknown.

A few days after the first version of this paper appeared
on arXiv, we became aware of another group of authors
that have independently obtained essentially the same re-
sult (Reddi et al., 2016a;b). 4

4These results also address gradient dominated functions,
for which our main theorem also applies as follows. A non-
convex function f(·) is τ -gradient dominated if f(x)− f(x∗) ≤
τ‖∇f(x)‖2 for every x. Since our main theorem implies one
can obtain x satisfying ‖∇f(x)‖2 ≤ 1

2τ
(f(x0) − f(x∗))

using O
(
n + n2/3Lτ

)
stochastic gradients, by repeating it

log2(1/ε) times, we obtain an ε-minimizer of f(·) in O
(
(n +

n2/3Lτ) log(1/ε)
)

stochastic gradients.
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Algorithm 1 Simplified SVRG method in the non-convex
setting
Input: xφ a starting vector, S number of epochs, m num-

ber of iterations per epoch, η step length.
1: x10 ← xφ

2: for s← 1 to S do
3: µ̃← ∇f(xs0)
4: for k ← 0 to m− 1 do
5: Pick i uniformly at random in {1, · · · , n}.
6: ∇̃ ← ∇fi(xsk)−∇fi(xs0) + µ̃

7: xsk+1 = xsk − η∇̃
8: end for
9: xs+1

0 ← xsm
10: end for
11: return xsk for some random s ∈ {1, 2, . . . , S} and ran-

dom k ∈ {1, 2, . . . ,m}.

2 Notations and Algorithm
A differentiable function f : Rn → R is L-smooth if for all
pairs x, y ∈ Rn it satisfies ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖.
An equivalent definition says for for all x, y ∈ Rn:

−L2 ‖x−y‖
2 ≤ f(x)−f(y)−〈∇f(y), x−y〉 ≤ L

2 ‖x−y‖
2 .

(2.1)

The main body of this paper proves our result based on
three false simplification assumptions 4.2, 4.3 and 4.4 for
the sake of sketching the high-level intuitions and high-
lighting the differences between our proof and known re-
sults. Our formal convergence proof is quite technical and
included in the full paper.

In this high-level proof, we consider Algorithm 1, a simpli-
fied version of our final SVRG method for the non-convex
setting. Note that both the snapshot point and the starting
iterate xs0 of the s-th epoch have been chosen as the last
iterate of the previous epoch in Algorithm 1.

Remark 2.1. In our final proof, we instead choose xs0 to be
a weighted average of the last m2/3 iterates from the previ-
ous epoch. See Algorithm 2 in the full paper. We demon-
strate in Section 6 that this also a better choice in practice.

Throughout this paper we denote by xsk the k-th iterate of
the s-th epoch, by ∇sk = ∇f(xsk) the full gradient at this
iterate, and by ∇̃sk = ∇f(xs0) + ∇if(xsk) − ∇if(xs0) the
gradient estimator which clearly satisfies Ei[∇̃sk] = ∇sk.
We denote by isk the random index i chosen at iteration k
of epoch s. We also denote by (σsk)2

def
= ‖∇sk − ∇̃sk‖2 the

variance of the gradient estimator ∇̃sk. Under these nota-
tions, our simplified SVRG algorithm in Algorithm 1 sim-
ply performs update xsk+1 ← xsk − η∇̃sk for a fixed step
length η > 0 that shall be specified later.

Since we focus mostly on analyzing a single epoch, when it

is clear from the context, we drop the superscript s and de-
note by xk, ik,∇k, ∇̃k, σ2

k respectively for xsk, isk,∇sk, ∇̃sk,
(σsk)2. We also denote by H2

k
def
= ‖∇k‖22, σ2

i:j
def
=
∑j
k=i σ

2
k

and H2
i:j

def
=
∑j
k=i H

2
k for notational simplicity.

3 Two Useful Lemmas
We first observe two simple lemmas. The proofs of both of
them can be found in the full paper. The first one describes
the expected objective decrease between two consecutive
iterations. This is a standard step that is used in analyzing
gradient descent for smooth functions, and we additionally
take into account the variance of the gradient estimator.

