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Abstract
Accelerated coordinate descent is widely used in
optimization due to its cheap per-iteration cost
and scalability to large-scale problems. Up to a
primal-dual transformation, it is also the same as
accelerated stochastic gradient descent that is one
of the central methods used in machine learning.

In this paper, we improve the best known run-
ning time of accelerated coordinate descent by
a factor up to

√
n. Our improvement is based

on a clean, novel non-uniform sampling that se-
lects each coordinate with a probability propor-
tional to the square root of its smoothness pa-
rameter. Our proof technique also deviates from
the classical estimation sequence technique used
in prior work. Our speed-up applies to impor-
tant problems such as empirical risk minimiza-
tion and solving linear systems, both in theory
and in practice.1

1 Introduction
First-order methods have received extensive attention in the
past two decades due to their ability to handle large-scale
optimization problems. Recently, the development of co-
ordinate versions of first-order methods have pushed their

1The results of this paper first appeared on arXiv in December
2015. In March 2016, Nesterov and Stich independently obtained
our same results in a technical report (Nesterov & Stich, 2016).

The full version of this paper can be found on http://
arxiv.org/abs/1512.09103.
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running times even faster. As a notable example, the state-
of-the-art algorithm for empirical risk minimization (ERM)
problems, up to a primal-dual transformation, is precisely
accelerated coordinate descent (Lin et al., 2014).

In this paper, we consider the following unconstrained min-
imization problem2

min
x∈Rn

f(x) (1.1)

where the objective f : Rn → R is continuously differ-
entiable and convex. Below, we assume that f(·) is Li-
smooth with respect to its i-th coordinate.

Informally, coordinate smoothness means for each input x,
if we add its i-th coordinate by at most δ, the correspond-
ing coordinate gradient∇if(x+ δei) differs from∇if(x)
by at most Li times |δ|. Under this definition, the larger Li
is, the less smooth f is along the ei direction and therefore
the harder it is to minimize f along the ei direction.3 Intu-
itively, this implies we should spend more energy (i.e., as-
sign more sampling probability) on coordinates with larger
Li. However, it was unclear what the best design is for such
a distribution. In this paper, we present a clean and novel
non-uniform sampling method which gives a faster conver-
gence rate. Before going into the details, we first draw a
distinction between non-accelerated and accelerated coor-
dinate descent methods.

Non-Accelerated vs. Accelerated Methods. For smooth
2The results of this paper generalize to the so-called proxi-

mal case that is to allow an additional separable term ψ(x)
def
=∑n

i=1 ψi(xi) to be added. The proofs require some non-trivial
changes so we refrain from doing so in this version of the paper.

3For instance, if the i-th coordinate is selected, most
coordinate-descent methods are only capable of performing an
update x′ ← x − 1

Li
∇if(x) with step length inversely propor-

tional to Li.

http://arxiv.org/abs/1512.09103
http://arxiv.org/abs/1512.09103
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convex minimization, many first-order methods converge at
a rate 1/ε to obtain an additive error ε > 0. In 1983, Nes-
terov demonstrated that a better and optimal rate 1/

√
ε can

be obtained using his seminal accelerated gradient descent
method. (Nesterov, 1983)

For this reason, people refer to methods converging at rate
1/ε as non-accelerated first-order methods, while those at
rate 1/

√
ε as accelerated first-order methods. Similarly,

when the objective f(·) is known to be strongly convex
with parameter σ > 0, non-accelerated methods converge
at a rate inversely proportional to σ, while accelerated ones
converge at a rate inversely proportional to

√
σ. Although

being much faster, accelerated first-order methods are also
much more involved to design, see some recent attempts
for designing accelerated methods in conceptually simpler
manners (O’Donoghue & Candès, 2013; Su et al., 2014;
Allen-Zhu & Orecchia, 2014; Bubeck et al., 2015).

Such a distinction continues to hold on the coordinate-
gradient setting. A coordinate descent method iteratively
selects a coordinate i ∈ [n] at random, and updates the it-
erate x according to its coordinate gradient ∇if(x). As
we shall see later, designing good sampling probabilities
is well-studied for non-accelerated coordinate descent. In
contrast, less is known in the more challenging accelerated
regime, and we hope our work fills this gap.

We begin describing our result and compare it to the litera-
ture in the Euclidean norm case.

1.1 The Standard Euclidean Norm Case
In the non-accelerated world, in 2012, Nesterov (Nes-
terov, 2012) proposed a coordinate descent method called
RCDM, which is a simple adaption of the full gradient de-
scent method (see for instance the textbook (Nesterov,
2004)). At each iteration, RCDM selects a coordinate i
with probability proportional to Li, and performs update
x′ ← x − 1

Li
∇if(x). The number of iterations required

to reach an ε error, denoted by T in this paper, satisfies
T = O(

∑
i Li
ε ‖x0 − x∗‖2) for RCDM. Here, we denote by

x0 the starting vector, x∗ the minimizer of f , and ‖ · ‖ the
`2 Euclidean norm.