Lemma 3.1 (gradient descent). If xk+1 = xk − η∇̃k for
some gradient estimator ∇̃k satisfying E[∇̃k] = ∇k =
∇f(xk), and if the step length η ≤ 1

L , we have

f(xk)− E[f(xk+1)] ≥ η
2∇

2
k −

η2L
2 E

[
σ2
k

]
.

The next lemma follows from the classical analysis of mir-
ror descent methods.However, we make novel use of it on
top of a non-convex but smooth function.

Lemma 3.2 (mirror descent). If xk+1 = xk − η∇̃k for
some gradient estimator ∇̃k satisfying E[∇̃k] = ∇k =
∇f(xk), then for every u ∈ Rd it satisfies

f(xk)− f(u) ≤ η
2

(
H2
k + E[σ2

k]
)

+
(

1
2η + L

2

)
‖xk − u‖2 − 1

2ηE
[
‖xk+1 − u‖2

]
.

Our main theorem is motivated by the linear-coupling
framework (Allen-Zhu & Orecchia, 2014). In particular,
we linearly couple the above gradient and mirror descent
lemmas, together with a variance upper-bound lemma de-
scribed in the next section.

4 Upper Bounding the Variance
High-Level Ideas. The key idea behind all variance-
reduction literatures (such as SVRG (Johnson & Zhang,
2013), SAGA (Defazio et al., 2014), and SAG (Schmidt
et al., 2013)) is to prove that the variance E[(σsk)2] de-
creases as s or k increases. However, the only known
technique to achieve so is to upper bound E[(σsk)2] “es-
sentially” by O

(
f(xsk) − f(x∗)

)
, the objective distance

to the minimum. Perhaps the only exception is the
work on sum-of-non-convex but strongly-convex objec-
tives (Shalev-Shwartz, 2015; Allen-Zhu & Yuan, 2016),
where the authors upper bound E[(σsk)2] by O

(
‖xsk −

x∗‖2
)
, the squared vector distance to the minimum. Such

techniques fail to apply in our non-convex setting, because
gradient-descent based methods do not necessarily con-
verge to the global minimum.

We take a different path in this paper. We upper bound
E[(σsk)2] by O

(
‖xsk − xs0‖2

)
, the squared vector distance

between the current vector xsk and the first vector (i.e., the
snapshot) xs0 of the current epoch s. This is certainly tighter
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than O
(
‖xsk − x∗‖2

)
from prior work.5 Moreover, the less

we move away from the snapshot, the better upper bound
we obtain on the variance. This is conceptually different
from all existing literatures.

Furthermore, we in turn argue that ‖xsk − xs0‖2 is at most
some constant times f(xsk)− f(xs0). To prove so, we wish
to select u = xs0 in Lemma 3.2 and telescope it for mul-
tiple iterations k, ideally for all the iterations k within the
same epoch. This is possible for convex objectives but im-
possible for non-convex ones. More specifically, the ra-
tio between (1/2η + L/2) and (1/2η) can be much larger
than 1, preventing us from telescoping more than O(1/ηL)
iterations in any meaningful manner (see (4.1)). In con-
trast, this ratio would be identical to 1 in the convex setting,
or even smaller than 1 in the strongly convex setting. For
this reason, we define η = 1

m2/3L
, divide each epoch into

O(m1/3) subepochs each consisting of O(m2/3) consecu-
tive iterations. Now we can telescope Lemma 3.2 for all the
iterations within a subepoch because m2/3 ≤ O(1/ηL).
Finally, we use vector inequalities (see (4.5)) to combine
these upper bounds for sub-epochs into an upper bound on
the entire epoch.

Technical Details. We choose η = 1
m0L

for some param-
eter m0 that divides m. We will set m0 to be m2/3 and the
reason will become clear at the end of this section. Define
d = m/m0 so an epoch is divided into d sub-epochs.

We make the following parameter choices

Definition 4.1. Define β0 = 1 and βt
def
= (1 + ηL)−t =

(1 + 1/m0)−t for t = 1, . . . ,m0 − 1. We have 1 ≥ βt ≥
1/e > 1/3.