This convergence rate is usually compared to that of full
gradient descent: if L is the global smoothness parame-
ter of f(·), then full gradient descent converges in T =
O(Lε ‖x0 − x

∗‖2) iterations. Since Li is never larger than
L, and performing a coordinate descent step is usually n
times faster than a full gradient step, RCDM performs faster
than gradient descent in most applications.

In the same paper (Nesterov, 2012), Nesterov also demon-
strated the possibility of performing accelerated coordinate
gradient descent via a simple adaption of its full-gradient
variant (Nesterov, 1983; 2004; 2005). This has been later
analyzed in full by Lee and Sidford (Lee & Sidford, 2013),

and they named this method accelerated coordinate de-
scent method (ACDM). ACDM converges the following num-
ber of iterations:

T =


Õ
(√

n
∑
i Li√
ε
‖x0 − x∗‖

)
, when f is convex

O
(√

n
∑
i Li√
σ

log 1
ε

)
,

when f is σ-strongly
convex

ACDM is built upon the estimation sequence technique of
Nesterov (Nesterov, 1983; 2004; 2012), and similar to
RCDM, ACDM also selects each coordinate i (essentially) with
a probability proportional to Li.4 Since the analysis of Lee
and Sidford is tight, it has been thought that the iteration
bound T is not improvable.

In this paper, with a different non-uniform sampling
method, we develop a new accelerated coordinate descent
method NU ACDM that converges in T iterations, where

T =

 O
(∑

i

√
Li√
ε
‖x0 − x∗‖

)
, when f is convex

O
(∑

i

√
Li√
σ

log 1
ε

)
,

when f is σ-strongly
convex

Note that NU ACDM is always faster than ACDM because∑
i

√
Li ≤

√
n
∑
i Li. In the case when (L1, . . . , Ln)

is non-uniform, our method runs faster by a factor up to√
n.5 In our sampling step, we select each coordinate i

with probability exactly proportional to
√
Li, rather than

(roughly) proportional to Li. Thus, we need a different
analysis from ACDM (Lee & Sidford, 2013), and also avoid
the more complicated estimation sequence analysis.

1.2 The General Lβ-Norm Case

Define the Lβ norm ‖y‖2Lβ
def
=
∑
i L

β
i · y2i for β ∈ [0, 1].

Many accelerated coordinate descent methods provide con-
vergence guarantees with respect to the L1 norm (Lu &
Xiao, 2013; Fercoq & Richtárik, 2015) or the Lβ norm
(Nesterov, 2012; Lin et al., 2014; Lee & Sidford, 2013).

For instance, RCDM takes β as an input, and converges in
T = O

(S1−β
ε ‖x0 − x

∗‖2Lβ
)

iterations if one samples each

coordinate i with probability L1−β
i /S1−β , where Sα

def
=∑

i L
α
i . In (Lee & Sidford, 2013), Lee and Sidford showed

that their ACDM converges in T iterations with the same

4More precisely, they select each coordinate i with a probabil-
ity proportional to max{Li, 1

n

∑
j Lj}. As a consequence, each

coordinate i is selected with probability at least Ω(1/n). Lee and
Sidford emphasized that using this sampling method, rather than
choosing each i directly with probability Li/(

∑
j Lj), is essen-

tial for ACDM to obtain the accelerated convergence rate.
5If L1 = · · · = Ln, we have

∑
i

√
Li =

√
n
∑
i Li.

However, if L1 = 1 while L2 = · · · = Ln = 0, we have∑
i

√
Li = 1√

n
·
√
n
∑
i Li.
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Paper
Euclidean β = 0 Case β ∈ [0, 1] Case β = 1 Case

strongly
convex non strongly convex strongly

convex non strongly convex strongly
convex non strongly convex

RCDM ,
∑
i Li
σ

log 1
ε

∑
i Li
ε
‖x0 − x∗‖2

S1−β
σβ

log 1
ε

S1−β
ε
‖x0 − x∗‖2Lβ

n
σ1

log 1
ε

n
ε
‖x0 − x∗‖2L1

APCG , RBCD ,
Nesterov ,
APPROX

- - - - n√
σ1

log 1
ε

n√
ε
‖x0 − x∗‖L1

ACDM
√
n
∑
i Li√
σ

log 1
ε

√
n
∑
i Li√

ε/ log 1
ε

‖x0−x∗‖
√
nS1−β
√
σβ

log 1
ε

√
nS1−β

√
ε/ log 1

ε

‖x0−x∗‖Lβ
√
n√
σ1

log 1
ε

n√
ε/ log 1

ε

‖x0−x∗‖L1

this paper
∑
i

√
Li√
σ

log 1
ε

∑
i

√
Li√
ε
‖x0 − x∗‖

S(1−β)/2√
σβ

log 1
ε

S(1−β)/2√
ε
‖x0−x∗‖Lβ

√
n√
σ1

log 1
ε

n√
ε
‖x0 − x∗‖L1

Table 1. Comparisons among coordinate descent methods, where Sα
def
=
∑
i L

α
i .