For each k = 0, 1, . . . ,m − m0, we sum up Lemma 3.2
for iterations k, k + 1, . . . , k + m0 − 1 with multiplica-
tive weights β0, . . . , βm0−1 respectively. The norm square
terms shall telescope in this summation, and we arrive at∑m0−1

t=0 βt
(
f(xk+t)−f(u)

)
≤ η

2

∑m0−1
t=0 βt

(
H2
k+t+σ

2
k+t

)
+
( 1

2η
+
L

2

)
‖xk − u‖2 −

βm0−1

2η
‖xk+m0

− u‖2 .

(4.1)

Simplification 4.2. Since the weights β0, . . . , βm0−1 are
within each other by a constant factor, let us assume for
simplicity that they are all equal to 1.

If we choose u = xk and assume βt = 1 for all t, we can
rewrite (4.1) as

1
m0

∑m0−1
t=0

(
f(xk+t)− f(xk)

)
≤ η

2
1
m0

(
H2
k:k+m0−1

+ σ2
k:k+m0−1

)
− 1

6ηm0
‖xk+m0 − xk‖2 . (4.2)

Simplification 4.3. Since the left hand side of

5This new technique has also been applied to convex settings
recently (Allen-Zhu, 2016).

(4.2) is describing the average objective value
f(xk), f(xk+1), . . . , f(xk+m0−1) which is hard to
analyze, let us assume for simplicity that it can be replaced
with the last iteration in this subepoch, that is

f(xk+m0
)− f(xk) ≤ η

2
1
m0

(
H2
k:k+m0−1 + σ2

k:k+m0−1
)

− 1
6ηm0

‖xk+m0 − xk‖2 . (4.3)

Using the above inequality we provide a novel upper bound
on the variance of the gradient estimator:

Eit
[
σ2
t

]
= Eit

[∥∥(∇fit(xt)−∇fit(x0))− (∇f(xt)−∇f(x0))∥∥2]
≤ Eit

[∥∥∇fit(xt)−∇fit(x0)∥∥2]
≤ L2‖xt − x0‖2 . (4.4)

Above, the first inequality is because for any random vec-
tor ζ ∈ Rd, it holds that E‖ζ−Eζ‖2 = E‖ζ‖2−‖Eζ‖2, and
the second inequality is by the smoothness of each fi(·).

In particular, for t = m, we can upper bound σ2
m using

(4.4) and multiple times of (4.3):

E[σ2
m] ≤ L2E

[
‖xm − x0‖2

]
≤ L2dE

[
‖xm − xm−m0‖

2

+ ‖xm−m0 − xm−2m0‖
2 + · · ·+ ‖xm0 − x0‖

2]
≤ L2dE

[
6ηm0

(
f(x0)− f(xm)

)
+ 3η2

(
H2

0:m−1 + σ2
0:m−1

)]
.

(4.5)

Above, the first inequality follows from the vector inequal-
ity ‖v1 + · · · + vd‖2 ≤ d

(
‖v1‖2 + · · · + ‖vd‖2

)
, and the

second inequality follows from (4.3).

Simplification 4.4. Suppose that (4.5) holds not only for
σ2
m but actually for all σ2

0 , . . . , σ
2
m−1, then it satisfies

1
mE[σ2

0:m−1] ≤ L2dE
[
6ηm0

(
f(x0)− f(xm)

)
+ 3η2

(
H2

0:m−1 + σ2
0:m−1

)]
. (4.6)

As long as 3η2L2d ≤ 1
2m , (4.6) further implies

1
mE[σ2

0:m−1] ≤ 12ηm0L
2d

· E
[
f(x0)− f(xm) + η

2m0
H2

0:m−1
]
. (4.7)

This concludes our goal in this section which is to provide
an upper bound (4.7) on the (average) variance by a con-
stant times the objective difference f(x0)− f(xm).

5 Final Theorem
By applying the gradient descent guarantee Lemma 3.1 to
the entire epoch. We obtain that

f(x0)− E[f(xm)] ≥ E
[
η
2H

2
0:m−1 −

η2L
2 σ2

0:m−1

]
.