sampling probabilities L1−β
i /S1−β , where

T =


Õ
(√

nS1−β√
ε
‖x0 − x∗‖2Lβ

)
, when f is convex

O
(√

nS1−β√
σβ

log 1
ε

)
,

when f is σβ-
strongly convex w.r.t.
the Lβ norm

This is always faster than RCDM. Note that, in the special
case of β = 1 (and thus using uniform sampling probabili-
ties), this same convergence result is also obtained by Nes-
terov (Nesterov, 2012), APCG (Lin et al., 2014), RBCD (Lu
& Xiao, 2013), and APPROX (Fercoq & Richtárik, 2015).
(See Table 1.)

Our method NU ACDM improves this convergence to

T =


O
(
S(1−β)/2√

ε
‖x0 − x∗‖Lβ

)
, when f is convex

O
(
S(1−β)/2√

σβ
log 1

ε

)
,

when f is σβ-
strongly convex w.r.t.
the Lβ norm

Since
√
S1−β ≤ S(1−β)/2 ≤

√
nS1−β , our method

is faster than ACDM by a factor up to
√
n. Our im-

provement is again due to the new choice of sampling
probabilities —we select each coordinate i with proba-
bility L(1−β)/2

i /S(1−β)/2 which is different from RCDM or
ACDM— as well as our new proof that avoids the use of es-
timation sequence.

Remark 1.1. For the strongly convex case, convergence
results with respect to Euclidean norms are usually more
relevant to applications: for instance, the `2 regularizer
is the most common one used in machine learning appli-
cations and algorithms designed for the Euclidean norm
should be used for a better performance.6 However, in the
non-strongly convex case, results with respect to different
β are in general incomparable. We include experiments in
Section 7.3 to illustrate this.

6In contrast, consider an objective f(x) equipped with a regu-
larizer σ

2
‖x‖2. Such an objective is also strongly convex with re-

spect to the Lβ norm with parameter mini L
−β
i . If one applies an

algorithm designed for the Lβ norm using this parameter, the con-
vergence would be much worse than the first column of Table 1.

2 Applications
Empirical Risk Minimization. A cornerstone problem
in machine learning is empirical risk minimization (ERM).
Let a1, . . . , an ∈ Rd be the feature vectors of n data sam-
ples, φ1, . . . , φn : R → R be a sequence of convex loss
functions, and r : Rd → R be a convex function (often
known as a regularizer). The goal of ERM problem is to
solve the following primal convex problem:

minw∈Rd P (w)
def
= 1

n

∑n
i=1 φi

(
〈ai, w〉

)
+ r(w). (2.1)

This includes a family of important problems such as SVM,
Lasso, ridge regression, and logistic regression. Lin, Lu
and Xiao (Lin et al., 2014) showed that the above mini-
mization problem is equivalent to the following dual one:

miny∈Rn D(y)
def
= 1

n

∑n
i=1 φ

∗
i (yi) + r∗

(
− 1
n

∑n
i=1 yiai

)
,

(2.2)
where φ∗i and r∗ are respectively the Fenchel conjugate
function of φi and r.7 Most importantly, if properly prepro-
cessed, D(y) can be shown to be coordinate-wise smooth
and therefore accelerated coordinate descent methods can
be applied to minimize D(y). This approach leads to al-
gorithm APCG, which matches the best known worst-case
running time on solving (2.1) up to a logarithmic factor.8

However, by taking a closer look, the coordinate smooth-
ness parameters L1, . . . , Ln of D(y) are data dependent.
Indeed, Li is roughly proportional to the Euclidean norm
square of the i-th feature vector. Therefore, we can apply
NU ACDM in this paper to improve the running time obtained
by APCG or AccSDCA. This is done in Section 7.

Note that each iteration of NU ACDM selects a feature vector
with a probability (roughly) proportional to its Euclidean
norm. This is very different from the recent work of Zhao
and Zhang (Zhao & Zhang, 2015), where they observed
that for SDCA (Shalev-Shwartz & Zhang, 2013), a non-

7The conjugate of r(x) is r∗(y)
def
= maxw{yTw − r(w)}.