Combining this with the variance upper bound (4.7), we
immediately have

f(x0)− E[f(xm)] ≥ η
2E[H2

0:m−1]− 6η3m0mL
3d

· E[f(x0)− f(xm) + η
2m0
H2

0:m−1] . (5.1)
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In other words, as long as 6η3m0mL
3d ≤ 1

2 , we arrive at

f(x0)− E[f(xm)] ≥ η
6E[H2

0:m−1] . (5.2)

Note that (5.2) is only for a single epoch and can be written
as f(xs0)−E[f(xsm)] ≥ η

6E[
∑m−1
t=0 ‖∇f(xst )‖2] in the gen-

eral notation. Therefore, we can telescope it over all epochs
s = 1, 2, . . . , S. Since we have chosen xs0, the initial vec-
tor in epoch s, to be xs−1m , the last vector of the previous
epoch, we obtain that

1
Sm

∑S
s=1

∑m−1
t=0 E

[
‖∇f(xst )‖2

]
≤ 6

ηSm (f(x10)−f(xSm))

≤ 6(f(xφ)−minx f(x))
ηSm .

At this point, if we randomly select s ∈ [S] and t ∈ [m] at
the end of the algorithm, we conclude that

E[‖∇f(xst )‖2] ≤ 6(f(xφ)−minx f(x))
ηSm .

(We remark here that selecting an average iterate to output
is a common step also used by GD or SGD for non-convex
optimization. This step is often unnecessarily in practice.)

Finally, let use choose the parameters properly. We sim-
ply let m = n be the epoch length. Since we have re-
quired 3η2L2d ≤ 1

2m and 6η3m0mL
3d ≤ 1

2 in the pre-
vious section, and both these requirements can be satisfied
when m3

0 ≥ 12m2, we set m0 = Θ(m2/3) = Θ(n2/3).
Accordingly η = 1

m0L
= Θ

(
1

n2/3L

)
. In sum,

Theorem 5.1. Under the simplification assumptions 4.2,
4.3 and 4.4, by choosing m = n and η = Θ

(
1

n2/3L

)
, the

produced output x of Algorithm 1 satisfies that6

E[‖∇f(x)‖2] ≤ O
(
L(f(xφ)−minx f(x))

Sn1/3

)
.

In other words, to obtain a point x satisfying ‖∇f(x)‖2 ≤
ε, the total number of iterations needed for Algorithm 1 is

Sn = O
(
n2/3L(f(xφ)−minx f(x))

ε

)
.

The amortized per-iteration complexity of SVRG is at most
twice of SGD. Therefore, this is a factor of Ω(n1/3) faster
than the full gradient descent method on solving (1.1).

6 Experiments
6.1 Empirical Risk Minimization with Non-Convex Loss
We consider binary classification on four standard datasets
that can be found on the LibSVM website (Fan & Lin):

• the adult (a9a) dataset (32, 561 training samples,
16, 281 testing samples, and 123 features).

• the web (w8a) dataset (49, 749 training samples,
14, 951 testing samples, and 300 features).

• the rcv1 (rcv1.binary) dataset (20, 242 training samples,
677, 399 testing samples, and 47, 236 features).

• the mnist (class 1) dataset (60, 000 training samples,

6Like in SGD, one can easily apply a Markov inequality to
conclude that with probability at least 2/3 we have the same
asymptotic upper bound on the deterministic quantity ‖∇f(x)‖2.

10, 000 testing samples, and 780 features,

Accuracy Experiment. In the first experiment we apply
SVRG on training the `2-regularized ERM problem with
six loss functions: logistic loss, squared loss, smoothed
hinge loss (with smoothing parameters 0.01, 0.1 and 1
resp.), and smoothed zero-one loss (also known as sigmoid
loss).7 We wish to see how non-convex loss compares to
convex ones in terms of testing accuracy (and thus in terms
of the generalization error).

For each of the four datasets, we also randomly flip 1/4
fraction, 1/8 fraction, or zero fraction of the training exam-
ple labels. The purpose of this manipulation is to introduce
outliers to the training set. We therefore have 4 × 3 = 12
datasets in total. We choose epoch length m = 2n as sug-
gested by the paper SVRG for ERM experiments, and use
the simple Algorithm 1 for both convex and non-convex
loss functions.