8Accelerated algorithms for solving (2.1) were first obtained
by AccSDCA (Shalev-Shwartz & Zhang, 2014), and more recently
improved by Katyusha (Allen-Zhu, 2016).
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accelerated method, feature vectors should be sampled with
probabilities proportional to their Euclidean norm squares.
If one also uses the squared norms in the accelerated set-
ting, he will only get a running time similar to ACDM, and
therefore worse than our NU ACDM.

We also mention one recent result that uses our NU ACDM to
develop faster ERM methods by exploiting the clustering
structure of the dataset (Allen-Zhu et al., 2016).

Solving Linear Systems. Consider a linear system Ax =
b for some full row rank matrix A ∈ Rm×n where m ≥ n.
Denoting ai ∈ Rn as the i-th row vector of matrix A, the
celebrated Kaczmarz method (Kaczmarz, 1937) iteratively
picks one of the row vectors ai and computes

xk+1 ← xk + bi−〈ai,xk〉
‖ai‖2 ai .

Although many deterministic schemes have been proposed
regarding how to select row vectors, many of them are
difficult to analyze or compare. In a breakthrough paper,
Strohmer and Vershynin (Strohmer & Vershynin, 2009) an-
alyzed a randomized scheme and proved that:

Theorem 2.1 (Randomized Kaczmarz (Strohmer & Ver-
shynin, 2009)). If one samples row i with probability pro-
portional to ‖ai‖2 in each iteration, then the Kaczmarz
method produces an ε-approximate solution of Ax = b9

in O
(
‖A−1‖22 · ‖A‖2F · log 1

ε

)
iterations, and each iteration

costs a running time O(n).

Above, x∗ is the solution toAx = b,A−1 is the left inverse,
‖A−1‖2 is one divided by the smallest non-zero singular
value of A, and ‖A‖F = (

∑
ij a

2
ij)

1/2 is the Frobenius
norm.

Randomized Kaczmarz can be viewed as coordinate de-
scent (Lee & Sidford, 2013; Needell et al., 2014; Gower
& Richtárik, 2015), and therefore ACDM applies here and
gives a faster running time:

Theorem 2.2 (ACDM on Kaczmarz (Lee & Sidford, 2013)).
The ACDM method samples row i with probability pro-
portional to max{‖ai‖2, ‖A‖

2
F

m } at each iteration, and
produces an ε-approximate solution to Ax = b in
O
(√
m‖A−1‖2 · ‖A‖F · log 1

ε

)
iterations, and each iter-

ation costs a running time O(n).

To obtain the above result, Lee and Sidford rewrote the
problem of solving Ax = b as an m-variate quadratic min-
imization problem

miny∈Rm
{
f(y)

def
= 1

2‖A
T y‖2 − 〈b, y〉

}
.

The coordinate smoothness of f is Li = ‖ai‖2 for every
i ∈ [m], and the strong convexity of f can be deduced as
σ = ‖A−1‖−22 .10 For this reason, if we apply NU ACDM

9That is, a vector x satisfying E[‖xk−x∗‖2] ≤ ε‖x0−x∗‖2.
10One has to in fact consider the strong convexity of f in the

space orthogonal to the null space {y ∈ Rm|AT y = 0}. We rec-

instead of ACDM, we immediately get a faster algorithm:

Theorem 2.3 (NU ACDM on Kaczmarz). The NU ACDM

method samples row i with probability proportional to
‖ai‖ at each iteration, and produces an ε-approximate
solution to Ax = b in O

(
‖A−1‖2 · ‖A‖2,1 · log 1

ε

)
itera-

tions, and each iteration costs a running time O(n).

Above, ‖A‖2,1
def
=
∑m
j=1

(∑n
i=1 |aij |2

)1/2
is the matrix

L2,1 norm. Since it satisfies ‖A‖F ≤ ‖A‖2,1 ≤
√
m‖A‖F ,

our method is always faster than ACDM, and can be faster by
a factor up to

√
m that depends on the problem structure.

We provide empirical evaluation on this in Section 8.

3 Other Related Work
People have considered selecting coordinates non-
uniformly from other perspectives. For example, Nutini et
al. (Nutini et al., 2015) compared the random coordinate
selection rule with the Gauss-Southwell rule, and proved
that except in the extreme cases, Gauss-Southwell rule
is faster. Needell et el. (Needell et al., 2014) proposed
a non-uniform sampling for stochastic gradient descent,
and made a connection to the randomized Kaczmarz
algorithm. Qu et al. (Qu et al., 2014) gave an algorithm
which supports arbitrary sampling on dual variables. Csiba
et al. (Csiba et al., 2015) showed that one can adaptively
choose a probability distribution over the dual variables
that depends on the “dual residues”. All of the works
cited above are for non-accelerated settings, while this
paper focuses on designing fast accelerated method. Note
that Qu and Richtárik (Qu & Richtárik, 2014) provided a
unified analysis for both accelerated and non-accelerated
coordinate descent methods with what they call “arbitrary
sampling” in the non-strongly convex case. Our work can
be seen as a continuation of that work, in that we instead
focus on a particular class of sampling probabilities, for
which we derive provably better convergence complexity
bounds than prior results both for strongly-convex and
non-strongly convex cases. In the non-strongly convex
case, our results can be infered from the general results in
(Qu & Richtárik, 2014).