We present the accuracy results partially in Figure 1 (and
the complete plots are in the full paper). The y-axis rep-
resents the classification testing accuracy, and the x-axis
represents the number of passes to the dataset. (Each it-
eration of SVRG counts as 1/n pass and the full-gradient
computation of SVRG counts as 1 pass.)

These plots are produced based on a fair and careful
parameter-tuning and parameter-validation procedure that
can be described in the following four steps. Step I: for
each of the 12 datasets, we partition the training samples
randomly into a training set of size 4/5 and a validation
set of size 1/5. Step II: for each of the 12 datasets and
each loss function, we enumerate over 10 choices of λ, the
regularization parameter. For each λ, we tune SVRG on
the training set with different step lengths η and choose the
best η that gives the fastest training speed. Step III: for each
of the 12 datasets and each loss function, we tune the best
λ using the validation set. That is, we use the selected η
from Step II to train the linear predictor, and apply it on the
validation set to obtain the testing accuracy. We then select
the λ that gives the best testing accuracy for the validation
set. Step IV: for each of the 12 datasets and each loss func-
tion, we apply the validated linear predictor to the testing
set and present it in Figure 1 and Figure 4.

We make the following observations from this experiment.

• Although sigmoid loss is only comparable to hinge loss
or logistic loss for “no flip” datasets, however, when the
input has a lot of outliers (see “flip 1/8” and “flip 1/4”),

7For the sigmoid loss, we scale it properly so that its smooth-
ness parameter is exactly 1. Unlike hinge loss, it is unnecessary to
consider sigmoid loss with different smoothness parameters: one
can carefully verify that by scaling up or down the weight of the
`2 regularizer, it is equivalent to changing the smoothness of the
sigmoid loss.
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Figure 1. Testing accuracy comparison on SVRG for `2-regularized ERM with different loss functions. The full plots for all the 4 datasets
can be found in the full paper. Black solid curves represent sigmoid loss, blue dash curves represent square loss, green dash-dotted
curves represent logistic loss, and the three red dotted curves represent hinge loss with 3 different smoothing parameters.

sigmoid loss is undoubtedly the best choice. Square
loss is almost always dominated because it is not nec-
essarily a good choice for binary classification.
• The running time needed for SVRG on these datasets

are quite comparable, regardless of the loss function be-
ing convex or not.

Running-Time Experiment. In this second experiment,
we fix the regularization parameter λ and compare the
training objective convergence between SGD and SVRG
for sigmoid loss only.8 We choose four different λ per
dataset and present our plots partially in Figure 2 (and the
complete plots can be found in the full paper). In these
plots, the y-axis represents the training objective value, and
the x-axis represents the number of passes to the dataset.

For a fair comparison we need to tune the step length η for
each dataset and each choice of λ. For SGD, we enumer-
ate over polynomial learning rates ηk = α · (1 + k/n)β

where k is the number of iterations passed; we have made
10 choices of α, considered β = 0, 0.1, . . . , 1.0, and se-
lected the learning rate that gives a fastest convergence. For
SVRG, we first consider the vanilla SVRG using a con-
stant η throughout all iterations, and select the best η that
gives the fastest convergence. This curve is presented in
dashed blue in Figure 5. We also implement SVRG with
polynomial learning rates ηk = α · (1 + k/n)β and tune
the best α, β parameters and present the results in dashed
black curves in Figure 5.

We make the following observations from this experiment.

• Consistent with theory, SVRG is not necessarily a bet-
ter choice than SGD for large training error ε. How-
ever, SVRG enjoys a very fast convergence especially
for small ε.

• The smaller λ is, the more “non-convex” the objective
function becomes. We see that SGD performs more

8This experiment is the minimization problem with respect to
all training samples since there is no need to perform validation.

poorer than SVRG in these cases.
• With only one exception (dataset web with λ = 10−6),

choosing a polynomial learning rate does not seem nec-
essary in terms of improving the running time for train-
ing ERM problems with non-convex loss.

• Although not presented in Figure 5, the best-tuned
polynomial learning rates for SVRG have smaller ex-
ponents β as compared to SGD in each of the 16 plots.