4 Notations
Let x∗ be an arbitrary minimizer of f(x) and we are inter-
ested in finding a vector x satisfying f(x)− f(x∗) ≤ ε for
an accuracy parameter ε > 0. We use ‖ · ‖ to denote the
Euclidean norm and ei ∈ Rn the i-th unit vector. We de-
note by ∇f(x) the full gradient of f at point x ∈ Rn, and
by∇if(x) the i-th coordinate gradient. With a slight abuse
of notation, we view ∇if(x) both as a scaler in R and as a
singleton vector in Rn.

ommend interested readers to see Section 5.2 of (Lee & Sidford,
2013) for details.
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Algorithm 1 NU ACDM(β, f, x0, T )

Input: β ∈ [0, 1]; f a convex function that is coordinate-wise smooth with parameters (L1, . . . , Ln), and σβ-strongly
convex with respect to ‖ · ‖Lβ for some β ∈ [0, 1]; x0 some initial point; and T the number of iterations.

Output: yT such that E[f(yT )]− f(x∗) ≤ O((1− τ)T ) · (f(x0)− f(x∗)).
1: α← (1− β)/2, Sα ←

∑n
i=1 L

α
i .

2: pi ← Lαi
Sα

for each i ∈ [n]. �
∑
i pi = 1 so {pi}i forms a distribution over [n]

3: τ ← 2

1+
√

4S2
α/σβ+1

, η ← 1
τS2

α
. � τ = O(

√
σβ
Sα

) and η = O( 1√
σβSα

)

4: y0 ← x0, z0 ← x0.
5: for k ← 0 to T − 1 do
6: xk+1 ← τzk + (1− τ)yk.
7: Sample i from {1, · · · , n} based on p = (p1, · · · , pn).
8: yk+1 ← y

(i)
k+1

def
= xk+1 − 1

Li
∇if(xk+1)

9: zk+1 ← z
(i)
k+1

def
= 1

1+ησβ

(
zk + ησβxk+1 − η

piL
β
i

∇if(xk+1)
)

10: end for
11: return yT .

Definition 4.1. We say that f is L-smooth if ∀x, y ∈ Rn,
it satisfies ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
We say that f is σ-strongly convex if ∀x, y ∈ Rn, it satisfies
f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σ

2 ‖x− y‖
2.

Definition 4.2. f is coordinate-wise smooth with parame-
ters (L1, L2, . . . , Ln), if for all x ∈ Rn, δ > 0, i ∈ [n]:

|∇if(x+ δei)−∇if(x)| ≤ Li · δ .

Following the notations of prior work (Nesterov, 2012; Lee
& Sidford, 2013), we make the following definitions

Definition 4.3. Given α, β ∈ [0, 1], define

Sα
def
=
∑n
i=1 L

α
i , ‖x‖Lβ

def
=
∑n
i=1 x

2
i · L

β
i , and

〈x, y〉Lβ
def
=
∑n
i=1 xiyi · L

β
i .

Also, define σβ to be the strong convexity parameter of f(·)
with respect to the ‖ · ‖Lβ norm. That is, it satisfies f(y) ≥
f(x) + 〈∇f(x), y − x〉+

σβ
2 ‖x− y‖

2
Lβ

for all x, y ∈ Rn.

Clearly, if f is σ strongly convex then σ0 = σ.

5 NUACDM in Strongly Convex Case
We now propose our new method NU ACDM to deal with
strongly convex and smooth objectives. Suppose f(·) is
coordinate-wise smooth with parameters (L1, . . . , Ln) and
σβ-strongly convex with respect to ‖ · ‖Lβ for some β ∈
[0, 1]. At a first reading, one can simply consider β = 0
so f is σ0-strongly convex with respect to the traditional
Euclidean norm. We choose to analyze the full parameter
regime of β to better compare us with known literatures.

As described in Algorithm 1, NU ACDM begins with
x0 = y0 = z0 and iteratively computes the tuple
xk+1, yk+1, zk+1 from xk, yk, zk. In iteration k =
0, 1, . . . , T − 1, we first compute xk+1 ← τzk + (1− τ)yk
for some parameter τ ∈ [0, 1] (whose value will be spec-

ified later), and randomly select a coordinate i ∈ [n] with
probability pi = Lαi /Sα where α def

= (1− β)/2.

Whenever i is selected at iteration k, we perform two
updates yk+1 ← xk+1 − 1

Li
∇if(xk+1) and zk+1 ←

1
1+ησβ

(
zk + ησβxk+1 − η

piL
β
i

∇if(xk+1)
)
, both using the

i-th coordinate gradient at point xk+1. Here, η > 0 is the
parameter that determines the step length of the second up-
date; its choice will become clear in the analysis. Our main
theorem in this section is as follows:

Theorem 5.1. If f(x) is coordinate-wise smooth
with parameters (L1, . . . , Ln), and σβ-strongly convex
with respect to ‖ · ‖Lβ for some β ∈ [0, 1], then
NU ACDM(β, f, x0, T ) produces an output yT satisfying

E[f(yT )]− f(x∗) ≤ O(1) · (1− τ)T (f(x0)− f(x∗)) ,

where τ = 2

1+
√

4S2
(1−β)/2/σβ+1

= 1

O
(
S(1−β)/2/

√
σβ

) .

In particular, if β = 0 parameter τ becomes τ =
1

O
(∑

i

√
Li/
√
σ
) . Note that each iteration of NU ACDM can

be implemented to run in time similar to ACDM and therefore
RCDM. We include proofs in the full paper.

6 NUACDM in Non-Strongly Convex Case
We propose algorithm NU ACDMns in the case when f(·) is
not necessarily strongly convex. NU ACDMns requires some
non-trivial modifications on NU ACDM: for instance, η and τ
are no longer constants (see Algorithm 2). The analysis is
also slightly different but in the same structure as Section 5.
We include proofs in the full paper.

7 Experiments on ERM
We perform experiments on ERM problems to confirm our
theoretical improvements. We consider three datasets in
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Algorithm 2 NU ACDMns(β, f, x0, T )

Input: β ∈ [0, 1];
f a convex function that is coordinate-wise smooth with parameters (L1, . . . , Ln);
x0 some initial point; and
T the number of iterations.

Output: yT such that E[f(yT )]− f(x∗) ≤ 2‖x0 − x∗‖2Lβ · S
2
(1−β)/2/(T + 1)2.

1: α← (1− β)/2, Sα ←
∑n
i=1 L

α
i .

2: pi ← Lαi
Sα

for each i ∈ [n]. �
∑
i pi = 1 so {pi}i forms a distribution over [n]

3: y0 ← x0, z0 ← x0.
4: for k ← 0 to T − 1 do
5: ηk+1 ← k+2

2S2
α

, and τk ← 1
ηk+1S2

α
= 2

k+2 .
6: xk+1 ← τkzk + (1− τk)yk.
7: Sample i from {1, · · · , n} based on p = (p1, · · · , pn).
8: yk+1 ← y

(i)
k+1

def
= xk+1 − 1

Li
∇if(xk+1)

9: zk+1 ← z
(i)
k+1

def
= zk − ηk+1

piL
β
i

∇if(xk+1)

10: end forreturn yT .

this section: (1) class 1 of the news20 dataset (15, 935
samples and 62, 061 features), (2) the w8a dataset (49, 749
samples and 300 features), and (3) the covtype dataset
(581, 012 samples and 54 features). All of them can be
found on the LibSVM website (Fan & Lin), and con-
tain examples that have non-uniform Euclidean norms (see
Figure 3 in the appendix for the distribution).

7.1 Experiments on Strongly Convex Objectives
Consider a regularized least-square problem which is prob-
lem (2.1) with φi(t)

def
= 1

2 (t− li)2, where li is the label for
feature vector ai. In the case when r(w) = λ

2 ‖w‖
2
2, this

problem becomes ridge regression, and in the case when
r(w) = λ‖w‖1, it is known as Lasso regression.

Following (2.2), the equivalent dual formulation of regular-
ized least square can be written as

miny∈Rn
{
D(y)

def
= 1

n

∑n
i=1

(
1
2y

2
i + yi · li

)
+ r∗

(
− 1

n

∑n
i=1 yiai

)}
. (7.1)

Furthermore, D(y) is 1/n-strongly convex.

Ridge Regression. In ridge regression, we have r(w) =
λ
2 ‖w‖

2
2 and accordingly r∗(z) = 1

2λ‖z‖
2
2 in (7.1). It is not

hard to verify thatD(y) isLi
def
= 1

n+ 1
λn2 ‖ai‖22 smooth with

respect to its i-th coordinate (and thus with respect to the
i-th example). Therefore, the coordinate smoothness pa-
rameters are non-uniform if examples a1, . . . , an’s do not
have the same Euclidean norms.