6.2 Neural Network
We consider the multi-class (in fact, 10-class) classifica-
tion problem on CIFAR-10 (60, 000 training samples) and
MNIST (10, 000 training samples), two standard image
datasets for neural net studies. We construct a toy two-
layered neural net, with (1) 64 hidden nodes in the first
layer, each connecting to a uniformly distributed 4x4 or 5x5
pixel block of the input image and having a smoothed relu
(also known as softplus) activation function; (2) 10 output
nodes on the second layer, fully connected to the first layer
and each representing one of the ten classification outputs.
We consider training such neural networks with the multi-
class logistic loss that is a function on the 10 outputs and
the correct label. For each of the two datasets, we con-
sider both training the unregularized version, as well as the
`2 regularized version with weight 10−3 for CIFAR-10 and
10−4 for MNIST, two parameters suggested by (Johnson &
Zhang, 2013).

We implement two classical algorithms: stochastic gradient
descent (SGD) with the best tuned polynomial learning rate
and adaptive subGradient method (AdaGrad) of (McMahan
& Streeter, 2010; Duchi et al., 2011) which is essentially
SGD but with an adaptive learning rate. We choose a mini-
batch size of 100 for both these methods. We consider four
variants of SVRG, all of which use epoch lengthm = 5n/b
if b is the mini-batch size:

• SVRG-1, the simple Algorithm 1 with a best tuned
polynomial learning rate and b = 100.
• SVRG-2, our full Algorithm 2 with a best tuned poly-
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Figure 2. Training error comparison between SGD and SVRG on `2-regularized ERM with sigmoid loss. The full plots can be found in
the full paper. The best-tuned SGD is presented in solid green, the best-tuned SVRG with constant step length is presented in dashed
blue, and the best-tuned SVRG is presented in doted black.
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Figure 3. Training Error Comparison on neural nets.

nomial learning rate and b = 100.9

• SVRG-3, using adaptive learning rate (similar to Ada-
Grad) on top of SVRG-2 with b = 100.

• SVRG-4, same as SVRG-3 but with b = 16.

Our training error performance is presented in Figure 3.
We also include the testing accuracy in Figure 6 in the ap-
pendix. In these plots the y axis represents the training
objective value, and the x axis represents the number of
passes to the dataset. Each iteration of SGD or SVRG
counts as b/n pass of the dataset, and the snapshot full-
gradient computation counts as 1 pass.10 From the plots
we clearly see a performance advantage for using SVRG-

9That is, we set the initial vector of each epoch to be weighted
average of the last (m/b)2/3 vectors from the previous epoch.

10The number of passes to the dataset is a traditional unit for
comparing stochastic methods. For ERM problems, it is natu-
ral to count each iteration of SVRG as b/n passes of the data
rather than 2b/n, because the computation of ∇fi(x̃) is free if
one efficiently stores ∇fi(x̃) when the full gradient was com-
puted at x̃. However, after our paper has appeared online, we
noticed this measurement may not be fair for SGD on training
neural networks, because it is memory-inefficient to store∇fi(x̃)
when fi comes from a large-scale neural network. For this rea-
son, the sequential per-iteration cost of SVRG can be a factor
(2 + 1/5)/(1 + 1/5) = 11/6 greater than SGD. Nevertheless,
the extra cost on computing ∇fi(x̃) is totally parallelizable (and
can be viewed as doubling the mini-batch size), so this may not
affect the GPU-based running time of SVRG by that much. We
leave it a future work to run SVRG on large-scale network net-
works because it is beyond the scope of this paper.

based algorithms as compared to SGD or AdaGrad. Fur-
thermore, we observe that the following three features on
top of SVRG could further improve its running time:

1. Comparing SVRG-2 with SVRG-1, we see that setting
the epoch initial vector to be a weighted average of the
last a few iterations of the previous epoch is recom-
mended.

2. Comparing SVRG-3 with SVRG-2, we see that using
adaptive learning rates comparing to tuning the best
polynomial learning rate is recommended.

3. Comparing SVRG-4 with SVRG-3, we see that a
smaller mini-batch size is recommended in terms of the
total complexity. In contrast, reducing the mini-batch
size is discouraged for SGD or AdaGrad because the
variance could blow up and the performances would be
decreased (this is also observed by our experiment but
not included in the plots).

We hope that the above observations provide new insights
for experimentalists working on deep learning.
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