We can directly apply RCDM, ACDM and our NU ACDM with
β = 0 and σ = 1/n to minimize (7.1). In principle, one
can also apply APCG to minimize D(y). However, since
APCG is only designed for β = 1 and needs an unknown
parameter σ1 > 0 as input, we have tuned it for the fastest

convergence in our experiments; whenever we do so, we
denote it as APCG∗ in the diagrams.11

Our experimental results for ridge regression are in
Figure 1. Note that theory predicts that NU ACDM enjoys a

speed-up factor of
√
n
∑
i Li∑

i

√
Li
≥ 1 over ACDM, and we show

this factor in Table 2. We make the following observations:

• Since Li = 1
n + 1

λn2 ‖ai‖22, the smaller the regular-
ization parameter λ is, the more non-uniform the pa-
rameters L1, . . . , Ln are. This is why the numbers in
Table 2 are in decreasing order in each row. Our exper-
iment confirms on this because we obtain the greatest
improvements for the left 3 charts in Figure 1.

• news20 has the most non-uniformity on the examples’
Euclidean norms among the three datasets. Therefore,
the first row Table 2 have the largest speed-up factors.
Our experiment confirms on this because we obtain the
greatest improvements in the top 3 charts in Figure 1.

• APCG performs quite poorly on dataset news20 be-
cause it relies on the Lβ norm strong convexity for
β = 1, which is very different from the Euclidean norm
strong convexity when the parameters Li are very non-
uniform. We discuss the choice of β in Section 7.3, and
would like to point out that APCG performs very well for
non strongly convex objectives, see Section 7.2.

Due to strong duality, our convergence speed-up on the
dual objective also translates to that on the primal objec-
tive. See Figure 5 in the appendix for details.

Lasso. Due to space limitation, we include our experi-

11We have chosen 14 values of σ1 in a reasonable range, where
the largest choice of σ1 is 50, 000 times larger than the smallest
choice. Our automated program will then make the final choice
of σ1 based on the convergence speed.
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Figure 1. Performance Comparison for Ridge Regression. The y axis represents the dual objective distance to minimum, and the x axis
represents the number of passes to the dataset. More experiment plots can be found in the full version of this paper.

news20 λ = 0.001 1.56772 λ = 0.01 1.30740 λ = 0.1 1.05110

w8a λ = 0.00001 1.11060 λ = 0.0001 1.04897 λ = 0.001 1.00373

covtype λ = 1 1.04266 λ = 10 1.02787 λ = 100 1.00362

Table 2. The theoretical speed-up factor
√
n
∑
i Li/

(∑
i

√
Li
)

of NU ACDM over ACDM for the three datasets.

r = 100% r = 80%, r = 60% r = 40% r = 20% r = 10%

Speed Up 1 1.0992 1.2464 1.4025 1.6243 1.7379

Table 3. Theoretical Speed-Up Factors
√
n
∑
i Li/

(∑
i

√
Li
)

of NU ACDM over ACDM for linear systems Ax = b.

mental results for Lasso regression in the full paper.

7.2 Experiments on Non-Strongly Convex Objectives

Consider problem (2.1) where r(w) = λ
2 ‖w‖

2 is the `2 reg-
ularizer and each φi(·) is some non-smooth loss function.
In this case, the dual objective (2.2) becomes

miny∈Rn
{
D(y)

def
= 1

n

∑n
i=1 φ

∗
i (yi)+

1
2λn2

∥∥∥∑n
i=1 yiai

∥∥∥2
2

}
.

(7.2)
This D(y) is not necessarily strongly convex because the
penalty functions φi(·) is not smooth. In this section, we
conduct an experiment for the case when φi(α)

def
= 1

2 (α −
li)

2 + |α − li| is an `2 − `1 penalty function. We call this
ERM problem the `2 − `1 Penalty Regression.

As before, we know that D(y) is Li
def
= 1

n + 1
λn2 ‖ai‖22

smooth with respect to the i-th coordinate, so we can apply
ACDM, RCDM, APCG and our NU ACDMns directly to minimize
D(y). We choose β = 0 for ACDM, RCDM, and NU ACDMns in
our experiment, and have to choose β = 1 for APCG. Our
results are shown in Figure 7 in the appendix.

From these experiments, we see that again the theoreti-
cal speed-up factors in Table 2 are validated in practice.
NU ACDMns has a clear advantage over its close relatives
ACDM and RCDM when the coordinate smoothness parame-
ters Li are very non-uniform (such as dataset news20), and
when λ is relatively small.

In contrast to the previous subsection, APCG (which uses
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Figure 2. Performance Comparison on Solving Ax = b.

β = 1) performs extremely well and similar to NU ACDMns

(which uses β = 0) in Figure 7. As we shall see in the next
section, by taking a closer look at different choices of β for
non-strongly convex objectives, APCG is in fact analogous
to the β = 1 case of NU ACDMns, but is slightly worse than
NU ACDMns for β being between 0 and 0.8 for all the three
datasets we are considering in this paper.

7.3 Dependence on β
As discussed in Remark 1.1, when dealing with a strongly
convex objective f(·), we usually work with accelerated
coordinate descent methods for Euclidean norm rather than
Lβ norms. However, the choice becomes less obvious for
non-strongly convex objectives.

For instance, in Table 1, by comparing T =
∑
i

√
Li/ε ·

‖x0−x∗‖ for β = 0 and T = n/
√
ε·‖x0−x∗‖L1 for β = 1,

it is not immediately clear which one is more preferable to
the other. If one works with a standard machine learning
boundedness assumption ‖x0−x∗‖ ≤ Θ for some constant
Θ, then the convergence for the β = 1 case reduces to
T = n/

√
ε · ‖x0 − x∗‖L1 ≤ nmaxi

√
Li/ε · Θ which is

slower than that of the β = 0 case. However, in general,
the best choice of β depends on how the coordinates of the
vector x0 − x∗ scale with parameters Li.

Nevertheless, we can perform a comparison in practice be-
tween difference choices of β. Focusing on the `1 − `2
Penalty Regression dual objective (7.2), we plot the per-
formance of NU ACDMns with different β. From Figure 4 in
the appendix, we conclude that smaller values of β are per-
haps more preferred to larger ones in practice. Not surpris-
ingly, the performance difference becomes less significant
for dataset covtype, because it has more uniform smooth-
ness parameters Li than the other two datasets. Finally, we
have included APCG in Figure 4 as well, and it has very sim-

ilar performance comparing to NU ACDMns for β = 1. This
confirms our theoretical finding in Table 1.

8 Experiments on Solving Linear Systems
We generate random linear systems Ax = b and compare
randomized Kaczmarz, ACDM, and NU ACDM.

We choose m = 300 and n = 100, and generate each
entryAij uniformly at random in [0, 1]. We scale a fraction
r of A’s rows to have Euclidean norm 10, and the rest to
have Euclidean norm 1. We generate a random vector x,
compute b = Ax, and use each of the three algorithms to
solve x given A and b.

Since the coordinate smoothness parameters depend on
the Euclidean norm squares of A’s rows, we expect our
NU ACDM to have a greater speed up comparing to ACDM for
small nonzeros values of r. We compute the theoretical
speed up factors in Table 3.

In Figure 2, we see that both NU ACDM and ACDM outper-
form the non-accelerated randomized Kaczmarz without
surprise. Furthermore, NU ACDM and ACDM are comparable
for r = 100%, and the out-performance indeed becomes
more significant for smaller values of r.
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Qu, Zheng, Richtárik, Peter, and Zhang, Tong. Ran-
domized dual coordinate ascent with arbitrary sampling.
CoRR, abs/1411.5873, 2014.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion. Journal of Machine Learning Research, 14:567–
599, 2013.

Shalev-Shwartz, Shai and Zhang, Tong. Accelerated Prox-
imal Stochastic Dual Coordinate Ascent for Regularized
Loss Minimization. In Proceedings of the 31st Inter-
national Conference on Machine Learning, ICML 2014,
pp. 64–72, 2014.



Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling

Strohmer, Thomas and Vershynin, Roman. A random-
ized kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15(2):
262–278, 2009.

Su, Weijie, Boyd, Stephen, and Candes, Emmanuel. A
differential equation for modeling nesterovs accelerated
gradient method: Theory and insights. In Advances in
Neural Information Processing Systems, pp. 2510–2518,
2014.

Zhang, Yuchen and Xiao, Lin. Stochastic Primal-Dual Co-
ordinate Method for Regularized Empirical Risk Mini-
mization. In Proceedings of the 32nd International Con-
ference on Machine Learning, ICML 2015, 2015.

Zhao, Peilin and Zhang, Tong. Stochastic Optimization
with Importance Sampling for Regularized Loss Mini-
mization. In Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37, pp. 1–9, 2015.


	1 Introduction
	1.1 The Standard Euclidean Norm Case
	1.2 The General L-Norm Case

	2 Applications
	3 Other Related Work
	4 Notations
	5 NUACDM in Strongly Convex Case
	6 NUACDM in Non-Strongly Convex Case
	7 Experiments on ERM
	7.1 Experiments on Strongly Convex Objectives
	7.2 Experiments on Non-Strongly Convex Objectives
	7.3 Dependence on 

	8 Experiments on Solving Linear Systems
	A Missing Experiments
	B NUACDM in the Strongly Convex Case
	B.1 Proof Outline
	B.2 Convergence Analysis

	C NUACDM in the Non-Strongly Convex Case
	C.1 Convergence Analysis


